diff options
374 files changed, 0 insertions, 102561 deletions
diff --git a/Makefile b/Makefile deleted file mode 100644 index 37e8083..0000000 --- a/Makefile +++ /dev/null @@ -1,3 +0,0 @@ -library_dependencies.pdf: library_dependencies.dot - dot -Tpdf $< > $@ - diff --git a/aufsaetze.vym b/aufsaetze.vym Binary files differdeleted file mode 100644 index d1f75cb..0000000 --- a/aufsaetze.vym +++ /dev/null diff --git a/hw_altium_livedesign/bsp/altium-livedesign-xc3s1000.ucf b/hw_altium_livedesign/bsp/altium-livedesign-xc3s1000.ucf deleted file mode 100644 index e01e492..0000000 --- a/hw_altium_livedesign/bsp/altium-livedesign-xc3s1000.ucf +++ /dev/null @@ -1,397 +0,0 @@ -############################################################ -# Altium Livedesign Evaluation Board constraints file -# -# Familiy: Spartan-3 -# Device: XC3S1000 -# Package: FG456C -# Speed: -4 -# -# all banks are powered with 3.3V -# -# config pins (M2, M1, M0): 101 - -############################################################ -## clock/timing constraints -############################################################ - -NET "clk" period = 50 MHz ; - - -############################################################ -## pin placement constraints -############################################################ - -NET "clk" LOC = AA12 | IOSTANDARD = LVCMOS33 | TNM_NET = "clk"; -NET "reset_n" LOC = Y17 | IOSTANDARD = LVCMOS33; # low active - -# Soft JTAG -NET "soft_tdo" LOC = D22 | IOSTANDARD = LVCMOS33; -NET "soft_tms" LOC = E21 | IOSTANDARD = LVCMOS33; -NET "soft_tdi" LOC = E22 | IOSTANDARD = LVCMOS33; -NET "soft_tck" LOC = F21 | IOSTANDARD = LVCMOS33; - -# SRAM 0 -NET "sram0_a<0>" LOC = L6 | IOSTANDARD = LVCMOS33; -NET "sram0_a<1>" LOC = K4 | IOSTANDARD = LVCMOS33; -NET "sram0_a<2>" LOC = H5 | IOSTANDARD = LVCMOS33; -NET "sram0_a<3>" LOC = G6 | IOSTANDARD = LVCMOS33; -NET "sram0_a<4>" LOC = F3 | IOSTANDARD = LVCMOS33; -NET "sram0_a<5>" LOC = G1 | IOSTANDARD = LVCMOS33; -NET "sram0_a<6>" LOC = G2 | IOSTANDARD = LVCMOS33; -NET "sram0_a<7>" LOC = K3 | IOSTANDARD = LVCMOS33; -NET "sram0_a<8>" LOC = T2 | IOSTANDARD = LVCMOS33; -NET "sram0_a<9>" LOC = T1 | IOSTANDARD = LVCMOS33; -NET "sram0_a<10>" LOC = U2 | IOSTANDARD = LVCMOS33; -NET "sram0_a<11>" LOC = V3 | IOSTANDARD = LVCMOS33; -NET "sram0_a<12>" LOC = V1 | IOSTANDARD = LVCMOS33; -NET "sram0_a<13>" LOC = W1 | IOSTANDARD = LVCMOS33; -NET "sram0_a<14>" LOC = V2 | IOSTANDARD = LVCMOS33; -NET "sram0_a<15>" LOC = V5 | IOSTANDARD = LVCMOS33; -NET "sram0_a<16>" LOC = V4 | IOSTANDARD = LVCMOS33; -NET "sram0_a<17>" LOC = U5 | IOSTANDARD = LVCMOS33; -NET "sram0_a<18>" LOC = U6 | IOSTANDARD = LVCMOS33; # n.c. -NET "sram0_d<0>" LOC = L4 | IOSTANDARD = LVCMOS33; -NET "sram0_d<1>" LOC = L3 | IOSTANDARD = LVCMOS33; -NET "sram0_d<2>" LOC = M5 | IOSTANDARD = LVCMOS33; -NET "sram0_d<3>" LOC = M4 | IOSTANDARD = LVCMOS33; -NET "sram0_d<4>" LOC = M3 | IOSTANDARD = LVCMOS33; -NET "sram0_d<5>" LOC = N4 | IOSTANDARD = LVCMOS33; -NET "sram0_d<6>" LOC = N3 | IOSTANDARD = LVCMOS33; -NET "sram0_d<7>" LOC = T5 | IOSTANDARD = LVCMOS33; -NET "sram0_d<8>" LOC = T4 | IOSTANDARD = LVCMOS33; -NET "sram0_d<9>" LOC = T6 | IOSTANDARD = LVCMOS33; -NET "sram0_d<10>" LOC = M6 | IOSTANDARD = LVCMOS33; -NET "sram0_d<11>" LOC = N2 | IOSTANDARD = LVCMOS33; -NET "sram0_d<12>" LOC = N1 | IOSTANDARD = LVCMOS33; -NET "sram0_d<13>" LOC = M2 | IOSTANDARD = LVCMOS33; -NET "sram0_d<14>" LOC = M1 | IOSTANDARD = LVCMOS33; -NET "sram0_d<15>" LOC = L2 | IOSTANDARD = LVCMOS33; -NET "sram0_cs_n" LOC = L5 | IOSTANDARD = LVCMOS33; -NET "sram0_lb_n" LOC = L1 | IOSTANDARD = LVCMOS33; -NET "sram0_ub_n" LOC = K2 | IOSTANDARD = LVCMOS33; -NET "sram0_we_n" LOC = U4 | IOSTANDARD = LVCMOS33; -NET "sram0_oe_n" LOC = K1 | IOSTANDARD = LVCMOS33; - -# SRAM 1 -NET "sram1_a<0>" LOC = K21 | IOSTANDARD = LVCMOS33; -NET "sram1_a<1>" LOC = K22 | IOSTANDARD = LVCMOS33; -NET "sram1_a<2>" LOC = K20 | IOSTANDARD = LVCMOS33; -NET "sram1_a<3>" LOC = G21 | IOSTANDARD = LVCMOS33; -NET "sram1_a<4>" LOC = G22 | IOSTANDARD = LVCMOS33; -NET "sram1_a<5>" LOC = M17 | IOSTANDARD = LVCMOS33; -NET "sram1_a<6>" LOC = L18 | IOSTANDARD = LVCMOS33; -NET "sram1_a<7>" LOC = K19 | IOSTANDARD = LVCMOS33; -NET "sram1_a<8>" LOC = V19 | IOSTANDARD = LVCMOS33; -NET "sram1_a<9>" LOC = W20 | IOSTANDARD = LVCMOS33; -NET "sram1_a<10>" LOC = W19 | IOSTANDARD = LVCMOS33; -NET "sram1_a<11>" LOC = Y20 | IOSTANDARD = LVCMOS33; -NET "sram1_a<12>" LOC = Y21 | IOSTANDARD = LVCMOS33; -NET "sram1_a<13>" LOC = Y22 | IOSTANDARD = LVCMOS33; -NET "sram1_a<14>" LOC = W21 | IOSTANDARD = LVCMOS33; -NET "sram1_a<15>" LOC = W22 | IOSTANDARD = LVCMOS33; -NET "sram1_a<16>" LOC = V21 | IOSTANDARD = LVCMOS33; -NET "sram1_a<17>" LOC = V22 | IOSTANDARD = LVCMOS33; -NET "sram1_a<18>" LOC = V20 | IOSTANDARD = LVCMOS33; # n.c. -NET "sram1_d<0>" LOC = L21 | IOSTANDARD = LVCMOS33; -NET "sram1_d<1>" LOC = M22 | IOSTANDARD = LVCMOS33; -NET "sram1_d<2>" LOC = M21 | IOSTANDARD = LVCMOS33; -NET "sram1_d<3>" LOC = N22 | IOSTANDARD = LVCMOS33; -NET "sram1_d<4>" LOC = N21 | IOSTANDARD = LVCMOS33; -NET "sram1_d<5>" LOC = U20 | IOSTANDARD = LVCMOS33; -NET "sram1_d<6>" LOC = T22 | IOSTANDARD = LVCMOS33; -NET "sram1_d<7>" LOC = T21 | IOSTANDARD = LVCMOS33; -NET "sram1_d<8>" LOC = V18 | IOSTANDARD = LVCMOS33; -NET "sram1_d<9>" LOC = U19 | IOSTANDARD = LVCMOS33; -NET "sram1_d<10>" LOC = U18 | IOSTANDARD = LVCMOS33; -NET "sram1_d<11>" LOC = T18 | IOSTANDARD = LVCMOS33; -NET "sram1_d<12>" LOC = R18 | IOSTANDARD = LVCMOS33; -NET "sram1_d<13>" LOC = T17 | IOSTANDARD = LVCMOS33; -NET "sram1_d<14>" LOC = M18 | IOSTANDARD = LVCMOS33; -NET "sram1_d<15>" LOC = M20 | IOSTANDARD = LVCMOS33; -NET "sram1_cs_n" LOC = L22 | IOSTANDARD = LVCMOS33; -NET "sram1_lb_n" LOC = M19 | IOSTANDARD = LVCMOS33; -NET "sram1_ub_n" LOC = L20 | IOSTANDARD = LVCMOS33; -NET "sram1_we_n" LOC = U21 | IOSTANDARD = LVCMOS33; -NET "sram1_oe_n" LOC = L19 | IOSTANDARD = LVCMOS33; - -# RS232 -NET "rs232_rx" LOC = A5 | IOSTANDARD = LVCMOS33; -NET "rs232_tx" LOC = F7 | IOSTANDARD = LVCMOS33; -NET "rs232_cts" LOC = F2 | IOSTANDARD = LVCMOS33; -NET "rs232_rts" LOC = E1 | IOSTANDARD = LVCMOS33; - -# 2x PS2 connectors -NET "mouse_clk" LOC = L17 | IOSTANDARD = LVCMOS33; -NET "mouse_data" LOC = G18 | IOSTANDARD = LVCMOS33; -NET "kbd_clk" LOC = F20 | IOSTANDARD = LVCMOS33; -NET "kbd_data" LOC = G19 | IOSTANDARD = LVCMOS33; - - -# VGA output (2**9 = 512 colors) -NET "vga_blue<7>" LOC = E14 | IOSTANDARD = LVCMOS33; -NET "vga_blue<6>" LOC = A13 | IOSTANDARD = LVCMOS33; -NET "vga_blue<5>" LOC = C13 | IOSTANDARD = LVCMOS33; -NET "vga_green<7>" LOC = E11 | IOSTANDARD = LVCMOS33; -NET "vga_green<6>" LOC = C11 | IOSTANDARD = LVCMOS33; -NET "vga_green<5>" LOC = D10 | IOSTANDARD = LVCMOS33; -NET "vga_red<7>" LOC = D6 | IOSTANDARD = LVCMOS33; -NET "vga_red<6>" LOC = D7 | IOSTANDARD = LVCMOS33; -NET "vga_red<5>" LOC = D9 | IOSTANDARD = LVCMOS33; -NET "vga_hsync" LOC = A8 | IOSTANDARD = LVCMOS33; -NET "vga_vsync" LOC = B14 | IOSTANDARD = LVCMOS33; - - -# Stereo Audio out -NET "audio_r" LOC = U3 | IOSTANDARD = LVCMOS33; -NET "audio_l" LOC = W3 | IOSTANDARD = LVCMOS33; - - -# GPIO DIP switches 7..0 left..right, low active -NET "switch_n<0>" LOC = Y6 | IOSTANDARD = LVCMOS33; -NET "switch_n<1>" LOC = V6 | IOSTANDARD = LVCMOS33; -NET "switch_n<2>" LOC = U7 | IOSTANDARD = LVCMOS33; -NET "switch_n<3>" LOC = AA4 | IOSTANDARD = LVCMOS33; -NET "switch_n<4>" LOC = AB4 | IOSTANDARD = LVCMOS33; -NET "switch_n<5>" LOC = AA5 | IOSTANDARD = LVCMOS33; -NET "switch_n<6>" LOC = AB5 | IOSTANDARD = LVCMOS33; -NET "switch_n<7>" LOC = AA6 | IOSTANDARD = LVCMOS33; - -# GPIO push buttons, low active -NET "button_n<5>" LOC = C21 | IOSTANDARD = LVCMOS33; -NET "button_n<4>" LOC = B20 | IOSTANDARD = LVCMOS33; -NET "button_n<3>" LOC = A15 | IOSTANDARD = LVCMOS33; -NET "button_n<2>" LOC = B6 | IOSTANDARD = LVCMOS33; -NET "button_n<1>" LOC = C1 | IOSTANDARD = LVCMOS33; -NET "button_n<0>" LOC = D1 | IOSTANDARD = LVCMOS33; - -# GPIO LEDs -NET "led<7>" LOC = W6 | IOSTANDARD = LVCMOS33; -NET "led<6>" LOC = Y5 | IOSTANDARD = LVCMOS33; -NET "led<5>" LOC = W5 | IOSTANDARD = LVCMOS33; -NET "led<4>" LOC = W4 | IOSTANDARD = LVCMOS33; -NET "led<3>" LOC = Y3 | IOSTANDARD = LVCMOS33; -NET "led<2>" LOC = Y2 | IOSTANDARD = LVCMOS33; -NET "led<1>" LOC = Y1 | IOSTANDARD = LVCMOS33; -NET "led<0>" LOC = W2 | IOSTANDARD = LVCMOS33; - -# seven segment display (5=left 0=right) -# -# segment assignment: -# .ABCDEFG -# 76543210 -NET "dig0_seg<7>" LOC = E20 | IOSTANDARD = LVCMOS33; -NET "dig0_seg<6>" LOC = C22 | IOSTANDARD = LVCMOS33; -NET "dig0_seg<5>" LOC = E18 | IOSTANDARD = LVCMOS33; -NET "dig0_seg<4>" LOC = D20 | IOSTANDARD = LVCMOS33; -NET "dig0_seg<3>" LOC = D21 | IOSTANDARD = LVCMOS33; -NET "dig0_seg<2>" LOC = E19 | IOSTANDARD = LVCMOS33; -NET "dig0_seg<1>" LOC = G17 | IOSTANDARD = LVCMOS33; -NET "dig0_seg<0>" LOC = F19 | IOSTANDARD = LVCMOS33; - -NET "dig1_seg<7>" LOC = F17 | IOSTANDARD = LVCMOS33; -NET "dig1_seg<6>" LOC = D18 | IOSTANDARD = LVCMOS33; -NET "dig1_seg<5>" LOC = B19 | IOSTANDARD = LVCMOS33; -NET "dig1_seg<4>" LOC = C18 | IOSTANDARD = LVCMOS33; -NET "dig1_seg<3>" LOC = C19 | IOSTANDARD = LVCMOS33; -NET "dig1_seg<2>" LOC = C20 | IOSTANDARD = LVCMOS33; -NET "dig1_seg<1>" LOC = F18 | IOSTANDARD = LVCMOS33; -NET "dig1_seg<0>" LOC = D19 | IOSTANDARD = LVCMOS33; - -NET "dig2_seg<7>" LOC = A19 | IOSTANDARD = LVCMOS33; -NET "dig2_seg<6>" LOC = E17 | IOSTANDARD = LVCMOS33; -NET "dig2_seg<5>" LOC = C17 | IOSTANDARD = LVCMOS33; -NET "dig2_seg<4>" LOC = D17 | IOSTANDARD = LVCMOS33; -NET "dig2_seg<3>" LOC = B15 | IOSTANDARD = LVCMOS33; -NET "dig2_seg<2>" LOC = A18 | IOSTANDARD = LVCMOS33; -NET "dig2_seg<1>" LOC = B18 | IOSTANDARD = LVCMOS33; -NET "dig2_seg<0>" LOC = B17 | IOSTANDARD = LVCMOS33; - -NET "dig3_seg<7>" LOC = D15 | IOSTANDARD = LVCMOS33; -NET "dig3_seg<6>" LOC = E13 | IOSTANDARD = LVCMOS33; -NET "dig3_seg<5>" LOC = B13 | IOSTANDARD = LVCMOS33; -NET "dig3_seg<4>" LOC = D13 | IOSTANDARD = LVCMOS33; -NET "dig3_seg<3>" LOC = D14 | IOSTANDARD = LVCMOS33; -NET "dig3_seg<2>" LOC = A14 | IOSTANDARD = LVCMOS33; -NET "dig3_seg<1>" LOC = E16 | IOSTANDARD = LVCMOS33; -NET "dig3_seg<0>" LOC = E15 | IOSTANDARD = LVCMOS33; - -NET "dig4_seg<7>" LOC = D11 | IOSTANDARD = LVCMOS33; -NET "dig4_seg<6>" LOC = E9 | IOSTANDARD = LVCMOS33; -NET "dig4_seg<5>" LOC = A10 | IOSTANDARD = LVCMOS33; -NET "dig4_seg<4>" LOC = B9 | IOSTANDARD = LVCMOS33; -NET "dig4_seg<3>" LOC = A9 | IOSTANDARD = LVCMOS33; -NET "dig4_seg<2>" LOC = C10 | IOSTANDARD = LVCMOS33; -NET "dig4_seg<1>" LOC = A12 | IOSTANDARD = LVCMOS33; -NET "dig4_seg<0>" LOC = B10 | IOSTANDARD = LVCMOS33; - -NET "dig5_seg<7>" LOC = C7 | IOSTANDARD = LVCMOS33; -NET "dig5_seg<6>" LOC = A4 | IOSTANDARD = LVCMOS33; -NET "dig5_seg<5>" LOC = B5 | IOSTANDARD = LVCMOS33; -NET "dig5_seg<4>" LOC = E6 | IOSTANDARD = LVCMOS33; -NET "dig5_seg<3>" LOC = C5 | IOSTANDARD = LVCMOS33; -NET "dig5_seg<2>" LOC = E7 | IOSTANDARD = LVCMOS33; -NET "dig5_seg<1>" LOC = B8 | IOSTANDARD = LVCMOS33; -NET "dig5_seg<0>" LOC = C6 | IOSTANDARD = LVCMOS33; - - -# Header A (left) -NET "header_a<2>" LOC = V7 | IOSTANDARD = LVCMOS33; -NET "header_a<3>" LOC = AA8 | IOSTANDARD = LVCMOS33; -NET "header_a<4>" LOC = AB8 | IOSTANDARD = LVCMOS33; -NET "header_a<5>" LOC = V8 | IOSTANDARD = LVCMOS33; -NET "header_a<6>" LOC = Y10 | IOSTANDARD = LVCMOS33; -NET "header_a<7>" LOC = V9 | IOSTANDARD = LVCMOS33; -NET "header_a<8>" LOC = W9 | IOSTANDARD = LVCMOS33; -NET "header_a<9>" LOC = AA10 | IOSTANDARD = LVCMOS33; -NET "header_a<10>" LOC = AB10 | IOSTANDARD = LVCMOS33; -NET "header_a<11>" LOC = W10 | IOSTANDARD = LVCMOS33; -NET "header_a<12>" LOC = AB11 | IOSTANDARD = LVCMOS33; -NET "header_a<13>" LOC = U11 | IOSTANDARD = LVCMOS33; -NET "header_a<14>" LOC = AB13 | IOSTANDARD = LVCMOS33; -NET "header_a<15>" LOC = AA13 | IOSTANDARD = LVCMOS33; -NET "header_a<16>" LOC = V10 | IOSTANDARD = LVCMOS33; -NET "header_a<17>" LOC = U10 | IOSTANDARD = LVCMOS33; -NET "header_a<18>" LOC = W13 | IOSTANDARD = LVCMOS33; -NET "header_a<19>" LOC = Y13 | IOSTANDARD = LVCMOS33; - -# Header B (right) -NET "header_b<2>" LOC = V14 | IOSTANDARD = LVCMOS33; -NET "header_b<3>" LOC = V13 | IOSTANDARD = LVCMOS33; -NET "header_b<4>" LOC = AA15 | IOSTANDARD = LVCMOS33; -NET "header_b<5>" LOC = W14 | IOSTANDARD = LVCMOS33; -NET "header_b<6>" LOC = AB15 | IOSTANDARD = LVCMOS33; -NET "header_b<7>" LOC = Y16 | IOSTANDARD = LVCMOS33; -NET "header_b<8>" LOC = AA17 | IOSTANDARD = LVCMOS33; -NET "header_b<9>" LOC = AA18 | IOSTANDARD = LVCMOS33; -NET "header_b<10>" LOC = AB18 | IOSTANDARD = LVCMOS33; -NET "header_b<11>" LOC = Y18 | IOSTANDARD = LVCMOS33; -NET "header_b<12>" LOC = Y19 | IOSTANDARD = LVCMOS33; -NET "header_b<13>" LOC = AB20 | IOSTANDARD = LVCMOS33; -NET "header_b<14>" LOC = AA20 | IOSTANDARD = LVCMOS33; -NET "header_b<15>" LOC = U16 | IOSTANDARD = LVCMOS33; -NET "header_b<16>" LOC = V16 | IOSTANDARD = LVCMOS33; -NET "header_b<17>" LOC = V17 | IOSTANDARD = LVCMOS33; -NET "header_b<18>" LOC = W16 | IOSTANDARD = LVCMOS33; -NET "header_b<19>" LOC = W17 | IOSTANDARD = LVCMOS33; - -# usused pins -CONFIG PROHIBIT = A3; -CONFIG PROHIBIT = A7; -CONFIG PROHIBIT = A11; -CONFIG PROHIBIT = A16; -CONFIG PROHIBIT = AA3; -CONFIG PROHIBIT = AA7; -CONFIG PROHIBIT = AA9; -CONFIG PROHIBIT = AA11; -CONFIG PROHIBIT = AA14; -CONFIG PROHIBIT = AA16; -CONFIG PROHIBIT = AA19; -CONFIG PROHIBIT = AB7; -CONFIG PROHIBIT = AB9; -CONFIG PROHIBIT = AB12; -CONFIG PROHIBIT = AB14; -CONFIG PROHIBIT = AB16; -CONFIG PROHIBIT = AB19; -CONFIG PROHIBIT = B4; -CONFIG PROHIBIT = B7; -CONFIG PROHIBIT = B12; -CONFIG PROHIBIT = B11; -CONFIG PROHIBIT = B16; -CONFIG PROHIBIT = C2; -CONFIG PROHIBIT = C3; -CONFIG PROHIBIT = C4; -CONFIG PROHIBIT = C12; -CONFIG PROHIBIT = C16; -CONFIG PROHIBIT = D2; -CONFIG PROHIBIT = D3; -CONFIG PROHIBIT = D4; -CONFIG PROHIBIT = D5; -CONFIG PROHIBIT = D8; -CONFIG PROHIBIT = D12; -CONFIG PROHIBIT = D16; -CONFIG PROHIBIT = E2; -CONFIG PROHIBIT = E3; -CONFIG PROHIBIT = E8; -CONFIG PROHIBIT = E4; -CONFIG PROHIBIT = E5; -CONFIG PROHIBIT = F4; -CONFIG PROHIBIT = E10; -CONFIG PROHIBIT = E12; -CONFIG PROHIBIT = F12; -CONFIG PROHIBIT = F5; -CONFIG PROHIBIT = F13; -CONFIG PROHIBIT = F6; -CONFIG PROHIBIT = F9; -CONFIG PROHIBIT = F10; -CONFIG PROHIBIT = F16; -CONFIG PROHIBIT = F11; -CONFIG PROHIBIT = F14; -CONFIG PROHIBIT = G3; -CONFIG PROHIBIT = G4; -CONFIG PROHIBIT = G5; -CONFIG PROHIBIT = G20; -CONFIG PROHIBIT = H1; -CONFIG PROHIBIT = H2; -CONFIG PROHIBIT = H4; -CONFIG PROHIBIT = H18; -CONFIG PROHIBIT = H19; -CONFIG PROHIBIT = H21; -CONFIG PROHIBIT = H22; -CONFIG PROHIBIT = J1; -CONFIG PROHIBIT = J2; -CONFIG PROHIBIT = J4; -CONFIG PROHIBIT = J5; -CONFIG PROHIBIT = J6; -CONFIG PROHIBIT = J17; -CONFIG PROHIBIT = J18; -CONFIG PROHIBIT = J19; -CONFIG PROHIBIT = J21; -CONFIG PROHIBIT = J22; -CONFIG PROHIBIT = K5; -CONFIG PROHIBIT = K6; -CONFIG PROHIBIT = K17; -CONFIG PROHIBIT = K18; -CONFIG PROHIBIT = N5; -CONFIG PROHIBIT = N6; -CONFIG PROHIBIT = N17; -CONFIG PROHIBIT = N18; -CONFIG PROHIBIT = N19; -CONFIG PROHIBIT = N20; -CONFIG PROHIBIT = P1; -CONFIG PROHIBIT = P2; -CONFIG PROHIBIT = P4; -CONFIG PROHIBIT = P5; -CONFIG PROHIBIT = P6; -CONFIG PROHIBIT = P17; -CONFIG PROHIBIT = P18; -CONFIG PROHIBIT = P19; -CONFIG PROHIBIT = P21; -CONFIG PROHIBIT = P22; -CONFIG PROHIBIT = R1; -CONFIG PROHIBIT = R2; -CONFIG PROHIBIT = R4; -CONFIG PROHIBIT = R5; -CONFIG PROHIBIT = R19; -CONFIG PROHIBIT = R21; -CONFIG PROHIBIT = R22; -CONFIG PROHIBIT = T3; -CONFIG PROHIBIT = T19; -CONFIG PROHIBIT = T20; -CONFIG PROHIBIT = U9; -CONFIG PROHIBIT = U12; -CONFIG PROHIBIT = U13; -CONFIG PROHIBIT = U14; -CONFIG PROHIBIT = U17; -CONFIG PROHIBIT = V11; -CONFIG PROHIBIT = V12; -CONFIG PROHIBIT = V15; -CONFIG PROHIBIT = W7; -CONFIG PROHIBIT = W8; -CONFIG PROHIBIT = W11; -CONFIG PROHIBIT = W12; -CONFIG PROHIBIT = W15; -CONFIG PROHIBIT = W18; -CONFIG PROHIBIT = Y4; -CONFIG PROHIBIT = Y7; -CONFIG PROHIBIT = Y11; -CONFIG PROHIBIT = Y12; diff --git a/hw_altium_livedesign/bsp/build.sh b/hw_altium_livedesign/bsp/build.sh deleted file mode 100644 index 9a3f4ee..0000000 --- a/hw_altium_livedesign/bsp/build.sh +++ /dev/null @@ -1,31 +0,0 @@ -# need project files: -# top.xst -# top.prj -# top.ut - -# need Xilinx tools: -# xst -# ngdbuild -# map -# par -# trce -# bitgen - -echo "########################" -echo "generate build directory" -mkdir build -cd build -mkdir tmp - -echo "###############" -echo "start processes" -xst -ifn "../top.xst" -ofn "top.syr" -ngdbuild -dd _ngo -nt timestamp -uc ../altium-livedesign-xc3s1000.ucf -p xc3s1000-fg456-4 top.ngc top.ngd -map -p xc3s1000-fg456-4 -cm area -ir off -pr off -c 100 -o top_map.ncd top.ngd top.pcf -par -w -ol high -t 1 top_map.ncd top.ncd top.pcf -trce -v 3 -s 4 -n 3 -fastpaths -xml top.twx top.ncd -o top.twr top.pcf -bitgen -f ../top.ut top.ncd - -echo "###########" -echo "get bitfile" -cp top.bit .. diff --git a/hw_altium_livedesign/bsp/top.prj b/hw_altium_livedesign/bsp/top.prj deleted file mode 100644 index 3975c05..0000000 --- a/hw_altium_livedesign/bsp/top.prj +++ /dev/null @@ -1 +0,0 @@ -vhdl work "../top.vhd" diff --git a/hw_altium_livedesign/bsp/top.ut b/hw_altium_livedesign/bsp/top.ut deleted file mode 100644 index 765a6f3..0000000 --- a/hw_altium_livedesign/bsp/top.ut +++ /dev/null @@ -1,29 +0,0 @@ --w --g DebugBitstream:No --g Binary:no --g CRC:Enable --g ConfigRate:6 --g CclkPin:PullUp --g M0Pin:PullUp --g M1Pin:PullUp --g M2Pin:PullUp --g ProgPin:PullUp --g DonePin:PullUp --g HswapenPin:PullUp --g TckPin:PullUp --g TdiPin:PullUp --g TdoPin:PullUp --g TmsPin:PullUp --g UnusedPin:PullDown --g UserID:0xFFFFFFFF --g DCMShutdown:Disable --g DCIUpdateMode:AsRequired --g StartUpClk:CClk --g DONE_cycle:4 --g GTS_cycle:5 --g GWE_cycle:6 --g LCK_cycle:NoWait --g Match_cycle:Auto --g Security:None --g DonePipe:No --g DriveDone:No diff --git a/hw_altium_livedesign/bsp/top.vhd b/hw_altium_livedesign/bsp/top.vhd deleted file mode 100644 index 5d5125b..0000000 --- a/hw_altium_livedesign/bsp/top.vhd +++ /dev/null @@ -1,122 +0,0 @@ -library ieee; -use ieee.std_logic_1164.all; - - -entity top is - port ( - clk : in std_logic; - reset_n : in std_logic; - -- - -- soft JTAG - soft_tdo : out std_logic; - soft_tms : in std_logic; - soft_tdi : in std_logic; - soft_tck : in std_logic; - -- - -- SRAM 0 (256k x 16) pin connections - sram0_a : out std_logic_vector(18 downto 0); - sram0_d : inout std_logic_vector(15 downto 0); - sram0_lb_n : out std_logic; - sram0_ub_n : out std_logic; - sram0_cs_n : out std_logic; -- chip select - sram0_we_n : out std_logic; -- write-enable - sram0_oe_n : out std_logic; -- output enable - -- - -- SRAM 1 (256k x 16) pin connections - sram1_a : out std_logic_vector(18 downto 0); - sram1_d : inout std_logic_vector(15 downto 0); - sram1_lb_n : out std_logic; - sram1_ub_n : out std_logic; - sram1_cs_n : out std_logic; -- chip select - sram1_we_n : out std_logic; -- write-enable - sram1_oe_n : out std_logic; -- output enable - -- - -- RS232 - rs232_rx : in std_logic; - rs232_tx : out std_logic; - rs232_cts : in std_logic; - rs232_rts : out std_logic; - -- - -- PS2 connectors - mouse_clk : inout std_logic; - mouse_data : inout std_logic; - kbd_clk : inout std_logic; - kbd_data : inout std_logic; - -- - -- vga output - vga_red : out std_logic_vector(7 downto 5); - vga_green : out std_logic_vector(7 downto 5); - vga_blue : out std_logic_vector(7 downto 5); - vga_hsync : out std_logic; - vga_vsync : out std_logic; - -- - -- Audio out - audio_r : out std_logic; - audio_l : out std_logic; - -- - -- GPIOs - switch_n : in std_logic_vector(7 downto 0); - button_n : in std_logic_vector(5 downto 0); - led : out std_logic_vector(7 downto 0); - -- - -- seven segment display - dig0_seg : out std_logic_vector(7 downto 0); - dig1_seg : out std_logic_vector(7 downto 0); - dig2_seg : out std_logic_vector(7 downto 0); - dig3_seg : out std_logic_vector(7 downto 0); - dig4_seg : out std_logic_vector(7 downto 0); - dig5_seg : out std_logic_vector(7 downto 0); - -- - -- User Header A - header_a : inout std_logic_vector(19 downto 2); - header_b : inout std_logic_vector(19 downto 2) - ); -end entity top; - -architecture rtl of top is - - -begin - - -- default output drivers - -- to pass bitgen DRC - soft_tdo <= '1'; - -- - sram0_a <= (others => '1'); - sram0_lb_n <= '1'; - sram0_ub_n <= '1'; - sram0_cs_n <= '1'; - sram0_we_n <= '1'; - sram0_oe_n <= '1'; - -- - sram1_a <= (others => '1'); - sram1_lb_n <= '1'; - sram1_ub_n <= '1'; - sram1_cs_n <= '1'; - sram1_we_n <= '1'; - sram1_oe_n <= '1'; - -- - rs232_tx <= '1'; - rs232_rts <= '1'; - -- - vga_red <= (others => '1'); - vga_green <= (others => '1'); - vga_blue <= (others => '1'); - vga_hsync <= '1'; - vga_vsync <= '1'; - -- - audio_r <= '0'; - audio_l <= '0'; - -- - led <= (others => '0'); - -- - dig0_seg <= (others => '0'); - dig1_seg <= (others => '0'); - dig2_seg <= (others => '0'); - dig3_seg <= (others => '0'); - dig4_seg <= (others => '0'); - dig5_seg <= (others => '0'); - - -end architecture rtl; - diff --git a/hw_altium_livedesign/bsp/top.xst b/hw_altium_livedesign/bsp/top.xst deleted file mode 100644 index 4a39af8..0000000 --- a/hw_altium_livedesign/bsp/top.xst +++ /dev/null @@ -1,56 +0,0 @@ -set -tmpdir "tmp" -set -xsthdpdir "xst" -run --ifn ../top.prj --ifmt mixed --ofn top --ofmt NGC --p xc3s1000-4-fg456 --top top --opt_mode Speed --opt_level 1 --iuc NO --keep_hierarchy No --netlist_hierarchy As_Optimized --rtlview Yes --glob_opt AllClockNets --read_cores YES --write_timing_constraints NO --cross_clock_analysis NO --hierarchy_separator / --bus_delimiter <> --case Maintain --slice_utilization_ratio 100 --bram_utilization_ratio 100 --verilog2001 YES --fsm_extract YES -fsm_encoding Auto --safe_implementation No --fsm_style LUT --ram_extract Yes --ram_style Auto --rom_extract Yes --mux_style Auto --decoder_extract YES --priority_extract Yes --shreg_extract YES --shift_extract YES --xor_collapse YES --rom_style Auto --auto_bram_packing NO --mux_extract Yes --resource_sharing YES --async_to_sync NO --mult_style Auto --iobuf YES --max_fanout 500 --bufg 8 --register_duplication YES --register_balancing No --slice_packing YES --optimize_primitives NO --use_clock_enable Yes --use_sync_set Yes --use_sync_reset Yes --iob Auto --equivalent_register_removal YES --slice_utilization_ratio_maxmargin 5 diff --git a/hw_godil/bsp/build.sh b/hw_godil/bsp/build.sh deleted file mode 100644 index 3ec68a0..0000000 --- a/hw_godil/bsp/build.sh +++ /dev/null @@ -1,28 +0,0 @@ -# need project files: -# top.xst -# top.prj -# top.ut - -# need Xilinx tools: -# xst -# ngdbuild -# map -# par -# trce -# bitgen - -# generate build directory -mkdir build -cd build -mkdir tmp - -# start processes -xst -ifn "../top.xst" -ofn "top.syr" -ngdbuild -dd _ngo -nt timestamp -uc ../godil_xc3s500e.ucf -p xc3s500e-vq100-4 top.ngc top.ngd -map -p xc3s500e-vq100-4 -cm area -ir off -pr off -c 100 -o top_map.ncd top.ngd top.pcf -par -w -ol high -t 1 top_map.ncd top.ncd top.pcf -trce -v 3 -s 4 -n 3 -fastpaths -xml top.twx top.ncd -o top.twr top.pcf -bitgen -f ../top.ut top.ncd - -# get bitfile -cp top.bit .. diff --git a/hw_godil/bsp/godil_xc3s500e.ucf b/hw_godil/bsp/godil_xc3s500e.ucf deleted file mode 100644 index 3b36614..0000000 --- a/hw_godil/bsp/godil_xc3s500e.ucf +++ /dev/null @@ -1,95 +0,0 @@ -############################################################ -# GODIL Board Constraints File -# -# Family: Spartan3E -# Device: XC3S500E -# Package: VQ100 -# Speed: -4 -# -# all "pin"-IOs are equipped with level shifters - - -############################################################ -## clock/timing constraints -############################################################ - -NET "m49" PERIOD = 50 MHz ; - - -############################################################ -## pin placement constraints -############################################################ - -# inputs only -NET "m49" LOC=P89 | IOSTANDARD = LVCMOS33 ; -NET "sw1" LOC=P39 | IOSTANDARD = LVCMOS33 ; -NET "sw2" LOC=P69 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "c13" LOC=P38 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "d13" LOC=P88 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "sout" LOC=P13 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "rts" LOC=P30 | IOSTANDARD = LVCMOS33 | PULLUP ; - -# I/O's for uart & spi flash -NET "sin" LOC=P43 | IOSTANDARD = LVCMOS33 ; -NET "cts" LOC=P25 | IOSTANDARD = LVCMOS33 ; -NET "cso" LOC=P24 | IOSTANDARD = LVCMOS33 ; -NET "vs2" LOC=P47 | IOSTANDARD = LVCMOS33 ; - -# I/O's for test connector -NET "tvs1" LOC=P48 | IOSTANDARD = LVCMOS33 | DRIVE=16 ; -NET "tvs0" LOC=P49 | IOSTANDARD = LVCMOS33 | DRIVE=16 ; -NET "tmosi" LOC=P27 | IOSTANDARD = LVCMOS33 | DRIVE=16 ; -NET "tdin" LOC=P44 | IOSTANDARD = LVCMOS33 | DRIVE=16 ; -NET "tcclk" LOC=P50 | IOSTANDARD = LVCMOS33 | DRIVE=16 ; -NET "tm1" LOC=P42 | IOSTANDARD = LVCMOS33 | DRIVE=16 ; -NET "thsw" LOC=P99 | IOSTANDARD = LVCMOS33 | DRIVE=16 ; - -# I/O's for DIL / main connector -NET "pin<1>" LOC=P26 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<2>" LOC=P15 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<3>" LOC=P16 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<4>" LOC=P95 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<5>" LOC=P18 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<6>" LOC=P17 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<7>" LOC=P94 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<8>" LOC=P22 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<9>" LOC=P23 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<10>" LOC=P33 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<11>" LOC=P32 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<12>" LOC=P34 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<13>" LOC=P40 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<14>" LOC=P41 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<15>" LOC=P36 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<16>" LOC=P35 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<17>" LOC=P53 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<18>" LOC=P54 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<19>" LOC=P57 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<20>" LOC=P58 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<21>" LOC=P60 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<22>" LOC=P61 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<23>" LOC=P62 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<24>" LOC=P63 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<25>" LOC=P65 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<26>" LOC=P66 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<27>" LOC=P67 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<28>" LOC=P68 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<29>" LOC=P70 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<30>" LOC=P71 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<31>" LOC=P86 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<32>" LOC=P84 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<33>" LOC=P83 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<34>" LOC=P78 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<35>" LOC=P79 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<36>" LOC=P85 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<37>" LOC=P92 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<38>" LOC=P98 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<39>" LOC=P3 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<40>" LOC=P2 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<41>" LOC=P4 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<42>" LOC=P5 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<43>" LOC=P90 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<44>" LOC=P9 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<45>" LOC=P10 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<46>" LOC=P11 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<47>" LOC=P12 | IOSTANDARD = LVCMOS33 | PULLUP ; -NET "pin<48>" LOC=P91 | IOSTANDARD = LVCMOS33 | PULLUP ; diff --git a/hw_godil/bsp/top.prj b/hw_godil/bsp/top.prj deleted file mode 100644 index 3975c05..0000000 --- a/hw_godil/bsp/top.prj +++ /dev/null @@ -1 +0,0 @@ -vhdl work "../top.vhd" diff --git a/hw_godil/bsp/top.ut b/hw_godil/bsp/top.ut deleted file mode 100644 index 06de8d5..0000000 --- a/hw_godil/bsp/top.ut +++ /dev/null @@ -1,22 +0,0 @@ --w --g DebugBitstream:No --g Binary:no --g CRC:Enable --g ConfigRate:1 --g ProgPin:PullUp --g DonePin:PullUp --g TckPin:PullUp --g TdiPin:PullUp --g TdoPin:PullUp --g TmsPin:PullUp --g UnusedPin:PullDown --g UserID:0xFFFFFFFF --g DCMShutdown:Disable --g StartUpClk:CClk --g DONE_cycle:4 --g GTS_cycle:5 --g GWE_cycle:6 --g LCK_cycle:NoWait --g Security:None --g DonePipe:No --g DriveDone:No diff --git a/hw_godil/bsp/top.vhd b/hw_godil/bsp/top.vhd deleted file mode 100644 index bd11e08..0000000 --- a/hw_godil/bsp/top.vhd +++ /dev/null @@ -1,42 +0,0 @@ --- top module of --- GODIL - - -library ieee; -use ieee.std_logic_1164.all; - - -entity top is - port ( - m49 : in std_logic; -- oscillator input - -- GPIO - sw1 : in std_logic; -- switch 1, high active - sw2 : in std_logic; -- switch 2, low active - -- TUSB3410 - sin : inout std_logic; -- M0 configuration pin, TUSB3410 serial data input, LED3 - sout : in std_logic; -- TUSB3410 serial data out - rts : in std_logic; -- TUSB3410 ready to send (LED5) - cts : inout std_logic; -- TUSB3410 clear to send (and LED6) - vs2 : inout std_logic; -- TUSB3410 I2C connection, LED8 - tvs1 : inout std_logic; -- TUSB3410 I2C connector (and E2) - -- SPI flash - cso : inout std_logic; -- SPI memory chip select - tmosi : inout std_logic; -- SPI memory mosi (and E4) - tdin : inout std_logic; -- SPI memory data out (and E5) - tcclk : inout std_logic; -- SPI memory clock (and E6) - -- remaining IO pins - c13 : in std_logic; -- external input (pin 49) - d13 : in std_logic; -- external input (pin 50) - tvs0 : inout std_logic; -- E3 - tm1 : inout std_logic; -- M1 configuration pin (and E7) - thsw : inout std_logic; -- HSWAP configuration pin (and E8) - -- I/O's for DIL / main connector - pin : inout std_logic_vector(48 downto 1) - ); -end entity top; - - -architecture rtl of top is - -begin -end architecture rtl; diff --git a/hw_godil/bsp/top.xst b/hw_godil/bsp/top.xst deleted file mode 100644 index 6f6b603..0000000 --- a/hw_godil/bsp/top.xst +++ /dev/null @@ -1,56 +0,0 @@ -set -tmpdir "tmp" -set -xsthdpdir "xst" -run --ifn ../top.prj --ifmt mixed --ofn top --ofmt NGC --p xc3s500e-4-vq100 --top top --opt_mode Speed --opt_level 1 --iuc NO --keep_hierarchy No --netlist_hierarchy As_Optimized --rtlview Yes --glob_opt AllClockNets --read_cores YES --write_timing_constraints NO --cross_clock_analysis NO --hierarchy_separator / --bus_delimiter <> --case Maintain --slice_utilization_ratio 100 --bram_utilization_ratio 100 --verilog2001 YES --fsm_extract YES -fsm_encoding Auto --safe_implementation No --fsm_style LUT --ram_extract Yes --ram_style Auto --rom_extract Yes --mux_style Auto --decoder_extract YES --priority_extract Yes --shreg_extract YES --shift_extract YES --xor_collapse YES --rom_style Auto --auto_bram_packing NO --mux_extract Yes --resource_sharing YES --async_to_sync NO --mult_style Auto --iobuf YES --max_fanout 500 --bufg 24 --register_duplication YES --register_balancing No --slice_packing YES --optimize_primitives NO --use_clock_enable Yes --use_sync_set Yes --use_sync_reset Yes --iob Auto --equivalent_register_removal YES --slice_utilization_ratio_maxmargin 5 diff --git a/hw_godil/doc/godil500_Ueberblick_leiterplatte.odg b/hw_godil/doc/godil500_Ueberblick_leiterplatte.odg Binary files differdeleted file mode 100644 index 66b0eb3..0000000 --- a/hw_godil/doc/godil500_Ueberblick_leiterplatte.odg +++ /dev/null diff --git a/hw_godil/godil_xc3s500e_zpu_zealot_implementation.tar.gz b/hw_godil/godil_xc3s500e_zpu_zealot_implementation.tar.gz Binary files differdeleted file mode 100644 index 5715aa8..0000000 --- a/hw_godil/godil_xc3s500e_zpu_zealot_implementation.tar.gz +++ /dev/null diff --git a/hw_v5_fx30t_extension/bsp/avnet-eval-xc5vfx30t.ucf b/hw_v5_fx30t_extension/bsp/avnet-eval-xc5vfx30t.ucf deleted file mode 100644 index 085c55e..0000000 --- a/hw_v5_fx30t_extension/bsp/avnet-eval-xc5vfx30t.ucf +++ /dev/null @@ -1,470 +0,0 @@ -############################################################ -# Avnet Virtex 5 FX Evaluation Board constraints file -# -# Familiy: Virtex5 -# Device: XC5VFX30T -# Package: FF665 -# Speed: -1 -# -# -# Bank 0 3.3V -# Bank 1 3.3V -# Bank 2 3.3V -# Bank 3 3.3V -# Bank 4 2.5V or 3.3V (JP2, VIO_EXP1_DP), here 2.5V -# Bank 11 1.8V -# Bank 12 3.3V -# Bank 13 1.8V -# Bank 15 3.3V -# Bank 16 2.5V or 3.3V (JP3, VIO_EXP1_SE), here 2.5V -# Bank 17 1.8V -# Bank 18 2.5V or 3.3V (JP2, VIO_EXP1_DP), here 2.5V - - -############################################################ -## clock/timing constraints -############################################################ - -TIMESPEC "TS_clk_100" = PERIOD "clk_100" 100 MHz; - - -############################################################ -## pin placement constraints -############################################################ - -NET "clk_100MHz" LOC= E18 | IOSTANDARD = LVCMOS33 | TNM_NET = "clk_100"; -NET "clk_socket" LOC= E13 | IOSTANDARD = LVCMOS33; -NET "user_clk_p" LOC= AB15 ; -NET "user_clk_n" LOC= AC16 ; - -# RS232 -NET "RS232_RX" LOC= K8 | IOSTANDARD = LVCMOS33; -NET "RS232_TX" LOC= L8 | IOSTANDARD = LVCMOS33; -NET "RS232_RTS" LOC= N8 | IOSTANDARD = LVCMOS33; # Jumper J3 -NET "RS232_CTS" LOC= R8 | IOSTANDARD = LVCMOS33; # Jumper J4 - -# RS232_USB -NET "RS232_USB_RX" LOC= AA10 | IOSTANDARD = LVCMOS33; -NET "RS232_USB_TX" LOC= AA19 | IOSTANDARD = LVCMOS33; -NET "RS232_USB_reset_n" LOC= Y20 | IOSTANDARD = LVCMOS33; - -# GPIO LEDs, active low -NET "GPIO_LED_n<0>" LOC= AF22 | IOSTANDARD = LVCMOS18 | PULLUP; -NET "GPIO_LED_n<1>" LOC= AF23 | IOSTANDARD = LVCMOS18 | PULLUP; -NET "GPIO_LED_n<2>" LOC= AF25 | IOSTANDARD = LVCMOS18 | PULLUP; -NET "GPIO_LED_n<3>" LOC= AE25 | IOSTANDARD = LVCMOS18 | PULLUP; -NET "GPIO_LED_n<4>" LOC= AD25 | IOSTANDARD = LVCMOS18 | PULLUP; -NET "GPIO_LED_n<5>" LOC= AE26 | IOSTANDARD = LVCMOS18 | PULLUP; -NET "GPIO_LED_n<6>" LOC= AD26 | IOSTANDARD = LVCMOS18 | PULLUP; -NET "GPIO_LED_n<7>" LOC= AC26 | IOSTANDARD = LVCMOS18 | PULLUP; - -# GPIO DIP_Switches -NET "GPIO_DIPswitch<0>" LOC= AD13 | IOSTANDARD = LVCMOS18; -NET "GPIO_DIPswitch<1>" LOC= AE13 | IOSTANDARD = LVCMOS18; -NET "GPIO_DIPswitch<2>" LOC= AF13 | IOSTANDARD = LVCMOS18; -NET "GPIO_DIPswitch<3>" LOC= AD15 | IOSTANDARD = LVCMOS18; -NET "GPIO_DIPswitch<4>" LOC= AD14 | IOSTANDARD = LVCMOS18; -NET "GPIO_DIPswitch<5>" LOC= AF14 | IOSTANDARD = LVCMOS18; -NET "GPIO_DIPswitch<6>" LOC= AE15 | IOSTANDARD = LVCMOS18; -NET "GPIO_DIPswitch<7>" LOC= AF15 | IOSTANDARD = LVCMOS18; - -# Push Buttons -NET "GPIO_button<0>" LOC= AF20 | IOSTANDARD = LVCMOS18 | PULLUP; #PB1 -NET "GPIO_button<1>" LOC= AE20 | IOSTANDARD = LVCMOS18 | PULLUP; #PB2 -NET "GPIO_button<2>" LOC= AD19 | IOSTANDARD = LVCMOS18 | PULLUP; #PB3 -NET "GPIO_button<3>" LOC= AD20 | IOSTANDARD = LVCMOS18 | PULLUP; #PB4 - -# FLASH_8Mx16 -NET "FLASH_A<31>" LOC= Y11 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<30>" LOC= H9 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<29>" LOC= G10 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<28>" LOC= H21 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<27>" LOC= G20 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<26>" LOC= H11 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<25>" LOC= G11 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<24>" LOC= H19 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<23>" LOC= H18 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<22>" LOC= G12 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<21>" LOC= F13 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<20>" LOC= G19 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<19>" LOC= F18 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<18>" LOC= F14 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<17>" LOC= F15 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<16>" LOC= F17 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<15>" LOC= G17 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<14>" LOC= G14 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<13>" LOC= H13 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<12>" LOC= G16 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<11>" LOC= G15 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<10>" LOC= Y18 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<9>" LOC= AA18 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<8>" LOC= Y10 | IOSTANDARD = LVCMOS33; -NET "FLASH_A<7>" LOC= W11 | IOSTANDARD = LVCMOS33; -NET "FLASH_DQ<0>" LOC= AA15 | IOSTANDARD = LVCMOS33; -NET "FLASH_DQ<1>" LOC= Y15 | IOSTANDARD = LVCMOS33; -NET "FLASH_DQ<2>" LOC= W14 | IOSTANDARD = LVCMOS33; -NET "FLASH_DQ<3>" LOC= Y13 | IOSTANDARD = LVCMOS33; -NET "FLASH_DQ<4>" LOC= W16 | IOSTANDARD = LVCMOS33; -NET "FLASH_DQ<5>" LOC= Y16 | IOSTANDARD = LVCMOS33; -NET "FLASH_DQ<6>" LOC= AA14 | IOSTANDARD = LVCMOS33; -NET "FLASH_DQ<7>" LOC= AA13 | IOSTANDARD = LVCMOS33; -NET "FLASH_DQ<8>" LOC= AB12 | IOSTANDARD = LVCMOS25; # with level shifter -NET "FLASH_DQ<9>" LOC= AC11 | IOSTANDARD = LVCMOS25; # with level shifter -NET "FLASH_DQ<10>" LOC= AB20 | IOSTANDARD = LVCMOS25; # with level shifter -NET "FLASH_DQ<11>" LOC= AB21 | IOSTANDARD = LVCMOS25; # with level shifter -NET "FLASH_DQ<12>" LOC= AB11 | IOSTANDARD = LVCMOS25; # with level shifter -NET "FLASH_DQ<13>" LOC= AB10 | IOSTANDARD = LVCMOS25; # with level shifter -NET "FLASH_DQ<14>" LOC= AA20 | IOSTANDARD = LVCMOS25; # with level shifter -NET "FLASH_DQ<15>" LOC= Y21 | IOSTANDARD = LVCMOS25; # with level shifter -NET "FLASH_WEN" LOC= AA17 | IOSTANDARD = LVCMOS33; -NET "FLASH_OEN<0>" LOC= AA12 | IOSTANDARD = LVCMOS33; -NET "FLASH_CEN<0>" LOC= Y12 | IOSTANDARD = LVCMOS33; -NET "FLASH_rp_n" LOC= D13 | IOSTANDARD = LVCMOS33; -NET "FLASH_byte_n" LOC= Y17 | IOSTANDARD = LVCMOS33; -NET "FLASH_adv_n" LOC= F19 | IOSTANDARD = LVCMOS33; -NET "FLASH_clk" LOC= E12 | IOSTANDARD = LVCMOS33; -NET "FLASH_wait" LOC= D16 | IOSTANDARD = LVCMOS33; - -# DDR2_SDRAM_16Mx32 -NET "DDR2_ODT<0>" LOC= AF24 | IOSTANDARD = SSTL18_II; -NET "DDR2_A<0>" LOC= U25 | IOSTANDARD = SSTL18_II; -NET "DDR2_A<1>" LOC= T25 | IOSTANDARD = SSTL18_II; -NET "DDR2_A<2>" LOC= T24 | IOSTANDARD = SSTL18_II; -NET "DDR2_A<3>" LOC= T23 | IOSTANDARD = SSTL18_II; -NET "DDR2_A<4>" LOC= U24 | IOSTANDARD = SSTL18_II; -NET "DDR2_A<5>" LOC= V24 | IOSTANDARD = SSTL18_II; -NET "DDR2_A<6>" LOC= Y23 | IOSTANDARD = SSTL18_II; -NET "DDR2_A<7>" LOC= W23 | IOSTANDARD = SSTL18_II; -NET "DDR2_A<8>" LOC= AA25 | IOSTANDARD = SSTL18_II; -NET "DDR2_A<9>" LOC= AB26 | IOSTANDARD = SSTL18_II; -NET "DDR2_A<10>" LOC= AB25 | IOSTANDARD = SSTL18_II; -NET "DDR2_A<11>" LOC= AB24 | IOSTANDARD = SSTL18_II; -NET "DDR2_A<12>" LOC= AA23 | IOSTANDARD = SSTL18_II; -NET "DDR2_BA<0>" LOC= U21 | IOSTANDARD = SSTL18_II; -NET "DDR2_BA<1>" LOC= V22 | IOSTANDARD = SSTL18_II; -NET "DDR2_CAS_N" LOC= W24 | IOSTANDARD = SSTL18_II; -NET "DDR2_CKE" LOC= T22 | IOSTANDARD = SSTL18_II; -NET "DDR2_CS_N" LOC= AD24 | IOSTANDARD = SSTL18_II; -NET "DDR2_RAS_N" LOC= Y22 | IOSTANDARD = SSTL18_II; -NET "DDR2_WE_N" LOC= AA22 | IOSTANDARD = SSTL18_II; -NET "DDR2_DM<0>" LOC= U26 | IOSTANDARD = SSTL18_II; -NET "DDR2_DM<1>" LOC= N24 | IOSTANDARD = SSTL18_II; -NET "DDR2_DM<2>" LOC= M24 | IOSTANDARD = SSTL18_II; -NET "DDR2_DM<3>" LOC= M25 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQS_P<0>" LOC= W26 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQS_P<1>" LOC= L23 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQS_P<2>" LOC= K22 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQS_P<3>" LOC= J21 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQS_N<0>" LOC= W25 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQS_N<1>" LOC= L22 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQS_N<2>" LOC= K23 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQS_N<3>" LOC= K21 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<0>" LOC= R22 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<1>" LOC= R23 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<2>" LOC= P23 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<3>" LOC= P24 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<4>" LOC= R25 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<5>" LOC= P25 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<6>" LOC= R26 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<7>" LOC= P26 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<8>" LOC= M26 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<9>" LOC= N26 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<10>" LOC= K25 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<11>" LOC= L24 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<12>" LOC= K26 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<13>" LOC= J26 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<14>" LOC= J25 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<15>" LOC= N21 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<16>" LOC= M21 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<17>" LOC= J23 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<18>" LOC= H23 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<19>" LOC= H22 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<20>" LOC= G22 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<21>" LOC= F22 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<22>" LOC= F23 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<23>" LOC= E23 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<24>" LOC= G24 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<25>" LOC= F24 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<26>" LOC= G25 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<27>" LOC= H26 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<28>" LOC= G26 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<29>" LOC= F25 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<30>" LOC= E25 | IOSTANDARD = SSTL18_II; -NET "DDR2_DQ<31>" LOC= E26 | IOSTANDARD = SSTL18_II; -NET "DDR2_CK_p<0>" LOC= V21 | IOSTANDARD = DIFF_SSTL18_II; -NET "DDR2_CK_p<1>" LOC= N22 | IOSTANDARD = DIFF_SSTL18_II; -NET "DDR2_CK_n<0>" LOC= W21 | IOSTANDARD = DIFF_SSTL18_II; -NET "DDR2_CK_n<1>" LOC= M22 | IOSTANDARD = DIFF_SSTL18_II; - -# Ethernet MAC -NET "GMII_txer" LOC= A22 | IOSTANDARD = LVCMOS33; -NET "GMII_tx_clk" LOC= E17 | IOSTANDARD = LVCMOS33 | PERIOD=40000 ps; -NET "GMII_rx_clk" LOC= E20 | IOSTANDARD = LVCMOS33 | PERIOD=40000 ps; -NET "GMII_gtc_clk" LOC= A19 | IOSTANDARD = LVCMOS33; -NET "GMII_crs" LOC= A25 | IOSTANDARD = LVCMOS33 | IOBDELAY=NONE; -NET "GMII_dv" LOC= C21 | IOSTANDARD = LVCMOS33 | IOBDELAY=NONE; -NET "GMII_rx_data<0>" LOC= D24 | IOSTANDARD = LVCMOS33 | IOBDELAY=NONE; -NET "GMII_rx_data<1>" LOC= D23 | IOSTANDARD = LVCMOS33 | IOBDELAY=NONE; -NET "GMII_rx_data<2>" LOC= D21 | IOSTANDARD = LVCMOS33 | IOBDELAY=NONE; -NET "GMII_rx_data<3>" LOC= C26 | IOSTANDARD = LVCMOS33 | IOBDELAY=NONE; -NET "GMII_rx_data<4>" LOC= D20 | IOSTANDARD = LVCMOS33 | IOBDELAY=NONE; -NET "GMII_rx_data<5>" LOC= C23 | IOSTANDARD = LVCMOS33 | IOBDELAY=NONE; -NET "GMII_rx_data<6>" LOC= B25 | IOSTANDARD = LVCMOS33 | IOBDELAY=NONE; -NET "GMII_rx_data<7>" LOC= C22 | IOSTANDARD = LVCMOS33 | IOBDELAY=NONE; -NET "GMII_col" LOC= A24 | IOSTANDARD = LVCMOS33 | IOBDELAY=NONE; -NET "GMII_rx_er" LOC= B24 | IOSTANDARD = LVCMOS33 | IOBDELAY=NONE; -NET "GMII_tx_en" LOC= A23 | IOSTANDARD = LVCMOS33; -NET "GMII_tx_data<0>" LOC= D19 | IOSTANDARD = LVCMOS33; -NET "GMII_tx_data<1>" LOC= C19 | IOSTANDARD = LVCMOS33; -NET "GMII_tx_data<2>" LOC= A20 | IOSTANDARD = LVCMOS33; -NET "GMII_tx_data<3>" LOC= B20 | IOSTANDARD = LVCMOS33; -NET "GMII_tx_data<4>" LOC= B19 | IOSTANDARD = LVCMOS33; -NET "GMII_tx_data<5>" LOC= A15 | IOSTANDARD = LVCMOS33; -NET "GMII_tx_data<6>" LOC= B22 | IOSTANDARD = LVCMOS33; -NET "GMII_tx_data<7>" LOC= B21 | IOSTANDARD = LVCMOS33; -NET "GBE_rst_n" LOC= B26 | IOSTANDARD = LVCMOS33; -NET "GBE_mdc" LOC= D26 | IOSTANDARD = LVCMOS33; -NET "GBE_mdio" LOC= D25 | IOSTANDARD = LVCMOS33; -NET "GBE_int_n" LOC= C24 | IOSTANDARD = LVCMOS33; -NET "GBE_mclk" LOC= F20 | IOSTANDARD = LVCMOS33; - -# SysACE CompactFlash -NET "SAM_CLK" LOC= F12 | IOSTANDARD = LVCMOS33; -NET "SAM_A<0>" LOC= Y5 | IOSTANDARD = LVCMOS33; -NET "SAM_A<1>" LOC= V7 | IOSTANDARD = LVCMOS33; -NET "SAM_A<2>" LOC= W6 | IOSTANDARD = LVCMOS33; -NET "SAM_A<3>" LOC= W5 | IOSTANDARD = LVCMOS33; -NET "SAM_A<4>" LOC= K6 | IOSTANDARD = LVCMOS33; -NET "SAM_A<5>" LOC= J5 | IOSTANDARD = LVCMOS33; -NET "SAM_A<6>" LOC= J6 | IOSTANDARD = LVCMOS33; -NET "SAM_D<0>" LOC= F5 | IOSTANDARD = LVCMOS33; -NET "SAM_D<1>" LOC= U7 | IOSTANDARD = LVCMOS33; -NET "SAM_D<2>" LOC= V6 | IOSTANDARD = LVCMOS33; -NET "SAM_D<3>" LOC= U5 | IOSTANDARD = LVCMOS33; -NET "SAM_D<4>" LOC= U6 | IOSTANDARD = LVCMOS33; -NET "SAM_D<5>" LOC= T5 | IOSTANDARD = LVCMOS33; -NET "SAM_D<6>" LOC= T7 | IOSTANDARD = LVCMOS33; -NET "SAM_D<7>" LOC= R6 | IOSTANDARD = LVCMOS33; -NET "SAM_D<8>" LOC= R7 | IOSTANDARD = LVCMOS33; -NET "SAM_D<9>" LOC= R5 | IOSTANDARD = LVCMOS33; -NET "SAM_D<10>" LOC= P6 | IOSTANDARD = LVCMOS33; -NET "SAM_D<11>" LOC= P8 | IOSTANDARD = LVCMOS33; -NET "SAM_D<12>" LOC= N6 | IOSTANDARD = LVCMOS33; -NET "SAM_D<13>" LOC= M7 | IOSTANDARD = LVCMOS33; -NET "SAM_D<14>" LOC= K5 | IOSTANDARD = LVCMOS33; -NET "SAM_D<15>" LOC= L7 | IOSTANDARD = LVCMOS33; -NET "SAM_CEN" LOC= G4 | IOSTANDARD = LVCMOS33; -NET "SAM_OEN" LOC= Y6 | IOSTANDARD = LVCMOS33; -NET "SAM_WEN" LOC= Y4 | IOSTANDARD = LVCMOS33; -NET "SAM_MPIRQ" LOC= H4 | IOSTANDARD = LVCMOS33; -NET "SAM_BRDY" LOC= G5 | IOSTANDARD = LVCMOS33; -NET "SAM_RESET_n" LOC= H6 | IOSTANDARD = LVCMOS33; - -# Expansion Header -NET "EXP1_SE_IO<0>" LOC= A8 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<1>" LOC= A12 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<2>" LOC= B10 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<3>" LOC= A10 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<4>" LOC= B9 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<5>" LOC= A9 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<6>" LOC= A5 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<7>" LOC= B11 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<8>" LOC= B6 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<9>" LOC= A7 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<10>" LOC= D8 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<11>" LOC= C9 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<12>" LOC= B7 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<13>" LOC= A4 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<14>" LOC= B5 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<15>" LOC= C8 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<16>" LOC= C7 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<17>" LOC= A3 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<18>" LOC= C6 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<19>" LOC= B4 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<20>" LOC= D6 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<21>" LOC= D9 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<22>" LOC= E8 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<23>" LOC= D5 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<24>" LOC= F7 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<25>" LOC= E7 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<26>" LOC= E5 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<27>" LOC= E6 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<28>" LOC= F8 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<29>" LOC= H7 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<30>" LOC= G7 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<31>" LOC= H8 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<32>" LOC= G9 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_IO<33>" LOC= J8 | IOSTANDARD = LVCMOS25; -NET "EXP1_DIFF_P<0>" LOC= AF9 ; -NET "EXP1_DIFF_N<0>" LOC= AF10 ; -NET "EXP1_DIFF_P<1>" LOC= AF12 ; -NET "EXP1_DIFF_N<1>" LOC= AE12 ; -NET "EXP1_DIFF_P<2>" LOC= AF7 ; -NET "EXP1_DIFF_N<2>" LOC= AF8 ; -NET "EXP1_DIFF_P<3>" LOC= AE11 ; -NET "EXP1_DIFF_N<3>" LOC= AD11 ; -NET "EXP1_DIFF_P<4>" LOC= AF4 ; -NET "EXP1_DIFF_N<4>" LOC= AF3 ; -NET "EXP1_DIFF_P<5>" LOC= AD10 ; -NET "EXP1_DIFF_N<5>" LOC= AE10 ; -NET "EXP1_DIFF_P<6>" LOC= AE8 ; -NET "EXP1_DIFF_N<6>" LOC= AE7 ; -NET "EXP1_DIFF_P<7>" LOC= AC8 ; -NET "EXP1_DIFF_N<7>" LOC= AD8 ; -NET "EXP1_DIFF_P<8>" LOC= AD9 ; -NET "EXP1_DIFF_N<8>" LOC= AC9 ; -NET "EXP1_DIFF_P<9>" LOC= AE6 ; -NET "EXP1_DIFF_N<9>" LOC= AF5 ; -NET "EXP1_DIFF_P<10>" LOC= AB6 ; -NET "EXP1_DIFF_N<10>" LOC= AB7 ; -NET "EXP1_DIFF_P<11>" LOC= AC6 ; -NET "EXP1_DIFF_N<11>" LOC= AD5 ; -NET "EXP1_DIFF_P<12>" LOC= AD6 ; -NET "EXP1_DIFF_N<12>" LOC= AC7 ; -NET "EXP1_DIFF_P<13>" LOC= AE5 ; -NET "EXP1_DIFF_N<13>" LOC= AD4 ; -NET "EXP1_DIFF_P<14>" LOC= AB9 ; -NET "EXP1_DIFF_N<14>" LOC= AA9 ; -NET "EXP1_DIFF_P<15>" LOC= AC12 ; -NET "EXP1_DIFF_N<15>" LOC= AC13 ; -NET "EXP1_DIFF_P<16>" LOC= AA7 ; -NET "EXP1_DIFF_N<16>" LOC= AA8 ; -NET "EXP1_DIFF_P<17>" LOC= AA5 ; -NET "EXP1_DIFF_N<17>" LOC= AB5 ; -NET "EXP1_DIFF_P<18>" LOC= AB19 ; -NET "EXP1_DIFF_N<18>" LOC= AC19 ; -NET "EXP1_DIFF_P<19>" LOC= Y7 ; -NET "EXP1_DIFF_N<19>" LOC= Y8 ; -NET "EXP1_DIFF_P<20>" LOC= W9 ; -NET "EXP1_DIFF_N<20>" LOC= W8 ; -NET "EXP1_DIFF_P<21>" LOC= V8 ; -NET "EXP1_DIFF_N<21>" LOC= V9 ; -NET "EXP1_SE_CLK_OUT" LOC= B12 | IOSTANDARD = LVCMOS25; -NET "EXP1_SE_CLK_IN" LOC= E10 | IOSTANDARD = LVCMOS33; -NET "EXP1_DIFF_CLK_OUT_P" LOC= AC18 ; -NET "EXP1_DIFF_CLK_OUT_N" LOC= AB17 ; -NET "EXP1_DIFF_CLK_IN_P" LOC= AB14 ; -NET "EXP1_DIFF_CLK_IN_N" LOC= AC14 ; -#NET "EXP1_RCLK_DIFF_P" LOC= AB6 ; -#NET "EXP1_RCLK_DIFF_N" LOC= AB7 ; - -# CPU Debug Trace -NET "ATDD<8>" LOC= C16 | IOSTANDARD = LVCMOS33; -NET "ATDD<9>" LOC= A17 | IOSTANDARD = LVCMOS33; -NET "ATDD<10>" LOC= B15 | IOSTANDARD = LVCMOS33; -NET "ATDD<11>" LOC= E15 | IOSTANDARD = LVCMOS33; -NET "ATDD<12>" LOC= A14 | IOSTANDARD = LVCMOS33; -NET "ATDD<13>" LOC= D18 | IOSTANDARD = LVCMOS33; -NET "ATDD<14>" LOC= A13 | IOSTANDARD = LVCMOS33; -NET "ATDD<15>" LOC= C13 | IOSTANDARD = LVCMOS33; -NET "ATDD<16>" LOC= D14 | IOSTANDARD = LVCMOS33; -NET "ATDD<17>" LOC= C17 | IOSTANDARD = LVCMOS33; -NET "ATDD<18>" LOC= E16 | IOSTANDARD = LVCMOS33; -NET "ATDD<19>" LOC= C14 | IOSTANDARD = LVCMOS33; -NET "TRACE_TS10" LOC= B16 | IOSTANDARD = LVCMOS33; -NET "TRACE_TS20" LOC= E21 | IOSTANDARD = LVCMOS33; -NET "TRACE_TS1E" LOC= B14 | IOSTANDARD = LVCMOS33; -NET "TRACE_TS2E" LOC= B17 | IOSTANDARD = LVCMOS33; -NET "TRACE_TS3" LOC= C18 | IOSTANDARD = LVCMOS33; -NET "TRACE_TS4" LOC= G21 | IOSTANDARD = LVCMOS33; -NET "TRACE_TS5" LOC= A18 | IOSTANDARD = LVCMOS33; -NET "TRACE_TS6" LOC= F10 | IOSTANDARD = LVCMOS33; -NET "TRACE_CLK" LOC= D15 | IOSTANDARD = LVCMOS33; -NET "CPU_HRESET" LOC= E11 | IOSTANDARD = LVCMOS33; -NET "CPU_TDO" LOC= K7 | IOSTANDARD = LVCMOS33; -NET "CPU_TMS" LOC= L5 | IOSTANDARD = LVCMOS33; -NET "CPU_TDI" LOC= M6 | IOSTANDARD = LVCMOS33; -NET "CPU_TRST" LOC= N7 | IOSTANDARD = LVCMOS33; -NET "CPU_TCK" LOC= T8 | IOSTANDARD = LVCMOS33; -NET "CPU_HALT_n" LOC= W4 | IOSTANDARD = LVCMOS33; - - -# voltage termination -CONFIG PROHIBIT = AA24; -CONFIG PROHIBIT = AE23; -CONFIG PROHIBIT = AF17; -CONFIG PROHIBIT = V26; -CONFIG PROHIBIT = E22; -CONFIG PROHIBIT = L25; - -# unused pins -CONFIG PROHIBIT = F9; -CONFIG PROHIBIT = D10; -CONFIG PROHIBIT = C12; -CONFIG PROHIBIT = C11; -CONFIG PROHIBIT = D11; -CONFIG PROHIBIT = AB16; -CONFIG PROHIBIT = AB22; -CONFIG PROHIBIT = AC17; -CONFIG PROHIBIT = AC21; -CONFIG PROHIBIT = AE22; -CONFIG PROHIBIT = AD23; -CONFIG PROHIBIT = AC24; -CONFIG PROHIBIT = AC23; -CONFIG PROHIBIT = AC22; -CONFIG PROHIBIT = AB22; -CONFIG PROHIBIT = AE21; -CONFIG PROHIBIT = AD21; -CONFIG PROHIBIT = AF19; -CONFIG PROHIBIT = AF18; -CONFIG PROHIBIT = AE18; -CONFIG PROHIBIT = AD18; -CONFIG PROHIBIT = AE17; -CONFIG PROHIBIT = AE16; -CONFIG PROHIBIT = AD16; -CONFIG PROHIBIT = G6; -CONFIG PROHIBIT = H24; -CONFIG PROHIBIT = J24; -CONFIG PROHIBIT = N23; -CONFIG PROHIBIT = N15; -CONFIG PROHIBIT = P14; -CONFIG PROHIBIT = V23; -CONFIG PROHIBIT = Y26; -CONFIG PROHIBIT = Y25; -CONFIG PROHIBIT = P21; -CONFIG PROHIBIT = R21; -CONFIG PROHIBIT = U22; - -# grounded pins from gigabit transcievers -CONFIG PROHIBIT = P4; -CONFIG PROHIBIT = K4; -CONFIG PROHIBIT = K3; -CONFIG PROHIBIT = J1; -CONFIG PROHIBIT = K1; -CONFIG PROHIBIT = M1; -CONFIG PROHIBIT = L1; -CONFIG PROHIBIT = T3; -CONFIG PROHIBIT = T4; -CONFIG PROHIBIT = R1; -CONFIG PROHIBIT = T1; -CONFIG PROHIBIT = V1; -CONFIG PROHIBIT = U1; -CONFIG PROHIBIT = D3; -CONFIG PROHIBIT = D4; -CONFIG PROHIBIT = C1; -CONFIG PROHIBIT = D1; -CONFIG PROHIBIT = E1; -CONFIG PROHIBIT = F1; -CONFIG PROHIBIT = AB3; -CONFIG PROHIBIT = AB4; -CONFIG PROHIBIT = AA1; -CONFIG PROHIBIT = AB1; -CONFIG PROHIBIT = AC1; -CONFIG PROHIBIT = AD1; -CONFIG PROHIBIT = H2; -CONFIG PROHIBIT = J2; -CONFIG PROHIBIT = N2; -CONFIG PROHIBIT = M2; -CONFIG PROHIBIT = P2; -CONFIG PROHIBIT = R2; -CONFIG PROHIBIT = V2; -CONFIG PROHIBIT = W2; -CONFIG PROHIBIT = B2; -CONFIG PROHIBIT = C2; -CONFIG PROHIBIT = G2; -CONFIG PROHIBIT = F2; -CONFIG PROHIBIT = Y2; -CONFIG PROHIBIT = AA2; -CONFIG PROHIBIT = AD2; -CONFIG PROHIBIT = AE2; - diff --git a/hw_v5_fx30t_extension/bsp/build.sh b/hw_v5_fx30t_extension/bsp/build.sh deleted file mode 100644 index 0787fa5..0000000 --- a/hw_v5_fx30t_extension/bsp/build.sh +++ /dev/null @@ -1,28 +0,0 @@ -# need project files: -# top.xst -# top.prj -# top.ut - -# need Xilinx tools: -# xst -# ngdbuild -# map -# par -# trce -# bitgen - -# generate build directory -mkdir build -cd build -mkdir tmp - -# start processes -xst -ifn "../top.xst" -ofn "top.syr" -ngdbuild -dd _ngo -nt timestamp -uc ../avnet-eval-xc5vfx30t.ucf -p xc5vfx30t-ff665-1 top.ngc top.ngd -map -p xc5vfx30t-ff665-1 -w -logic_opt off -ol high -t 1 -register_duplication off -global_opt off -mt off -cm area -ir off -pr off -lc off -power off -o top_map.ncd top.ngd top.pcf -par -w -ol high -mt off top_map.ncd top.ncd top.pcf -trce -v 3 -s 1 -n 3 -fastpaths -xml top.twx top.ncd -o top.twr top.pcf -bitgen -f ../top.ut top.ncd - -# get bitfile -cp top.bit .. diff --git a/hw_v5_fx30t_extension/bsp/top.prj b/hw_v5_fx30t_extension/bsp/top.prj deleted file mode 100644 index 3975c05..0000000 --- a/hw_v5_fx30t_extension/bsp/top.prj +++ /dev/null @@ -1 +0,0 @@ -vhdl work "../top.vhd" diff --git a/hw_v5_fx30t_extension/bsp/top.ut b/hw_v5_fx30t_extension/bsp/top.ut deleted file mode 100644 index e0159fb..0000000 --- a/hw_v5_fx30t_extension/bsp/top.ut +++ /dev/null @@ -1,39 +0,0 @@ --w --g DebugBitstream:No --g Binary:no --g CRC:Enable --g ConfigRate:2 --g CclkPin:PullUp --g M0Pin:PullUp --g M1Pin:PullUp --g M2Pin:PullUp --g ProgPin:PullUp --g DonePin:PullUp --g InitPin:Pullup --g CsPin:Pullup --g DinPin:Pullup --g BusyPin:Pullup --g RdWrPin:Pullup --g HswapenPin:PullUp --g TckPin:PullUp --g TdiPin:PullUp --g TdoPin:PullUp --g TmsPin:PullUp --g UnusedPin:PullDown --g UserID:0xFFFFFFFF --g ConfigFallback:Enable --g SelectMAPAbort:Enable --g BPI_page_size:1 --g OverTempPowerDown:Disable --g JTAG_SysMon:Enable --g DCIUpdateMode:AsRequired --g StartUpClk:CClk --g DONE_cycle:4 --g GTS_cycle:5 --g GWE_cycle:6 --g LCK_cycle:NoWait --g Match_cycle:Auto --g Security:None --g DonePipe:No --g DriveDone:No --g Encrypt:No diff --git a/hw_v5_fx30t_extension/bsp/top.vhd b/hw_v5_fx30t_extension/bsp/top.vhd deleted file mode 100644 index 1964fed..0000000 --- a/hw_v5_fx30t_extension/bsp/top.vhd +++ /dev/null @@ -1,189 +0,0 @@ --- top module of --- Avnet Virtex 5 FX Evaluation Board - -library ieee; -use ieee.std_logic_1164.all; - -library unisim; -use unisim.vcomponents.ibufds; - - -entity top is - port ( - clk_100MHz : in std_logic; -- 100 MHz clock - clk_socket : in std_logic; -- user clock - user_clk_p : in std_logic; -- diff user clock - user_clk_n : in std_logic; -- diff user clock - -- - -- RS232 - rs232_rx : in std_logic; - rs232_tx : out std_logic; - rs232_rts : in std_logic; - rs232_cts : out std_logic; - -- RS232 USB - rs232_usb_rx : in std_logic; - rs232_usb_tx : out std_logic; - rs232_usb_reset_n : out std_logic; - -- - gpio_led_n : out std_logic_vector(7 downto 0); - gpio_dipswitch : in std_logic_vector(7 downto 0); - gpio_button : in std_logic_vector(3 downto 0); - -- - -- FLASH 8Mx16 - flash_a : out std_logic_vector(31 downto 7); - flash_dq : inout std_logic_vector(15 downto 0); - flash_wen : out std_logic; - flash_oen : out std_logic_vector(0 downto 0); - flash_cen : out std_logic_vector(0 downto 0); - flash_rp_n : out std_logic; - flash_byte_n : out std_logic; - flash_adv_n : out std_logic; - flash_clk : out std_logic; - flash_wait : in std_logic; - -- - -- DDR2 SDRAM 16Mx32 - ddr2_odt : in std_logic_vector(0 downto 0); - ddr2_a : out std_logic_vector(12 downto 0); - ddr2_ba : out std_logic_vector(1 downto 0); - ddr2_cas_n : out std_logic; - ddr2_cke : out std_logic; - ddr2_cs_n : out std_logic; - ddr2_ras_n : out std_logic; - ddr2_we_n : out std_logic; - ddr2_dm : out std_logic_vector(3 downto 0); - ddr2_dqs_p : inout std_logic_vector(3 downto 0); - ddr2_dqs_n : inout std_logic_vector(3 downto 0); - ddr2_dq : inout std_logic_vector(31 downto 0); - ddr2_ck_p : in std_logic_vector(1 downto 0); - ddr2_ck_n : in std_logic_vector(1 downto 0); - -- - -- Ethernet MAC - gmii_txer : out std_logic; - gmii_tx_clk : in std_logic; -- 25 MHz - gmii_rx_clk : in std_logic; -- 25 MHz - gmii_gtc_clk : out std_logic; - gmii_crs : in std_logic; - gmii_dv : in std_logic; - gmii_rx_data : in std_logic_vector(7 downto 0); - gmii_col : in std_logic; - gmii_rx_er : in std_logic; - gmii_tx_en : out std_logic; - gmii_tx_data : out std_logic_vector(7 downto 0); - gbe_rst_n : out std_logic; - gbe_mdc : out std_logic; - gbe_mdio : inout std_logic; - gbe_int_n : inout std_logic; - gbe_mclk : in std_logic; - -- - -- SysACE CompactFlash - sam_clk : in std_logic; - sam_a : out std_logic_vector(6 downto 0); - sam_d : inout std_logic_vector(15 downto 0); - sam_cen : out std_logic; - sam_oen : out std_logic; - sam_wen : out std_logic; - sam_mpirq : in std_logic; - sam_brdy : in std_logic; - sam_reset_n : out std_logic; - -- - -- Expansion Header - exp1_se_io : inout std_logic_vector(33 downto 0); - exp1_diff_p : inout std_logic_vector(21 downto 0); - exp1_diff_n : inout std_logic_vector(21 downto 0); - exp1_se_clk_out : out std_logic; - exp1_se_clk_in : in std_logic; - exp1_diff_clk_out_p : out std_logic; - exp1_diff_clk_out_n : out std_logic; - exp1_diff_clk_in_p : in std_logic; - exp1_diff_clk_in_n : in std_logic; - -- - -- Debug/Trace - atdd : inout std_logic_vector(19 downto 8); - trace_ts10 : inout std_logic; - trace_ts20 : inout std_logic; - trace_ts1e : inout std_logic; - trace_ts2e : inout std_logic; - trace_ts3 : inout std_logic; - trace_ts4 : inout std_logic; - trace_ts5 : inout std_logic; - trace_ts6 : inout std_logic; - trace_clk : in std_logic; - cpu_hreset : in std_logic; - cpu_tdo : out std_logic; - cpu_tms : in std_logic; - cpu_tdi : in std_logic; - cpu_trst : in std_logic; - cpu_tck : in std_logic; - cpu_halt_n : in std_logic - ); -end entity top; - - -architecture rtl of top is - - signal ibufds_i0_o : std_ulogic; - signal ibufds_i1_o : std_ulogic; - -begin - - ibufds_i0 : ibufds - generic map ( - diff_term => true - ) - port map ( - o => ibufds_i0_o, - i => ddr2_ck_p(0), - ib => ddr2_ck_n(0) - ); - - ibufds_i1 : ibufds - generic map ( - diff_term => true - ) - port map ( - o => ibufds_i1_o, - i => ddr2_ck_p(1), - ib => ddr2_ck_n(1) - ); - - -- default output drivers - -- to pass bitgen DRC - rs232_tx <= '1'; - rs232_cts <= '1'; - rs232_usb_tx <= '1'; - rs232_usb_reset_n <= '1'; - gpio_led_n <= (others => '1'); - flash_cen <= "1"; - flash_oen <= "1"; - flash_wen <= '1'; - flash_rp_n <= '1'; - flash_byte_n <= '1'; - flash_adv_n <= '1'; - flash_clk <= '0'; - flash_a <= (others => '0'); - ddr2_a <= (others => '0'); - ddr2_ba <= (others => '0'); - ddr2_dm <= (others => '0'); - ddr2_cs_n <= '1'; - ddr2_we_n <= '1'; - ddr2_cke <= '1'; - ddr2_cas_n <= '1'; - ddr2_ras_n <= '1'; - gmii_gtc_clk <= '0'; - gmii_tx_data <= (others => '0'); - gmii_tx_en <= '0'; - gmii_txer <= '0'; - gbe_rst_n <= '1'; - gbe_mdc <= '1'; - sam_cen <= '1'; - sam_oen <= '1'; - sam_wen <= '1'; - sam_a <= (others => '0'); - sam_reset_n <= '1'; - exp1_se_clk_out <= '0'; - exp1_diff_clk_out_p <= '0'; - exp1_diff_clk_out_n <= '1'; - cpu_tdo <= '1'; - -end architecture rtl; - diff --git a/hw_v5_fx30t_extension/bsp/top.xst b/hw_v5_fx30t_extension/bsp/top.xst deleted file mode 100644 index a3b6123..0000000 --- a/hw_v5_fx30t_extension/bsp/top.xst +++ /dev/null @@ -1,60 +0,0 @@ -set -tmpdir "tmp" -set -xsthdpdir "xst" -run --ifn ../top.prj --ifmt mixed --ofn top --ofmt NGC --p xc5vfx30t-1-ff665 --top top --opt_mode Speed --opt_level 1 --power NO --iuc NO --keep_hierarchy No --netlist_hierarchy As_Optimized --rtlview Yes --glob_opt AllClockNets --read_cores YES --write_timing_constraints NO --cross_clock_analysis NO --hierarchy_separator / --bus_delimiter <> --case Maintain --slice_utilization_ratio 100 --bram_utilization_ratio 100 --dsp_utilization_ratio 100 --lc Off --reduce_control_sets Off --verilog2001 YES --fsm_extract YES -fsm_encoding Auto --safe_implementation No --fsm_style LUT --ram_extract Yes --ram_style Auto --rom_extract Yes --mux_style Auto --decoder_extract YES --priority_extract Yes --shreg_extract YES --shift_extract YES --xor_collapse YES --rom_style Auto --auto_bram_packing NO --mux_extract Yes --resource_sharing YES --async_to_sync NO --use_dsp48 Auto --iobuf YES --max_fanout 100000 --bufg 32 --register_duplication YES --register_balancing No --slice_packing YES --optimize_primitives NO --use_clock_enable Auto --use_sync_set Auto --use_sync_reset Auto --iob Auto --equivalent_register_removal YES --slice_utilization_ratio_maxmargin 5 diff --git a/hw_v5_fx30t_extension/future_extension/Audio_codec/see_altium_data_sheet.txt b/hw_v5_fx30t_extension/future_extension/Audio_codec/see_altium_data_sheet.txt deleted file mode 100644 index e69de29..0000000 --- a/hw_v5_fx30t_extension/future_extension/Audio_codec/see_altium_data_sheet.txt +++ /dev/null diff --git a/hw_v5_fx30t_extension/future_extension/NanoBoard 3000XN Schematics (Xilinx variant).pdf b/hw_v5_fx30t_extension/future_extension/NanoBoard 3000XN Schematics (Xilinx variant).pdf Binary files differdeleted file mode 100644 index eaca66e..0000000 --- a/hw_v5_fx30t_extension/future_extension/NanoBoard 3000XN Schematics (Xilinx variant).pdf +++ /dev/null diff --git a/hw_v5_fx30t_extension/future_extension/PS2/pins.txt b/hw_v5_fx30t_extension/future_extension/PS2/pins.txt deleted file mode 100644 index 24e572f..0000000 --- a/hw_v5_fx30t_extension/future_extension/PS2/pins.txt +++ /dev/null @@ -1,4 +0,0 @@ -data 1 -clock 1 - -sum 2 diff --git a/hw_v5_fx30t_extension/future_extension/PS2/ps2.png b/hw_v5_fx30t_extension/future_extension/PS2/ps2.png Binary files differdeleted file mode 100644 index 829e696..0000000 --- a/hw_v5_fx30t_extension/future_extension/PS2/ps2.png +++ /dev/null diff --git a/hw_v5_fx30t_extension/future_extension/PS2/ps2_connector.png b/hw_v5_fx30t_extension/future_extension/PS2/ps2_connector.png Binary files differdeleted file mode 100644 index a39c9e2..0000000 --- a/hw_v5_fx30t_extension/future_extension/PS2/ps2_connector.png +++ /dev/null diff --git a/hw_v5_fx30t_extension/future_extension/SD_card/pins.txt b/hw_v5_fx30t_extension/future_extension/SD_card/pins.txt deleted file mode 100644 index 6dd09f7..0000000 --- a/hw_v5_fx30t_extension/future_extension/SD_card/pins.txt +++ /dev/null @@ -1,7 +0,0 @@ -protect 1 -detect 1 -cmd 1 -clk 1 -data 4 - -sum 8 diff --git a/hw_v5_fx30t_extension/future_extension/VGA_out/pins.txt b/hw_v5_fx30t_extension/future_extension/VGA_out/pins.txt deleted file mode 100644 index cb7f392..0000000 --- a/hw_v5_fx30t_extension/future_extension/VGA_out/pins.txt +++ /dev/null @@ -1,8 +0,0 @@ -red 8 -green 8 -blue 8 -hsync 1 -vsync 1 -dac_clk 1 - -sum 27 diff --git a/hw_v5_fx30t_extension/future_extension/VGA_out/vga_connector.png b/hw_v5_fx30t_extension/future_extension/VGA_out/vga_connector.png Binary files differdeleted file mode 100644 index fd31718..0000000 --- a/hw_v5_fx30t_extension/future_extension/VGA_out/vga_connector.png +++ /dev/null diff --git a/hw_v5_fx30t_extension/future_extension/VGA_out/vga_out.png b/hw_v5_fx30t_extension/future_extension/VGA_out/vga_out.png Binary files differdeleted file mode 100644 index 2e777e5..0000000 --- a/hw_v5_fx30t_extension/future_extension/VGA_out/vga_out.png +++ /dev/null diff --git a/hw_v5_fx30t_extension/future_extension/VGA_out/video_dac.png b/hw_v5_fx30t_extension/future_extension/VGA_out/video_dac.png Binary files differdeleted file mode 100644 index 9ad137e..0000000 --- a/hw_v5_fx30t_extension/future_extension/VGA_out/video_dac.png +++ /dev/null diff --git a/hw_v5_fx30t_extension/readme.txt b/hw_v5_fx30t_extension/readme.txt deleted file mode 100644 index ad96102..0000000 --- a/hw_v5_fx30t_extension/readme.txt +++ /dev/null @@ -1,18 +0,0 @@ -done: -ucf und top angelegt -LED leuchten auf Tastendruck -Desing läuft aus dem BPI-Flash - -todo: -grlib mit folgender IP: -RS232 -USB-UART -GPIO (LED switch button) -Flash 8Mx16 -DDR2 16Mx32 -Ethernet (10/100/1000) -Sysace? eher nicht -> 28 Pins extra - -Portierung ZPU + grlib (Größe + Geschwindigkeit) -Portierung LEON3 + grlib (Größe + Geschwindigkeit) -Portierung PPC + grlib (Größe + Geschwindigkeit) diff --git a/hw_v5_fx30t_extension/rtl/top.vhd b/hw_v5_fx30t_extension/rtl/top.vhd deleted file mode 100644 index 34c82b8..0000000 --- a/hw_v5_fx30t_extension/rtl/top.vhd +++ /dev/null @@ -1,144 +0,0 @@ - -library ieee; -use ieee.std_logic_1164.all; - -library unisim; -use unisim.vcomponents.ibufds; - - - -entity top is - port - ( - sys_clk : in std_logic; -- 100 MHz clock - clk_socket : in std_logic; -- user clock - --sys_rst : in std_logic; - -- - -- RS232 - RS232_RX : in std_logic; - RS232_TX : out std_logic; - -- RS232_USB - RS232_USB_RX : in std_logic; - RS232_USB_TX : out std_logic; - RS232_USB_reset_dummy : out std_logic; - -- - GPIO_LED_out : out std_logic_vector(7 downto 0); - GPIO_DIPswitch_in : in std_logic_vector(7 downto 0); - GPIO_button_in : in std_logic_vector(3 downto 0); - -- - -- FLASH_8Mx16 - FLASH_8Mx16_Mem_A : out std_logic_vector(31 downto 7); - FLASH_8Mx16_Mem_DQ : inout std_logic_vector(15 downto 0); - FLASH_8Mx16_Mem_WEN : out std_logic; - FLASH_8Mx16_Mem_OEN : out std_logic_vector(0 downto 0); - FLASH_8Mx16_Mem_CEN : out std_logic_vector(0 downto 0); - FLASH_8Mx16_rpn_dummy : out std_logic; - --FLASH_8Mx16_byte_dummy : std_logic; - --FLASH_8Mx16_adv_dummy : std_logic; - --FLASH_8Mx16_clk_dummy : std_logic; - --FLASH_8Mx16_wait_dummy : std_logic; - -- - -- DDR2_SDRAM_16Mx32 - DDR2_SDRAM_16Mx32_DDR2_ODT : in std_logic_vector( 0 downto 0); - DDR2_SDRAM_16Mx32_DDR2_A : out std_logic_vector(12 downto 0); - DDR2_SDRAM_16Mx32_DDR2_BA : out std_logic_vector( 1 downto 0); - DDR2_SDRAM_16Mx32_DDR2_CAS_N : out std_logic; - DDR2_SDRAM_16Mx32_DDR2_CKE : out std_logic; - DDR2_SDRAM_16Mx32_DDR2_CS_N : out std_logic; - DDR2_SDRAM_16Mx32_DDR2_RAS_N : out std_logic; - DDR2_SDRAM_16Mx32_DDR2_WE_N : out std_logic; - DDR2_SDRAM_16Mx32_DDR2_DM : out std_logic_vector( 3 downto 0); - DDR2_SDRAM_16Mx32_DDR2_DQS : inout std_logic_vector( 3 downto 0); - DDR2_SDRAM_16Mx32_DDR2_DQS_N : inout std_logic_vector( 3 downto 0); - DDR2_SDRAM_16Mx32_DDR2_DQ : inout std_logic_vector(31 downto 0); - DDR2_SDRAM_16Mx32_DDR2_CK : in std_logic_vector( 1 downto 0); - DDR2_SDRAM_16Mx32_DDR2_CK_N : in std_logic_vector( 1 downto 0); - -- - -- Ethernet_MAC - Ethernet_MAC_DUMMY_ETH_TXER : out std_logic; - Ethernet_MAC_PHY_tx_clk : in std_logic; -- 25 MHz - Ethernet_MAC_PHY_rx_clk : in std_logic; -- 25 MHz - Ethernet_MAC_PHY_crs : in std_logic; - Ethernet_MAC_PHY_dv : in std_logic; - Ethernet_MAC_PHY_rx_data : in std_logic_vector(3 downto 0); - Ethernet_MAC_PHY_col : in std_logic; - Ethernet_MAC_PHY_rx_er : in std_logic; - Ethernet_MAC_PHY_tx_en : out std_logic; - Ethernet_MAC_PHY_tx_data : out std_logic_vector(3 downto 0); - Ethernet_MAC_PHY_rst_n : out std_logic; - Ethernet_MAC_PHY_Mii_clk : out std_logic; - Ethernet_MAC_PHY_Mii_data : inout std_logic; - -- - -- SysACE_CompactFlash - SysACE_CompactFlash_SysACE_CLK : in std_logic; - SysACE_CompactFlash_SysACE_MPA : out std_logic_vector( 6 downto 0); - SysACE_CompactFlash_SysACE_MPD : inout std_logic_vector(15 downto 0); - SysACE_CompactFlash_SysACE_CEN : out std_logic; - SysACE_CompactFlash_SysACE_OEN : out std_logic; - SysACE_CompactFlash_SysACE_WEN : out std_logic; - SysACE_CompactFlash_SysACE_MPIRQ : in std_logic - ); -end entity top; - - -architecture rtl of top is - - signal ibufds_i0_o : std_ulogic; - signal ibufds_i1_o : std_ulogic; - -begin - - ibufds_i0 : ibufds - generic map ( - diff_term => true - ) - port map ( - o => ibufds_i0_o, - i => DDR2_SDRAM_16Mx32_DDR2_CK(0), - ib => DDR2_SDRAM_16Mx32_DDR2_CK_N(0) - ); - - ibufds_i1 : ibufds - generic map ( - diff_term => true - ) - port map ( - o => ibufds_i1_o, - i => DDR2_SDRAM_16Mx32_DDR2_CK(1), - ib => DDR2_SDRAM_16Mx32_DDR2_CK_N(1) - ); - - -- some default assignments - -- to pass bitgen DRC - RS232_TX <= '1'; - RS232_USB_TX <= '1'; - RS232_USB_reset_dummy <= '0'; - FLASH_8Mx16_Mem_CEN <= "1"; - FLASH_8Mx16_Mem_OEN <= "1"; - FLASH_8Mx16_Mem_WEN <= '1'; - FLASH_8Mx16_rpn_dummy <= '1'; - FLASH_8Mx16_Mem_A <= (others => '0'); - DDR2_SDRAM_16Mx32_DDR2_A <= (others => '0'); - DDR2_SDRAM_16Mx32_DDR2_BA <= (others => '0'); - DDR2_SDRAM_16Mx32_DDR2_DM <= (others => '0'); - DDR2_SDRAM_16Mx32_DDR2_CS_N <= '1'; - DDR2_SDRAM_16Mx32_DDR2_WE_N <= '1'; - DDR2_SDRAM_16Mx32_DDR2_CKE <= '1'; - DDR2_SDRAM_16Mx32_DDR2_CAS_N <= '1'; - DDR2_SDRAM_16Mx32_DDR2_RAS_N <= '1'; - Ethernet_MAC_PHY_rst_n <= '1'; - Ethernet_MAC_PHY_tx_data <= (others => '0'); - Ethernet_MAC_PHY_tx_en <= '0'; - Ethernet_MAC_DUMMY_ETH_TXER <= '0'; - Ethernet_MAC_PHY_Mii_clk <= '1'; - SysACE_CompactFlash_SysACE_CEN <= '1'; - SysACE_CompactFlash_SysACE_OEN <= '1'; - SysACE_CompactFlash_SysACE_WEN <= '1'; - SysACE_CompactFlash_SysACE_MPA <= (others => '0'); - - - -- small function: - GPIO_LED_out <= GPIO_DIPswitch_in when GPIO_button_in(0) = '0' else not GPIO_DIPswitch_in; - -end architecture rtl; - diff --git a/hw_v5_fx30t_extension/simulation/Makefile b/hw_v5_fx30t_extension/simulation/Makefile deleted file mode 100644 index e1185a8..0000000 --- a/hw_v5_fx30t_extension/simulation/Makefile +++ /dev/null @@ -1,46 +0,0 @@ -# -# $HeadURL: https://svn.fzd.de/repo/concast/FWF_Projects/FWKE/beam_position_monitor/hardware/board_sp605/simulation/Makefile $ -# $Date$ -# $Author$ -# $Revision$ -# - -library = work -top = top - -library_list = $(shell cut --field 1 --delimiter=" " --only-delimited vhdl_files.txt | grep --invert "\#" | sort --unique) - -# http://sourceforge.net/projects/vmk/ -VMK = vmk - -all: compile simulate - - -compile: Makefile.msim - export ANAFLAGS="-quiet -2008"; \ - make -f Makefile.msim | ccze -A - - -simulate: - export top=$(top); \ - vsim -quiet -gui $(library).$(top) -do run.do -nowlfmcl -l transcript.log - - -clean: - rm -f transcript - rm -f *.wlf - rm -f wlf* - @# - -make -f Makefile.msim clean - rm -f Makefile.msim - rm -f .stamp - rm -rf $(library_list) - - -# generate Makefile.msim with vmk -Makefile.msim: vhdl_files.txt $(library_list) - $(VMK) -t modelsim -O -w $(library) -F vhdl_files.txt - -$(library_list): - vlib $@ - diff --git a/hw_v5_fx30t_extension/simulation/run.do b/hw_v5_fx30t_extension/simulation/run.do deleted file mode 100644 index 339fac7..0000000 --- a/hw_v5_fx30t_extension/simulation/run.do +++ /dev/null @@ -1,65 +0,0 @@ - -# -# helper functions -# - -# restart + run -proc r {} { - restart -f - set sim_start [clock seconds] - - run -all - - puts "# simulation run time: [clock format [expr [clock seconds] - $sim_start] -gmt 1 -format %H:%M:%S] " -} - - -# restart with clear -proc rc {} { - .main clear - r -} - -# print varables -proc my_debug {} { - global env - foreach key [array names env] { - puts "$key=$env($key)" - } -} - - -# fast exit -proc e {} { - exit -force -} - -# fast exit -proc x {} { - exit -force -} - - -# get env variables -global env -quietly set top $env(top) - - -if {[file exists wave.do]} { - do wave.do -} else { - if {[file exists wave_$top.do]} { - do wave_$top.do - } else { - puts "INFO: no wave file (wave_$top.do) found" - } - puts "INFO: no wave file (wave.do) found" -} - - - -set sim_start [clock seconds] - -run -all - -puts "# simulation run time: [clock format [expr [clock seconds] - $sim_start] -gmt 1 -format %H:%M:%S] " diff --git a/hw_v5_fx30t_extension/simulation/vhdl_files.txt b/hw_v5_fx30t_extension/simulation/vhdl_files.txt deleted file mode 100644 index a994fc5..0000000 --- a/hw_v5_fx30t_extension/simulation/vhdl_files.txt +++ /dev/null @@ -1 +0,0 @@ -work ../rtl/top.vhd
diff --git a/ieee_proposed/doc/link.txt b/ieee_proposed/doc/link.txt deleted file mode 100644 index a34854d..0000000 --- a/ieee_proposed/doc/link.txt +++ /dev/null @@ -1 +0,0 @@ -http://www.eda-stds.org/fphdl/ diff --git a/ieee_proposed/rtl/env_c.vhd b/ieee_proposed/rtl/env_c.vhd deleted file mode 100644 index e6703fa..0000000 --- a/ieee_proposed/rtl/env_c.vhd +++ /dev/null @@ -1,48 +0,0 @@ -package ENV is - - procedure STOP (STATUS : INTEGER); - procedure FINISH (STATUS : INTEGER); - - function RESOLUTION_LIMIT return DELAY_LENGTH; - -end package ENV; -library ieee_proposed; -use ieee_proposed.standard_additions.all; -package body ENV is - - procedure STOP (STATUS : INTEGER) is - begin - report "Procedure STOP called with status: " & INTEGER'image(STATUS) - severity failure; - end procedure STOP; - procedure FINISH (STATUS : INTEGER) is - begin - report "Procedure FINISH called with status: " & INTEGER'image(STATUS) - severity failure; - end procedure FINISH; - - constant BASE_TIME_ARRAY : time_vector := - ( - 1 fs, 10 fs, 100 fs, - 1 ps, 10 ps, 100 ps, - 1 ns, 10 ns, 100 ns, - 1 us, 10 us, 100 us, - 1 ms, 10 ms, 100 ms, - 1 sec, 10 sec, 100 sec, - 1 min, 10 min, 100 min, - 1 hr, 10 hr, 100 hr - ) ; - - function RESOLUTION_LIMIT return DELAY_LENGTH is - begin - for i in BASE_TIME_ARRAY'range loop - if BASE_TIME_ARRAY(i) > 0 hr then - return BASE_TIME_ARRAY(i); - end if; - end loop; - report "STANDATD.RESOLUTION_LIMIT: Simulator resolution not less than 100 hr" - severity failure; - return 1 ns; - end function RESOLUTION_LIMIT; - -end package body ENV; diff --git a/ieee_proposed/rtl/fixed_float_types_c.vhd b/ieee_proposed/rtl/fixed_float_types_c.vhd deleted file mode 100644 index 315b628..0000000 --- a/ieee_proposed/rtl/fixed_float_types_c.vhd +++ /dev/null @@ -1,34 +0,0 @@ --- -------------------------------------------------------------------- --- "fixed_float_types" package contains types used in the fixed and floating --- point packages.. --- Please see the documentation for the floating point package. --- This package should be compiled into "ieee_proposed" and used as follows: --- --- This verison is designed to work with the VHDL-93 compilers. Please --- note the "%%%" comments. These are where we diverge from the --- VHDL-200X LRM. --- --- -------------------------------------------------------------------- --- Version : $Revision: 1.21 $ --- Date : $Date: 2007-09-11 14:52:13-04 $ --- -------------------------------------------------------------------- - -package fixed_float_types is - - -- Types used for generics of fixed_generic_pkg - - type fixed_round_style_type is (fixed_round, fixed_truncate); - - type fixed_overflow_style_type is (fixed_saturate, fixed_wrap); - - -- Type used for generics of float_generic_pkg - - -- These are the same as the C FE_TONEAREST, FE_UPWARD, FE_DOWNWARD, - -- and FE_TOWARDZERO floating point rounding macros. - - type round_type is (round_nearest, -- Default, nearest LSB '0' - round_inf, -- Round toward positive infinity - round_neginf, -- Round toward negative infinity - round_zero); -- Round toward zero (truncate) - -end package fixed_float_types; diff --git a/ieee_proposed/rtl/fixed_pkg_c.vhd b/ieee_proposed/rtl/fixed_pkg_c.vhd deleted file mode 100644 index bb32709..0000000 --- a/ieee_proposed/rtl/fixed_pkg_c.vhd +++ /dev/null @@ -1,8390 +0,0 @@ --- -------------------------------------------------------------------- --- "fixed_pkg_c.vhdl" package contains functions for fixed point math. --- Please see the documentation for the fixed point package. --- This package should be compiled into "ieee_proposed" and used as follows: --- use ieee.std_logic_1164.all; --- use ieee.numeric_std.all; --- use ieee_proposed.fixed_float_types.all; --- use ieee_proposed.fixed_pkg.all; --- --- This verison is designed to work with the VHDL-93 compilers --- synthesis tools. Please note the "%%%" comments. These are where we --- diverge from the VHDL-200X LRM. --- -------------------------------------------------------------------- --- Version : $Revision: 1.21 $ --- Date : $Date: 2007/09/26 18:08:53 $ --- -------------------------------------------------------------------- - -use STD.TEXTIO.all; -library IEEE; -use IEEE.STD_LOGIC_1164.all; -use IEEE.NUMERIC_STD.all; -library IEEE_PROPOSED; -use IEEE_PROPOSED.fixed_float_types.all; - -package fixed_pkg is --- generic ( - -- Rounding routine to use in fixed point, fixed_round or fixed_truncate - constant fixed_round_style : fixed_round_style_type := fixed_round; - -- Overflow routine to use in fixed point, fixed_saturate or fixed_wrap - constant fixed_overflow_style : fixed_overflow_style_type := fixed_saturate; - -- Extra bits used in divide routines - constant fixed_guard_bits : NATURAL := 3; - -- If TRUE, then turn off warnings on "X" propagation - constant no_warning : BOOLEAN := (false - ); - - -- Author David Bishop (dbishop@vhdl.org) - - -- base Unsigned fixed point type, downto direction assumed - type UNRESOLVED_ufixed is array (INTEGER range <>) of STD_ULOGIC; - -- base Signed fixed point type, downto direction assumed - type UNRESOLVED_sfixed is array (INTEGER range <>) of STD_ULOGIC; - - subtype U_ufixed is UNRESOLVED_ufixed; - subtype U_sfixed is UNRESOLVED_sfixed; - - subtype ufixed is UNRESOLVED_ufixed; - subtype sfixed is UNRESOLVED_sfixed; - - --=========================================================================== - -- Arithmetic Operators: - --=========================================================================== - - -- Absolute value, 2's complement - -- abs sfixed(a downto b) = sfixed(a+1 downto b) - function "abs" (arg : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- Negation, 2's complement - -- - sfixed(a downto b) = sfixed(a+1 downto b) - function "-" (arg : UNRESOLVED_sfixed)return UNRESOLVED_sfixed; - - -- Addition - -- ufixed(a downto b) + ufixed(c downto d) - -- = ufixed(maximum(a,c)+1 downto minimum(b,d)) - function "+" (l, r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - - -- sfixed(a downto b) + sfixed(c downto d) - -- = sfixed(maximum(a,c)+1 downto minimum(b,d)) - function "+" (l, r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- Subtraction - -- ufixed(a downto b) - ufixed(c downto d) - -- = ufixed(maximum(a,c)+1 downto minimum(b,d)) - function "-" (l, r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - - -- sfixed(a downto b) - sfixed(c downto d) - -- = sfixed(maximum(a,c)+1 downto minimum(b,d)) - function "-" (l, r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- Multiplication - -- ufixed(a downto b) * ufixed(c downto d) = ufixed(a+c+1 downto b+d) - function "*" (l, r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - - -- sfixed(a downto b) * sfixed(c downto d) = sfixed(a+c+1 downto b+d) - function "*" (l, r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- Division - -- ufixed(a downto b) / ufixed(c downto d) = ufixed(a-d downto b-c-1) --- function "/" (l, r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - - -- sfixed(a downto b) / sfixed(c downto d) = sfixed(a-d+1 downto b-c) --- function "/" (l, r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- Remainder - -- ufixed (a downto b) rem ufixed (c downto d) - -- = ufixed (minimum(a,c) downto minimum(b,d)) --- function "rem" (l, r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - - -- sfixed (a downto b) rem sfixed (c downto d) - -- = sfixed (minimum(a,c) downto minimum(b,d)) --- function "rem" (l, r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- Modulo - -- ufixed (a downto b) mod ufixed (c downto d) - -- = ufixed (minimum(a,c) downto minimum(b, d)) --- function "mod" (l, r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - - -- sfixed (a downto b) mod sfixed (c downto d) - -- = sfixed (c downto minimum(b, d)) --- function "mod" (l, r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - ---------------------------------------------------------------------------- - -- In these routines the "real" or "natural" (integer) - -- are converted into a fixed point number and then the operation is - -- performed. It is assumed that the array will be large enough. - -- If the input is "real" then the real number is converted into a fixed of - -- the same size as the fixed point input. If the number is an "integer" - -- then it is converted into fixed with the range (l'high downto 0). - ---------------------------------------------------------------------------- - - -- ufixed(a downto b) + ufixed(a downto b) = ufixed(a+1 downto b) - function "+" (l : UNRESOLVED_ufixed; r : REAL) return UNRESOLVED_ufixed; - - -- ufixed(c downto d) + ufixed(c downto d) = ufixed(c+1 downto d) - function "+" (l : REAL; r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - - -- ufixed(a downto b) + ufixed(a downto 0) = ufixed(a+1 downto minimum(0,b)) - function "+" (l : UNRESOLVED_ufixed; r : NATURAL) return UNRESOLVED_ufixed; - - -- ufixed(a downto 0) + ufixed(c downto d) = ufixed(c+1 downto minimum(0,d)) - function "+" (l : NATURAL; r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - - -- ufixed(a downto b) - ufixed(a downto b) = ufixed(a+1 downto b) - function "-" (l : UNRESOLVED_ufixed; r : REAL) return UNRESOLVED_ufixed; - - -- ufixed(c downto d) - ufixed(c downto d) = ufixed(c+1 downto d) - function "-" (l : REAL; r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - - -- ufixed(a downto b) - ufixed(a downto 0) = ufixed(a+1 downto minimum(0,b)) - function "-" (l : UNRESOLVED_ufixed; r : NATURAL) return UNRESOLVED_ufixed; - - -- ufixed(a downto 0) + ufixed(c downto d) = ufixed(c+1 downto minimum(0,d)) - function "-" (l : NATURAL; r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - - -- ufixed(a downto b) * ufixed(a downto b) = ufixed(2a+1 downto 2b) - function "*" (l : UNRESOLVED_ufixed; r : REAL) return UNRESOLVED_ufixed; - - -- ufixed(c downto d) * ufixed(c downto d) = ufixed(2c+1 downto 2d) - function "*" (l : REAL; r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - - -- ufixed (a downto b) * ufixed (a downto 0) = ufixed (2a+1 downto b) - function "*" (l : UNRESOLVED_ufixed; r : NATURAL) return UNRESOLVED_ufixed; - - -- ufixed (a downto b) * ufixed (a downto 0) = ufixed (2a+1 downto b) - function "*" (l : NATURAL; r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - - -- ufixed(a downto b) / ufixed(a downto b) = ufixed(a-b downto b-a-1) --- function "/" (l : UNRESOLVED_ufixed; r : REAL) return UNRESOLVED_ufixed; - --- -- ufixed(a downto b) / ufixed(a downto b) = ufixed(a-b downto b-a-1) --- function "/" (l : REAL; r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - - -- ufixed(a downto b) / ufixed(a downto 0) = ufixed(a downto b-a-1) --- function "/" (l : UNRESOLVED_ufixed; r : NATURAL) return UNRESOLVED_ufixed; - - -- ufixed(c downto 0) / ufixed(c downto d) = ufixed(c-d downto -c-1) --- function "/" (l : NATURAL; r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - - -- ufixed (a downto b) rem ufixed (a downto b) = ufixed (a downto b) --- function "rem" (l : UNRESOLVED_ufixed; r : REAL) return UNRESOLVED_ufixed; - --- -- ufixed (c downto d) rem ufixed (c downto d) = ufixed (c downto d) --- function "rem" (l : REAL; r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - --- -- ufixed (a downto b) rem ufixed (a downto 0) = ufixed (a downto minimum(b,0)) --- function "rem" (l : UNRESOLVED_ufixed; r : NATURAL) return UNRESOLVED_ufixed; - --- -- ufixed (c downto 0) rem ufixed (c downto d) = ufixed (c downto minimum(d,0)) --- function "rem" (l : NATURAL; r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - --- -- ufixed (a downto b) mod ufixed (a downto b) = ufixed (a downto b) --- function "mod" (l : UNRESOLVED_ufixed; r : REAL) return UNRESOLVED_ufixed; - --- -- ufixed (c downto d) mod ufixed (c downto d) = ufixed (c downto d) --- function "mod" (l : REAL; r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - --- -- ufixed (a downto b) mod ufixed (a downto 0) = ufixed (a downto minimum(b,0)) --- function "mod" (l : UNRESOLVED_ufixed; r : NATURAL) return UNRESOLVED_ufixed; - --- -- ufixed (c downto 0) mod ufixed (c downto d) = ufixed (c downto minimum(d,0)) --- function "mod" (l : NATURAL; r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - - -- sfixed(a downto b) + sfixed(a downto b) = sfixed(a+1 downto b) - function "+" (l : UNRESOLVED_sfixed; r : REAL) return UNRESOLVED_sfixed; - - -- sfixed(c downto d) + sfixed(c downto d) = sfixed(c+1 downto d) - function "+" (l : REAL; r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- sfixed(a downto b) + sfixed(a downto 0) = sfixed(a+1 downto minimum(0,b)) - function "+" (l : UNRESOLVED_sfixed; r : INTEGER) return UNRESOLVED_sfixed; - - -- sfixed(c downto 0) + sfixed(c downto d) = sfixed(c+1 downto minimum(0,d)) - function "+" (l : INTEGER; r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- sfixed(a downto b) - sfixed(a downto b) = sfixed(a+1 downto b) - function "-" (l : UNRESOLVED_sfixed; r : REAL) return UNRESOLVED_sfixed; - - -- sfixed(c downto d) - sfixed(c downto d) = sfixed(c+1 downto d) - function "-" (l : REAL; r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- sfixed(a downto b) - sfixed(a downto 0) = sfixed(a+1 downto minimum(0,b)) - function "-" (l : UNRESOLVED_sfixed; r : INTEGER) return UNRESOLVED_sfixed; - - -- sfixed(c downto 0) - sfixed(c downto d) = sfixed(c+1 downto minimum(0,d)) - function "-" (l : INTEGER; r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- sfixed(a downto b) * sfixed(a downto b) = sfixed(2a+1 downto 2b) - function "*" (l : UNRESOLVED_sfixed; r : REAL) return UNRESOLVED_sfixed; - - -- sfixed(c downto d) * sfixed(c downto d) = sfixed(2c+1 downto 2d) - function "*" (l : REAL; r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- sfixed(a downto b) * sfixed(a downto 0) = sfixed(2a+1 downto b) - function "*" (l : UNRESOLVED_sfixed; r : INTEGER) return UNRESOLVED_sfixed; - - -- sfixed(c downto 0) * sfixed(c downto d) = sfixed(2c+1 downto d) - function "*" (l : INTEGER; r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- sfixed(a downto b) / sfixed(a downto b) = sfixed(a-b+1 downto b-a) --- function "/" (l : UNRESOLVED_sfixed; r : REAL) return UNRESOLVED_sfixed; - - -- sfixed(c downto d) / sfixed(c downto d) = sfixed(c-d+1 downto d-c) --- function "/" (l : REAL; r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- sfixed(a downto b) / sfixed(a downto 0) = sfixed(a+1 downto b-a) --- function "/" (l : UNRESOLVED_sfixed; r : INTEGER) return UNRESOLVED_sfixed; - - -- sfixed(c downto 0) / sfixed(c downto d) = sfixed(c-d+1 downto -c) --- function "/" (l : INTEGER; r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- sfixed (a downto b) rem sfixed (a downto b) = sfixed (a downto b) --- function "rem" (l : UNRESOLVED_sfixed; r : REAL) return UNRESOLVED_sfixed; - --- -- sfixed (c downto d) rem sfixed (c downto d) = sfixed (c downto d) --- function "rem" (l : REAL; r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - --- -- sfixed (a downto b) rem sfixed (a downto 0) = sfixed (a downto minimum(b,0)) --- function "rem" (l : UNRESOLVED_sfixed; r : INTEGER) return UNRESOLVED_sfixed; - --- -- sfixed (c downto 0) rem sfixed (c downto d) = sfixed (c downto minimum(d,0)) --- function "rem" (l : INTEGER; r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - --- -- sfixed (a downto b) mod sfixed (a downto b) = sfixed (a downto b) --- function "mod" (l : UNRESOLVED_sfixed; r : REAL) return UNRESOLVED_sfixed; - --- -- sfixed (c downto d) mod sfixed (c downto d) = sfixed (c downto d) --- function "mod" (l : REAL; r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - --- -- sfixed (a downto b) mod sfixed (a downto 0) = sfixed (a downto minimum(b,0)) --- function "mod" (l : UNRESOLVED_sfixed; r : INTEGER) return UNRESOLVED_sfixed; - --- -- sfixed (c downto 0) mod sfixed (c downto d) = sfixed (c downto minimum(d,0)) --- function "mod" (l : INTEGER; r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- This version of divide gives the user more control - -- ufixed(a downto b) / ufixed(c downto d) = ufixed(a-d downto b-c-1) --- function divide ( --- l, r : UNRESOLVED_ufixed; --- constant round_style : fixed_round_style_type := fixed_round_style; --- constant guard_bits : NATURAL := fixed_guard_bits) --- return UNRESOLVED_ufixed; - - -- This version of divide gives the user more control - -- sfixed(a downto b) / sfixed(c downto d) = sfixed(a-d+1 downto b-c) --- function divide ( --- l, r : UNRESOLVED_sfixed; --- constant round_style : fixed_round_style_type := fixed_round_style; --- constant guard_bits : NATURAL := fixed_guard_bits) --- return UNRESOLVED_sfixed; - - -- These functions return 1/X - -- 1 / ufixed(a downto b) = ufixed(-b downto -a-1) --- function reciprocal ( --- arg : UNRESOLVED_ufixed; -- fixed point input --- constant round_style : fixed_round_style_type := fixed_round_style; --- constant guard_bits : NATURAL := fixed_guard_bits) --- return UNRESOLVED_ufixed; - - -- 1 / sfixed(a downto b) = sfixed(-b+1 downto -a) --- function reciprocal ( --- arg : UNRESOLVED_sfixed; -- fixed point input --- constant round_style : fixed_round_style_type := fixed_round_style; --- constant guard_bits : NATURAL := fixed_guard_bits) --- return UNRESOLVED_sfixed; - - -- REM function - -- ufixed (a downto b) rem ufixed (c downto d) - -- = ufixed (minimum(a,c) downto minimum(b,d)) --- function remainder ( --- l, r : UNRESOLVED_ufixed; --- constant round_style : fixed_round_style_type := fixed_round_style; --- constant guard_bits : NATURAL := fixed_guard_bits) --- return UNRESOLVED_ufixed; - - -- sfixed (a downto b) rem sfixed (c downto d) - -- = sfixed (minimum(a,c) downto minimum(b,d)) --- function remainder ( --- l, r : UNRESOLVED_sfixed; --- constant round_style : fixed_round_style_type := fixed_round_style; --- constant guard_bits : NATURAL := fixed_guard_bits) --- return UNRESOLVED_sfixed; - - -- mod function - -- ufixed (a downto b) mod ufixed (c downto d) - -- = ufixed (minimum(a,c) downto minimum(b, d)) --- function modulo ( --- l, r : UNRESOLVED_ufixed; --- constant round_style : fixed_round_style_type := fixed_round_style; --- constant guard_bits : NATURAL := fixed_guard_bits) --- return UNRESOLVED_ufixed; - - -- sfixed (a downto b) mod sfixed (c downto d) - -- = sfixed (c downto minimum(b, d)) --- function modulo ( --- l, r : UNRESOLVED_sfixed; --- constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; --- constant round_style : fixed_round_style_type := fixed_round_style; --- constant guard_bits : NATURAL := fixed_guard_bits) --- return UNRESOLVED_sfixed; - - -- Procedure for those who need an "accumulator" function. - -- add_carry (ufixed(a downto b), ufixed (c downto d)) - -- = ufixed (maximum(a,c) downto minimum(b,d)) - procedure add_carry ( - L, R : in UNRESOLVED_ufixed; - c_in : in STD_ULOGIC; - result : out UNRESOLVED_ufixed; - c_out : out STD_ULOGIC); - - -- add_carry (sfixed(a downto b), sfixed (c downto d)) - -- = sfixed (maximum(a,c) downto minimum(b,d)) - procedure add_carry ( - L, R : in UNRESOLVED_sfixed; - c_in : in STD_ULOGIC; - result : out UNRESOLVED_sfixed; - c_out : out STD_ULOGIC); - - -- Scales the result by a power of 2. Width of input = width of output with - -- the binary point moved. - function scalb (y : UNRESOLVED_ufixed; N : INTEGER) return UNRESOLVED_ufixed; - function scalb (y : UNRESOLVED_ufixed; N : SIGNED) return UNRESOLVED_ufixed; - function scalb (y : UNRESOLVED_sfixed; N : INTEGER) return UNRESOLVED_sfixed; - function scalb (y : UNRESOLVED_sfixed; N : SIGNED) return UNRESOLVED_sfixed; - - function Is_Negative (arg : UNRESOLVED_sfixed) return BOOLEAN; - - --=========================================================================== - -- Comparison Operators - --=========================================================================== - - function ">" (l, r : UNRESOLVED_ufixed) return BOOLEAN; - function ">" (l, r : UNRESOLVED_sfixed) return BOOLEAN; - function "<" (l, r : UNRESOLVED_ufixed) return BOOLEAN; - function "<" (l, r : UNRESOLVED_sfixed) return BOOLEAN; - function "<=" (l, r : UNRESOLVED_ufixed) return BOOLEAN; - function "<=" (l, r : UNRESOLVED_sfixed) return BOOLEAN; - function ">=" (l, r : UNRESOLVED_ufixed) return BOOLEAN; - function ">=" (l, r : UNRESOLVED_sfixed) return BOOLEAN; - function "=" (l, r : UNRESOLVED_ufixed) return BOOLEAN; - function "=" (l, r : UNRESOLVED_sfixed) return BOOLEAN; - function "/=" (l, r : UNRESOLVED_ufixed) return BOOLEAN; - function "/=" (l, r : UNRESOLVED_sfixed) return BOOLEAN; - - function \?=\ (l, r : UNRESOLVED_ufixed) return STD_ULOGIC; - function \?/=\ (l, r : UNRESOLVED_ufixed) return STD_ULOGIC; - function \?>\ (l, r : UNRESOLVED_ufixed) return STD_ULOGIC; - function \?>=\ (l, r : UNRESOLVED_ufixed) return STD_ULOGIC; - function \?<\ (l, r : UNRESOLVED_ufixed) return STD_ULOGIC; - function \?<=\ (l, r : UNRESOLVED_ufixed) return STD_ULOGIC; - function \?=\ (l, r : UNRESOLVED_sfixed) return STD_ULOGIC; - function \?/=\ (l, r : UNRESOLVED_sfixed) return STD_ULOGIC; - function \?>\ (l, r : UNRESOLVED_sfixed) return STD_ULOGIC; - function \?>=\ (l, r : UNRESOLVED_sfixed) return STD_ULOGIC; - function \?<\ (l, r : UNRESOLVED_sfixed) return STD_ULOGIC; - function \?<=\ (l, r : UNRESOLVED_sfixed) return STD_ULOGIC; - - function std_match (l, r : UNRESOLVED_ufixed) return BOOLEAN; - function std_match (l, r : UNRESOLVED_sfixed) return BOOLEAN; - - -- Overloads the default "maximum" and "minimum" function - - function maximum (l, r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - function minimum (l, r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - function maximum (l, r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - function minimum (l, r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - ---------------------------------------------------------------------------- - -- In these compare functions a natural is converted into a - -- fixed point number of the bounds "maximum(l'high,0) downto 0" - ---------------------------------------------------------------------------- - - function "=" (l : UNRESOLVED_ufixed; r : NATURAL) return BOOLEAN; - function "/=" (l : UNRESOLVED_ufixed; r : NATURAL) return BOOLEAN; - function ">=" (l : UNRESOLVED_ufixed; r : NATURAL) return BOOLEAN; - function "<=" (l : UNRESOLVED_ufixed; r : NATURAL) return BOOLEAN; - function ">" (l : UNRESOLVED_ufixed; r : NATURAL) return BOOLEAN; - function "<" (l : UNRESOLVED_ufixed; r : NATURAL) return BOOLEAN; - - function "=" (l : NATURAL; r : UNRESOLVED_ufixed) return BOOLEAN; - function "/=" (l : NATURAL; r : UNRESOLVED_ufixed) return BOOLEAN; - function ">=" (l : NATURAL; r : UNRESOLVED_ufixed) return BOOLEAN; - function "<=" (l : NATURAL; r : UNRESOLVED_ufixed) return BOOLEAN; - function ">" (l : NATURAL; r : UNRESOLVED_ufixed) return BOOLEAN; - function "<" (l : NATURAL; r : UNRESOLVED_ufixed) return BOOLEAN; - - function \?=\ (l : UNRESOLVED_ufixed; r : NATURAL) return STD_ULOGIC; - function \?/=\ (l : UNRESOLVED_ufixed; r : NATURAL) return STD_ULOGIC; - function \?>=\ (l : UNRESOLVED_ufixed; r : NATURAL) return STD_ULOGIC; - function \?<=\ (l : UNRESOLVED_ufixed; r : NATURAL) return STD_ULOGIC; - function \?>\ (l : UNRESOLVED_ufixed; r : NATURAL) return STD_ULOGIC; - function \?<\ (l : UNRESOLVED_ufixed; r : NATURAL) return STD_ULOGIC; - - function \?=\ (l : NATURAL; r : UNRESOLVED_ufixed) return STD_ULOGIC; - function \?/=\ (l : NATURAL; r : UNRESOLVED_ufixed) return STD_ULOGIC; - function \?>=\ (l : NATURAL; r : UNRESOLVED_ufixed) return STD_ULOGIC; - function \?<=\ (l : NATURAL; r : UNRESOLVED_ufixed) return STD_ULOGIC; - function \?>\ (l : NATURAL; r : UNRESOLVED_ufixed) return STD_ULOGIC; - function \?<\ (l : NATURAL; r : UNRESOLVED_ufixed) return STD_ULOGIC; - - function maximum (l : UNRESOLVED_ufixed; r : NATURAL) - return UNRESOLVED_ufixed; - function minimum (l : UNRESOLVED_ufixed; r : NATURAL) - return UNRESOLVED_ufixed; - function maximum (l : NATURAL; r : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed; - function minimum (l : NATURAL; r : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed; - ---------------------------------------------------------------------------- - -- In these compare functions a real is converted into a - -- fixed point number of the bounds "l'high+1 downto l'low" - ---------------------------------------------------------------------------- - - function "=" (l : UNRESOLVED_ufixed; r : REAL) return BOOLEAN; - function "/=" (l : UNRESOLVED_ufixed; r : REAL) return BOOLEAN; - function ">=" (l : UNRESOLVED_ufixed; r : REAL) return BOOLEAN; - function "<=" (l : UNRESOLVED_ufixed; r : REAL) return BOOLEAN; - function ">" (l : UNRESOLVED_ufixed; r : REAL) return BOOLEAN; - function "<" (l : UNRESOLVED_ufixed; r : REAL) return BOOLEAN; - - function "=" (l : REAL; r : UNRESOLVED_ufixed) return BOOLEAN; - function "/=" (l : REAL; r : UNRESOLVED_ufixed) return BOOLEAN; - function ">=" (l : REAL; r : UNRESOLVED_ufixed) return BOOLEAN; - function "<=" (l : REAL; r : UNRESOLVED_ufixed) return BOOLEAN; - function ">" (l : REAL; r : UNRESOLVED_ufixed) return BOOLEAN; - function "<" (l : REAL; r : UNRESOLVED_ufixed) return BOOLEAN; - - function \?=\ (l : UNRESOLVED_ufixed; r : REAL) return STD_ULOGIC; - function \?/=\ (l : UNRESOLVED_ufixed; r : REAL) return STD_ULOGIC; - function \?>=\ (l : UNRESOLVED_ufixed; r : REAL) return STD_ULOGIC; - function \?<=\ (l : UNRESOLVED_ufixed; r : REAL) return STD_ULOGIC; - function \?>\ (l : UNRESOLVED_ufixed; r : REAL) return STD_ULOGIC; - function \?<\ (l : UNRESOLVED_ufixed; r : REAL) return STD_ULOGIC; - - function \?=\ (l : REAL; r : UNRESOLVED_ufixed) return STD_ULOGIC; - function \?/=\ (l : REAL; r : UNRESOLVED_ufixed) return STD_ULOGIC; - function \?>=\ (l : REAL; r : UNRESOLVED_ufixed) return STD_ULOGIC; - function \?<=\ (l : REAL; r : UNRESOLVED_ufixed) return STD_ULOGIC; - function \?>\ (l : REAL; r : UNRESOLVED_ufixed) return STD_ULOGIC; - function \?<\ (l : REAL; r : UNRESOLVED_ufixed) return STD_ULOGIC; - - function maximum (l : UNRESOLVED_ufixed; r : REAL) return UNRESOLVED_ufixed; - function maximum (l : REAL; r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - function minimum (l : UNRESOLVED_ufixed; r : REAL) return UNRESOLVED_ufixed; - function minimum (l : REAL; r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - ---------------------------------------------------------------------------- - -- In these compare functions an integer is converted into a - -- fixed point number of the bounds "maximum(l'high,1) downto 0" - ---------------------------------------------------------------------------- - - function "=" (l : UNRESOLVED_sfixed; r : INTEGER) return BOOLEAN; - function "/=" (l : UNRESOLVED_sfixed; r : INTEGER) return BOOLEAN; - function ">=" (l : UNRESOLVED_sfixed; r : INTEGER) return BOOLEAN; - function "<=" (l : UNRESOLVED_sfixed; r : INTEGER) return BOOLEAN; - function ">" (l : UNRESOLVED_sfixed; r : INTEGER) return BOOLEAN; - function "<" (l : UNRESOLVED_sfixed; r : INTEGER) return BOOLEAN; - - function "=" (l : INTEGER; r : UNRESOLVED_sfixed) return BOOLEAN; - function "/=" (l : INTEGER; r : UNRESOLVED_sfixed) return BOOLEAN; - function ">=" (l : INTEGER; r : UNRESOLVED_sfixed) return BOOLEAN; - function "<=" (l : INTEGER; r : UNRESOLVED_sfixed) return BOOLEAN; - function ">" (l : INTEGER; r : UNRESOLVED_sfixed) return BOOLEAN; - function "<" (l : INTEGER; r : UNRESOLVED_sfixed) return BOOLEAN; - - function \?=\ (l : UNRESOLVED_sfixed; r : INTEGER) return STD_ULOGIC; - function \?/=\ (l : UNRESOLVED_sfixed; r : INTEGER) return STD_ULOGIC; - function \?>=\ (l : UNRESOLVED_sfixed; r : INTEGER) return STD_ULOGIC; - function \?<=\ (l : UNRESOLVED_sfixed; r : INTEGER) return STD_ULOGIC; - function \?>\ (l : UNRESOLVED_sfixed; r : INTEGER) return STD_ULOGIC; - function \?<\ (l : UNRESOLVED_sfixed; r : INTEGER) return STD_ULOGIC; - - function \?=\ (l : INTEGER; r : UNRESOLVED_sfixed) return STD_ULOGIC; - function \?/=\ (l : INTEGER; r : UNRESOLVED_sfixed) return STD_ULOGIC; - function \?>=\ (l : INTEGER; r : UNRESOLVED_sfixed) return STD_ULOGIC; - function \?<=\ (l : INTEGER; r : UNRESOLVED_sfixed) return STD_ULOGIC; - function \?>\ (l : INTEGER; r : UNRESOLVED_sfixed) return STD_ULOGIC; - function \?<\ (l : INTEGER; r : UNRESOLVED_sfixed) return STD_ULOGIC; - - function maximum (l : UNRESOLVED_sfixed; r : INTEGER) - return UNRESOLVED_sfixed; - function maximum (l : INTEGER; r : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed; - function minimum (l : UNRESOLVED_sfixed; r : INTEGER) - return UNRESOLVED_sfixed; - function minimum (l : INTEGER; r : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed; - ---------------------------------------------------------------------------- - -- In these compare functions a real is converted into a - -- fixed point number of the bounds "l'high+1 downto l'low" - ---------------------------------------------------------------------------- - - function "=" (l : UNRESOLVED_sfixed; r : REAL) return BOOLEAN; - function "/=" (l : UNRESOLVED_sfixed; r : REAL) return BOOLEAN; - function ">=" (l : UNRESOLVED_sfixed; r : REAL) return BOOLEAN; - function "<=" (l : UNRESOLVED_sfixed; r : REAL) return BOOLEAN; - function ">" (l : UNRESOLVED_sfixed; r : REAL) return BOOLEAN; - function "<" (l : UNRESOLVED_sfixed; r : REAL) return BOOLEAN; - - function "=" (l : REAL; r : UNRESOLVED_sfixed) return BOOLEAN; - function "/=" (l : REAL; r : UNRESOLVED_sfixed) return BOOLEAN; - function ">=" (l : REAL; r : UNRESOLVED_sfixed) return BOOLEAN; - function "<=" (l : REAL; r : UNRESOLVED_sfixed) return BOOLEAN; - function ">" (l : REAL; r : UNRESOLVED_sfixed) return BOOLEAN; - function "<" (l : REAL; r : UNRESOLVED_sfixed) return BOOLEAN; - - function \?=\ (l : UNRESOLVED_sfixed; r : REAL) return STD_ULOGIC; - function \?/=\ (l : UNRESOLVED_sfixed; r : REAL) return STD_ULOGIC; - function \?>=\ (l : UNRESOLVED_sfixed; r : REAL) return STD_ULOGIC; - function \?<=\ (l : UNRESOLVED_sfixed; r : REAL) return STD_ULOGIC; - function \?>\ (l : UNRESOLVED_sfixed; r : REAL) return STD_ULOGIC; - function \?<\ (l : UNRESOLVED_sfixed; r : REAL) return STD_ULOGIC; - - function \?=\ (l : REAL; r : UNRESOLVED_sfixed) return STD_ULOGIC; - function \?/=\ (l : REAL; r : UNRESOLVED_sfixed) return STD_ULOGIC; - function \?>=\ (l : REAL; r : UNRESOLVED_sfixed) return STD_ULOGIC; - function \?<=\ (l : REAL; r : UNRESOLVED_sfixed) return STD_ULOGIC; - function \?>\ (l : REAL; r : UNRESOLVED_sfixed) return STD_ULOGIC; - function \?<\ (l : REAL; r : UNRESOLVED_sfixed) return STD_ULOGIC; - - function maximum (l : UNRESOLVED_sfixed; r : REAL) return UNRESOLVED_sfixed; - function maximum (l : REAL; r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - function minimum (l : UNRESOLVED_sfixed; r : REAL) return UNRESOLVED_sfixed; - function minimum (l : REAL; r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - --=========================================================================== - -- Shift and Rotate Functions. - -- Note that sra and sla are not the same as the BIT_VECTOR version - --=========================================================================== - - function "sll" (ARG : UNRESOLVED_ufixed; COUNT : INTEGER) - return UNRESOLVED_ufixed; - function "srl" (ARG : UNRESOLVED_ufixed; COUNT : INTEGER) - return UNRESOLVED_ufixed; - function "rol" (ARG : UNRESOLVED_ufixed; COUNT : INTEGER) - return UNRESOLVED_ufixed; - function "ror" (ARG : UNRESOLVED_ufixed; COUNT : INTEGER) - return UNRESOLVED_ufixed; - function "sla" (ARG : UNRESOLVED_ufixed; COUNT : INTEGER) - return UNRESOLVED_ufixed; - function "sra" (ARG : UNRESOLVED_ufixed; COUNT : INTEGER) - return UNRESOLVED_ufixed; - function "sll" (ARG : UNRESOLVED_sfixed; COUNT : INTEGER) - return UNRESOLVED_sfixed; - function "srl" (ARG : UNRESOLVED_sfixed; COUNT : INTEGER) - return UNRESOLVED_sfixed; - function "rol" (ARG : UNRESOLVED_sfixed; COUNT : INTEGER) - return UNRESOLVED_sfixed; - function "ror" (ARG : UNRESOLVED_sfixed; COUNT : INTEGER) - return UNRESOLVED_sfixed; - function "sla" (ARG : UNRESOLVED_sfixed; COUNT : INTEGER) - return UNRESOLVED_sfixed; - function "sra" (ARG : UNRESOLVED_sfixed; COUNT : INTEGER) - return UNRESOLVED_sfixed; - function SHIFT_LEFT (ARG : UNRESOLVED_ufixed; COUNT : NATURAL) - return UNRESOLVED_ufixed; - function SHIFT_RIGHT (ARG : UNRESOLVED_ufixed; COUNT : NATURAL) - return UNRESOLVED_ufixed; - function SHIFT_LEFT (ARG : UNRESOLVED_sfixed; COUNT : NATURAL) - return UNRESOLVED_sfixed; - function SHIFT_RIGHT (ARG : UNRESOLVED_sfixed; COUNT : NATURAL) - return UNRESOLVED_sfixed; - - ---------------------------------------------------------------------------- - -- logical functions - ---------------------------------------------------------------------------- - - function "not" (l : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - function "and" (l, r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - function "or" (l, r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - function "nand" (l, r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - function "nor" (l, r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - function "xor" (l, r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - function "xnor" (l, r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - function "not" (l : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - function "and" (l, r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - function "or" (l, r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - function "nand" (l, r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - function "nor" (l, r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - function "xor" (l, r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - function "xnor" (l, r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- Vector and std_ulogic functions, same as functions in numeric_std - function "and" (l : STD_ULOGIC; r : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed; - function "and" (l : UNRESOLVED_ufixed; r : STD_ULOGIC) - return UNRESOLVED_ufixed; - function "or" (l : STD_ULOGIC; r : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed; - function "or" (l : UNRESOLVED_ufixed; r : STD_ULOGIC) - return UNRESOLVED_ufixed; - function "nand" (l : STD_ULOGIC; r : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed; - function "nand" (l : UNRESOLVED_ufixed; r : STD_ULOGIC) - return UNRESOLVED_ufixed; - function "nor" (l : STD_ULOGIC; r : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed; - function "nor" (l : UNRESOLVED_ufixed; r : STD_ULOGIC) - return UNRESOLVED_ufixed; - function "xor" (l : STD_ULOGIC; r : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed; - function "xor" (l : UNRESOLVED_ufixed; r : STD_ULOGIC) - return UNRESOLVED_ufixed; - function "xnor" (l : STD_ULOGIC; r : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed; - function "xnor" (l : UNRESOLVED_ufixed; r : STD_ULOGIC) - return UNRESOLVED_ufixed; - function "and" (l : STD_ULOGIC; r : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed; - function "and" (l : UNRESOLVED_sfixed; r : STD_ULOGIC) - return UNRESOLVED_sfixed; - function "or" (l : STD_ULOGIC; r : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed; - function "or" (l : UNRESOLVED_sfixed; r : STD_ULOGIC) - return UNRESOLVED_sfixed; - function "nand" (l : STD_ULOGIC; r : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed; - function "nand" (l : UNRESOLVED_sfixed; r : STD_ULOGIC) - return UNRESOLVED_sfixed; - function "nor" (l : STD_ULOGIC; r : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed; - function "nor" (l : UNRESOLVED_sfixed; r : STD_ULOGIC) - return UNRESOLVED_sfixed; - function "xor" (l : STD_ULOGIC; r : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed; - function "xor" (l : UNRESOLVED_sfixed; r : STD_ULOGIC) - return UNRESOLVED_sfixed; - function "xnor" (l : STD_ULOGIC; r : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed; - function "xnor" (l : UNRESOLVED_sfixed; r : STD_ULOGIC) - return UNRESOLVED_sfixed; - - -- Reduction operators, same as numeric_std functions - function and_reduce (l : UNRESOLVED_ufixed) return STD_ULOGIC; - function nand_reduce (l : UNRESOLVED_ufixed) return STD_ULOGIC; - function or_reduce (l : UNRESOLVED_ufixed) return STD_ULOGIC; - function nor_reduce (l : UNRESOLVED_ufixed) return STD_ULOGIC; - function xor_reduce (l : UNRESOLVED_ufixed) return STD_ULOGIC; - function xnor_reduce (l : UNRESOLVED_ufixed) return STD_ULOGIC; - function and_reduce (l : UNRESOLVED_sfixed) return STD_ULOGIC; - function nand_reduce (l : UNRESOLVED_sfixed) return STD_ULOGIC; - function or_reduce (l : UNRESOLVED_sfixed) return STD_ULOGIC; - function nor_reduce (l : UNRESOLVED_sfixed) return STD_ULOGIC; - function xor_reduce (l : UNRESOLVED_sfixed) return STD_ULOGIC; - function xnor_reduce (l : UNRESOLVED_sfixed) return STD_ULOGIC; - - -- returns arg'low-1 if not found - function find_leftmost (arg : UNRESOLVED_ufixed; y : STD_ULOGIC) - return INTEGER; - function find_leftmost (arg : UNRESOLVED_sfixed; y : STD_ULOGIC) - return INTEGER; - - -- returns arg'high+1 if not found - function find_rightmost (arg : UNRESOLVED_ufixed; y : STD_ULOGIC) - return INTEGER; - function find_rightmost (arg : UNRESOLVED_sfixed; y : STD_ULOGIC) - return INTEGER; - - --=========================================================================== - -- RESIZE Functions - --=========================================================================== - -- resizes the number (larger or smaller) - -- The returned result will be ufixed (left_index downto right_index) - -- If "round_style" is fixed_round, then the result will be rounded. - -- If the MSB of the remainder is a "1" AND the LSB of the unrounded result - -- is a '1' or the lower bits of the remainder include a '1' then the result - -- will be increased by the smallest representable number for that type. - -- "overflow_style" can be fixed_saturate or fixed_wrap. - -- In saturate mode, if the number overflows then the largest possible - -- representable number is returned. If wrap mode, then the upper bits - -- of the number are truncated. - - function resize ( - arg : UNRESOLVED_ufixed; -- input - constant left_index : INTEGER; -- integer portion - constant right_index : INTEGER; -- size of fraction - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_ufixed; - - -- "size_res" functions create the size of the output from the indices - -- of the "size_res" input. The actual value of "size_res" is not used. - function resize ( - arg : UNRESOLVED_ufixed; -- input - size_res : UNRESOLVED_ufixed; -- for size only - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_ufixed; - - -- Note that in "wrap" mode the sign bit is not replicated. Thus the - -- resize of a negative number can have a positive result in wrap mode. - function resize ( - arg : UNRESOLVED_sfixed; -- input - constant left_index : INTEGER; -- integer portion - constant right_index : INTEGER; -- size of fraction - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_sfixed; - - function resize ( - arg : UNRESOLVED_sfixed; -- input - size_res : UNRESOLVED_sfixed; -- for size only - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_sfixed; - - --=========================================================================== - -- Conversion Functions - --=========================================================================== - - -- integer (natural) to unsigned fixed point. - -- arguments are the upper and lower bounds of the number, thus - -- ufixed (7 downto -3) <= to_ufixed (int, 7, -3); - function to_ufixed ( - arg : NATURAL; -- integer - constant left_index : INTEGER; -- left index (high index) - constant right_index : INTEGER := 0; -- right index - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_ufixed; - - function to_ufixed ( - arg : NATURAL; -- integer - size_res : UNRESOLVED_ufixed; -- for size only - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_ufixed; - - -- real to unsigned fixed point - function to_ufixed ( - arg : REAL; -- real - constant left_index : INTEGER; -- left index (high index) - constant right_index : INTEGER; -- right index - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style; - constant guard_bits : NATURAL := fixed_guard_bits) - return UNRESOLVED_ufixed; - - function to_ufixed ( - arg : REAL; -- real - size_res : UNRESOLVED_ufixed; -- for size only - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style; - constant guard_bits : NATURAL := fixed_guard_bits) - return UNRESOLVED_ufixed; - - -- unsigned to unsigned fixed point - function to_ufixed ( - arg : UNSIGNED; -- unsigned - constant left_index : INTEGER; -- left index (high index) - constant right_index : INTEGER := 0; -- right index - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_ufixed; - - function to_ufixed ( - arg : UNSIGNED; -- unsigned - size_res : UNRESOLVED_ufixed; -- for size only - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_ufixed; - - -- Performs a conversion. ufixed (arg'range) is returned - function to_ufixed ( - arg : UNSIGNED) -- unsigned - return UNRESOLVED_ufixed; - - -- unsigned fixed point to unsigned - function to_unsigned ( - arg : UNRESOLVED_ufixed; -- fixed point input - constant size : NATURAL; -- length of output - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNSIGNED; - - -- unsigned fixed point to unsigned - function to_unsigned ( - arg : UNRESOLVED_ufixed; -- fixed point input - size_res : UNSIGNED; -- used for length of output - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNSIGNED; - - -- unsigned fixed point to real - function to_real ( - arg : UNRESOLVED_ufixed) -- fixed point input - return REAL; - - -- unsigned fixed point to integer - function to_integer ( - arg : UNRESOLVED_ufixed; -- fixed point input - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return NATURAL; - - -- Integer to UNRESOLVED_sfixed - function to_sfixed ( - arg : INTEGER; -- integer - constant left_index : INTEGER; -- left index (high index) - constant right_index : INTEGER := 0; -- right index - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_sfixed; - - function to_sfixed ( - arg : INTEGER; -- integer - size_res : UNRESOLVED_sfixed; -- for size only - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_sfixed; - - -- Real to sfixed - function to_sfixed ( - arg : REAL; -- real - constant left_index : INTEGER; -- left index (high index) - constant right_index : INTEGER; -- right index - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style; - constant guard_bits : NATURAL := fixed_guard_bits) - return UNRESOLVED_sfixed; - - function to_sfixed ( - arg : REAL; -- real - size_res : UNRESOLVED_sfixed; -- for size only - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style; - constant guard_bits : NATURAL := fixed_guard_bits) - return UNRESOLVED_sfixed; - - -- signed to sfixed - function to_sfixed ( - arg : SIGNED; -- signed - constant left_index : INTEGER; -- left index (high index) - constant right_index : INTEGER := 0; -- right index - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_sfixed; - - function to_sfixed ( - arg : SIGNED; -- signed - size_res : UNRESOLVED_sfixed; -- for size only - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_sfixed; - - -- signed to sfixed (output assumed to be size of signed input) - function to_sfixed ( - arg : SIGNED) -- signed - return UNRESOLVED_sfixed; - - -- Conversion from ufixed to sfixed - function to_sfixed ( - arg : UNRESOLVED_ufixed) - return UNRESOLVED_sfixed; - - -- signed fixed point to signed - function to_signed ( - arg : UNRESOLVED_sfixed; -- fixed point input - constant size : NATURAL; -- length of output - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return SIGNED; - - -- signed fixed point to signed - function to_signed ( - arg : UNRESOLVED_sfixed; -- fixed point input - size_res : SIGNED; -- used for length of output - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return SIGNED; - - -- signed fixed point to real - function to_real ( - arg : UNRESOLVED_sfixed) -- fixed point input - return REAL; - - -- signed fixed point to integer - function to_integer ( - arg : UNRESOLVED_sfixed; -- fixed point input - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return INTEGER; - - -- Because of the fairly complicated sizing rules in the fixed point - -- packages these functions are provided to compute the result ranges - -- Example: - -- signal uf1 : ufixed (3 downto -3); - -- signal uf2 : ufixed (4 downto -2); - -- signal uf1multuf2 : ufixed (ufixed_high (3, -3, '*', 4, -2) downto - -- ufixed_low (3, -3, '*', 4, -2)); - -- uf1multuf2 <= uf1 * uf2; - -- Valid characters: '+', '-', '*', '/', 'r' or 'R' (rem), 'm' or 'M' (mod), - -- '1' (reciprocal), 'a' or 'A' (abs), 'n' or 'N' (unary -) - function ufixed_high (left_index, right_index : INTEGER; - operation : CHARACTER := 'X'; - left_index2, right_index2 : INTEGER := 0) - return INTEGER; - - function ufixed_low (left_index, right_index : INTEGER; - operation : CHARACTER := 'X'; - left_index2, right_index2 : INTEGER := 0) - return INTEGER; - - function sfixed_high (left_index, right_index : INTEGER; - operation : CHARACTER := 'X'; - left_index2, right_index2 : INTEGER := 0) - return INTEGER; - - function sfixed_low (left_index, right_index : INTEGER; - operation : CHARACTER := 'X'; - left_index2, right_index2 : INTEGER := 0) - return INTEGER; - - -- Same as above, but using the "size_res" input only for their ranges: - -- signal uf1multuf2 : ufixed (ufixed_high (uf1, '*', uf2) downto - -- ufixed_low (uf1, '*', uf2)); - -- uf1multuf2 <= uf1 * uf2; - -- - function ufixed_high (size_res : UNRESOLVED_ufixed; - operation : CHARACTER := 'X'; - size_res2 : UNRESOLVED_ufixed) - return INTEGER; - - function ufixed_low (size_res : UNRESOLVED_ufixed; - operation : CHARACTER := 'X'; - size_res2 : UNRESOLVED_ufixed) - return INTEGER; - - function sfixed_high (size_res : UNRESOLVED_sfixed; - operation : CHARACTER := 'X'; - size_res2 : UNRESOLVED_sfixed) - return INTEGER; - - function sfixed_low (size_res : UNRESOLVED_sfixed; - operation : CHARACTER := 'X'; - size_res2 : UNRESOLVED_sfixed) - return INTEGER; - - -- purpose: returns a saturated number - function saturate ( - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_ufixed; - - -- purpose: returns a saturated number - function saturate ( - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_sfixed; - - function saturate ( - size_res : UNRESOLVED_ufixed) -- only the size of this is used - return UNRESOLVED_ufixed; - - function saturate ( - size_res : UNRESOLVED_sfixed) -- only the size of this is used - return UNRESOLVED_sfixed; - - --=========================================================================== - -- Translation Functions - --=========================================================================== - - -- maps meta-logical values - function to_01 ( - s : UNRESOLVED_ufixed; -- fixed point input - constant XMAP : STD_ULOGIC := '0') -- Map x to - return UNRESOLVED_ufixed; - - -- maps meta-logical values - function to_01 ( - s : UNRESOLVED_sfixed; -- fixed point input - constant XMAP : STD_ULOGIC := '0') -- Map x to - return UNRESOLVED_sfixed; - - function Is_X (arg : UNRESOLVED_ufixed) return BOOLEAN; - function Is_X (arg : UNRESOLVED_sfixed) return BOOLEAN; - function to_X01 (arg : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - function to_X01 (arg : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - function to_X01Z (arg : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - function to_X01Z (arg : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - function to_UX01 (arg : UNRESOLVED_ufixed) return UNRESOLVED_ufixed; - function to_UX01 (arg : UNRESOLVED_sfixed) return UNRESOLVED_sfixed; - - -- straight vector conversion routines, needed for synthesis. - -- These functions are here so that a std_logic_vector can be - -- converted to and from sfixed and ufixed. Note that you can - -- not convert these vectors because of their negative index. - - function to_slv ( - arg : UNRESOLVED_ufixed) -- fixed point vector - return STD_LOGIC_VECTOR; --- alias to_StdLogicVector is to_slv [UNRESOLVED_ufixed --- return STD_LOGIC_VECTOR]; --- alias to_Std_Logic_Vector is to_slv [UNRESOLVED_ufixed --- return STD_LOGIC_VECTOR]; - - function to_slv ( - arg : UNRESOLVED_sfixed) -- fixed point vector - return STD_LOGIC_VECTOR; --- alias to_StdLogicVector is to_slv [UNRESOLVED_sfixed --- return STD_LOGIC_VECTOR]; --- alias to_Std_Logic_Vector is to_slv [UNRESOLVED_sfixed --- return STD_LOGIC_VECTOR]; - - function to_sulv ( - arg : UNRESOLVED_ufixed) -- fixed point vector - return STD_ULOGIC_VECTOR; --- alias to_StdULogicVector is to_sulv [UNRESOLVED_ufixed --- return STD_ULOGIC_VECTOR]; --- alias to_Std_ULogic_Vector is to_sulv [UNRESOLVED_ufixed --- return STD_ULOGIC_VECTOR]; - - function to_sulv ( - arg : UNRESOLVED_sfixed) -- fixed point vector - return STD_ULOGIC_VECTOR; --- alias to_StdULogicVector is to_sulv [UNRESOLVED_sfixed --- return STD_ULOGIC_VECTOR]; --- alias to_Std_ULogic_Vector is to_sulv [UNRESOLVED_sfixed --- return STD_ULOGIC_VECTOR]; - - function to_ufixed ( - arg : STD_ULOGIC_VECTOR; -- shifted vector - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_ufixed; - - function to_ufixed ( - arg : STD_ULOGIC_VECTOR; -- shifted vector - size_res : UNRESOLVED_ufixed) -- for size only - return UNRESOLVED_ufixed; - - function to_sfixed ( - arg : STD_ULOGIC_VECTOR; -- shifted vector - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_sfixed; - - function to_sfixed ( - arg : STD_ULOGIC_VECTOR; -- shifted vector - size_res : UNRESOLVED_sfixed) -- for size only - return UNRESOLVED_sfixed; - - -- As a concession to those who use a graphical DSP environment, - -- these functions take parameters in those tools format and create - -- fixed point numbers. These functions are designed to convert from - -- a std_logic_vector to the VHDL fixed point format using the conventions - -- of these packages. In a pure VHDL environment you should use the - -- "to_ufixed" and "to_sfixed" routines. - - -- unsigned fixed point - function to_UFix ( - arg : STD_ULOGIC_VECTOR; - width : NATURAL; -- width of vector - fraction : NATURAL) -- width of fraction - return UNRESOLVED_ufixed; - - -- signed fixed point - function to_SFix ( - arg : STD_ULOGIC_VECTOR; - width : NATURAL; -- width of vector - fraction : NATURAL) -- width of fraction - return UNRESOLVED_sfixed; - - -- finding the bounds of a number. These functions can be used like this: - -- signal xxx : ufixed (7 downto -3); - -- -- Which is the same as "ufixed (UFix_high (11,3) downto UFix_low(11,3))" - -- signal yyy : ufixed (UFix_high (11, 3, "+", 11, 3) - -- downto UFix_low(11, 3, "+", 11, 3)); - -- Where "11" is the width of xxx (xxx'length), - -- and 3 is the lower bound (abs (xxx'low)) - -- In a pure VHDL environment use "ufixed_high" and "ufixed_low" - - function UFix_high (width, fraction : NATURAL; - operation : CHARACTER := 'X'; - width2, fraction2 : NATURAL := 0) - return INTEGER; - - function UFix_low (width, fraction : NATURAL; - operation : CHARACTER := 'X'; - width2, fraction2 : NATURAL := 0) - return INTEGER; - - -- Same as above but for signed fixed point. Note that the width - -- of a signed fixed point number ignores the sign bit, thus - -- width = sxxx'length-1 - - function SFix_high (width, fraction : NATURAL; - operation : CHARACTER := 'X'; - width2, fraction2 : NATURAL := 0) - return INTEGER; - - function SFix_low (width, fraction : NATURAL; - operation : CHARACTER := 'X'; - width2, fraction2 : NATURAL := 0) - return INTEGER; --- rtl_synthesis off --- pragma synthesis_off - --=========================================================================== - -- string and textio Functions - --=========================================================================== - - -- purpose: writes fixed point into a line - procedure WRITE ( - L : inout LINE; -- input line - VALUE : in UNRESOLVED_ufixed; -- fixed point input - JUSTIFIED : in SIDE := right; - FIELD : in WIDTH := 0); - - -- purpose: writes fixed point into a line - procedure WRITE ( - L : inout LINE; -- input line - VALUE : in UNRESOLVED_sfixed; -- fixed point input - JUSTIFIED : in SIDE := right; - FIELD : in WIDTH := 0); - - procedure READ(L : inout LINE; - VALUE : out UNRESOLVED_ufixed); - - procedure READ(L : inout LINE; - VALUE : out UNRESOLVED_ufixed; - GOOD : out BOOLEAN); - - procedure READ(L : inout LINE; - VALUE : out UNRESOLVED_sfixed); - - procedure READ(L : inout LINE; - VALUE : out UNRESOLVED_sfixed; - GOOD : out BOOLEAN); - - alias bwrite is WRITE [LINE, UNRESOLVED_ufixed, SIDE, width]; - alias bwrite is WRITE [LINE, UNRESOLVED_sfixed, SIDE, width]; - alias bread is READ [LINE, UNRESOLVED_ufixed]; - alias bread is READ [LINE, UNRESOLVED_ufixed, BOOLEAN]; - alias bread is READ [LINE, UNRESOLVED_sfixed]; - alias bread is READ [LINE, UNRESOLVED_sfixed, BOOLEAN]; - alias BINARY_WRITE is WRITE [LINE, UNRESOLVED_ufixed, SIDE, width]; - alias BINARY_WRITE is WRITE [LINE, UNRESOLVED_sfixed, SIDE, width]; - alias BINARY_READ is READ [LINE, UNRESOLVED_ufixed, BOOLEAN]; - alias BINARY_READ is READ [LINE, UNRESOLVED_ufixed]; - alias BINARY_READ is READ [LINE, UNRESOLVED_sfixed, BOOLEAN]; - alias BINARY_READ is READ [LINE, UNRESOLVED_sfixed]; - - -- octal read and write - procedure OWRITE ( - L : inout LINE; -- input line - VALUE : in UNRESOLVED_ufixed; -- fixed point input - JUSTIFIED : in SIDE := right; - FIELD : in WIDTH := 0); - - procedure OWRITE ( - L : inout LINE; -- input line - VALUE : in UNRESOLVED_sfixed; -- fixed point input - JUSTIFIED : in SIDE := right; - FIELD : in WIDTH := 0); - - procedure OREAD(L : inout LINE; - VALUE : out UNRESOLVED_ufixed); - - procedure OREAD(L : inout LINE; - VALUE : out UNRESOLVED_ufixed; - GOOD : out BOOLEAN); - - procedure OREAD(L : inout LINE; - VALUE : out UNRESOLVED_sfixed); - - procedure OREAD(L : inout LINE; - VALUE : out UNRESOLVED_sfixed; - GOOD : out BOOLEAN); - alias OCTAL_READ is OREAD [LINE, UNRESOLVED_ufixed, BOOLEAN]; - alias OCTAL_READ is OREAD [LINE, UNRESOLVED_ufixed]; - alias OCTAL_READ is OREAD [LINE, UNRESOLVED_sfixed, BOOLEAN]; - alias OCTAL_READ is OREAD [LINE, UNRESOLVED_sfixed]; - alias OCTAL_WRITE is OWRITE [LINE, UNRESOLVED_ufixed, SIDE, WIDTH]; - alias OCTAL_WRITE is OWRITE [LINE, UNRESOLVED_sfixed, SIDE, WIDTH]; - - -- hex read and write - procedure HWRITE ( - L : inout LINE; -- input line - VALUE : in UNRESOLVED_ufixed; -- fixed point input - JUSTIFIED : in SIDE := right; - FIELD : in WIDTH := 0); - - -- purpose: writes fixed point into a line - procedure HWRITE ( - L : inout LINE; -- input line - VALUE : in UNRESOLVED_sfixed; -- fixed point input - JUSTIFIED : in SIDE := right; - FIELD : in WIDTH := 0); - - procedure HREAD(L : inout LINE; - VALUE : out UNRESOLVED_ufixed); - - procedure HREAD(L : inout LINE; - VALUE : out UNRESOLVED_ufixed; - GOOD : out BOOLEAN); - - procedure HREAD(L : inout LINE; - VALUE : out UNRESOLVED_sfixed); - - procedure HREAD(L : inout LINE; - VALUE : out UNRESOLVED_sfixed; - GOOD : out BOOLEAN); - alias HEX_READ is HREAD [LINE, UNRESOLVED_ufixed, BOOLEAN]; - alias HEX_READ is HREAD [LINE, UNRESOLVED_sfixed, BOOLEAN]; - alias HEX_READ is HREAD [LINE, UNRESOLVED_ufixed]; - alias HEX_READ is HREAD [LINE, UNRESOLVED_sfixed]; - alias HEX_WRITE is HWRITE [LINE, UNRESOLVED_ufixed, SIDE, WIDTH]; - alias HEX_WRITE is HWRITE [LINE, UNRESOLVED_sfixed, SIDE, WIDTH]; - - -- returns a string, useful for: - -- assert (x = y) report "error found " & to_string(x) severity error; - function to_string (value : UNRESOLVED_ufixed) return STRING; - alias to_bstring is to_string [UNRESOLVED_ufixed return STRING]; - alias TO_BINARY_STRING is TO_STRING [UNRESOLVED_ufixed return STRING]; - - function to_ostring (value : UNRESOLVED_ufixed) return STRING; - alias TO_OCTAL_STRING is TO_OSTRING [UNRESOLVED_ufixed return STRING]; - - function to_hstring (value : UNRESOLVED_ufixed) return STRING; - alias TO_HEX_STRING is TO_HSTRING [UNRESOLVED_ufixed return STRING]; - - function to_string (value : UNRESOLVED_sfixed) return STRING; - alias to_bstring is to_string [UNRESOLVED_sfixed return STRING]; - alias TO_BINARY_STRING is TO_STRING [UNRESOLVED_sfixed return STRING]; - - function to_ostring (value : UNRESOLVED_sfixed) return STRING; - alias TO_OCTAL_STRING is TO_OSTRING [UNRESOLVED_sfixed return STRING]; - - function to_hstring (value : UNRESOLVED_sfixed) return STRING; - alias TO_HEX_STRING is TO_HSTRING [UNRESOLVED_sfixed return STRING]; - - -- From string functions allow you to convert a string into a fixed - -- point number. Example: - -- signal uf1 : ufixed (3 downto -3); - -- uf1 <= from_string ("0110.100", uf1'high, uf1'low); -- 6.5 - -- The "." is optional in this syntax, however it exist and is - -- in the wrong location an error is produced. Overflow will - -- result in saturation. - - function from_string ( - bstring : STRING; -- binary string - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_ufixed; - alias from_bstring is from_string [STRING, INTEGER, INTEGER - return UNRESOLVED_ufixed]; - alias from_binary_string is from_string [STRING, INTEGER, INTEGER - return UNRESOLVED_ufixed]; - - -- Octal and hex conversions work as follows: - -- uf1 <= from_hstring ("6.8", 3, -3); -- 6.5 (bottom zeros dropped) - -- uf1 <= from_ostring ("06.4", 3, -3); -- 6.5 (top zeros dropped) - - function from_ostring ( - ostring : STRING; -- Octal string - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_ufixed; - alias from_octal_string is from_ostring [STRING, INTEGER, INTEGER - return UNRESOLVED_ufixed]; - - function from_hstring ( - hstring : STRING; -- hex string - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_ufixed; - alias from_hex_string is from_hstring [STRING, INTEGER, INTEGER - return UNRESOLVED_ufixed]; - - function from_string ( - bstring : STRING; -- binary string - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_sfixed; - alias from_bstring is from_string [STRING, INTEGER, INTEGER - return UNRESOLVED_sfixed]; - alias from_binary_string is from_string [STRING, INTEGER, INTEGER - return UNRESOLVED_sfixed]; - - function from_ostring ( - ostring : STRING; -- Octal string - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_sfixed; - alias from_octal_string is from_ostring [STRING, INTEGER, INTEGER - return UNRESOLVED_sfixed]; - - function from_hstring ( - hstring : STRING; -- hex string - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_sfixed; - alias from_hex_string is from_hstring [STRING, INTEGER, INTEGER - return UNRESOLVED_sfixed]; - - -- Same as above, "size_res" is used for it's range only. - function from_string ( - bstring : STRING; -- binary string - size_res : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed; - alias from_bstring is from_string [STRING, UNRESOLVED_ufixed - return UNRESOLVED_ufixed]; - alias from_binary_string is from_string [STRING, UNRESOLVED_ufixed - return UNRESOLVED_ufixed]; - - function from_ostring ( - ostring : STRING; -- Octal string - size_res : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed; - alias from_octal_string is from_ostring [STRING, UNRESOLVED_ufixed - return UNRESOLVED_ufixed]; - - function from_hstring ( - hstring : STRING; -- hex string - size_res : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed; - alias from_hex_string is from_hstring [STRING, UNRESOLVED_ufixed - return UNRESOLVED_ufixed]; - - function from_string ( - bstring : STRING; -- binary string - size_res : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed; - alias from_bstring is from_string [STRING, UNRESOLVED_sfixed - return UNRESOLVED_sfixed]; - alias from_binary_string is from_string [STRING, UNRESOLVED_sfixed - return UNRESOLVED_sfixed]; - - function from_ostring ( - ostring : STRING; -- Octal string - size_res : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed; - alias from_octal_string is from_ostring [STRING, UNRESOLVED_sfixed - return UNRESOLVED_sfixed]; - - function from_hstring ( - hstring : STRING; -- hex string - size_res : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed; - alias from_hex_string is from_hstring [STRING, UNRESOLVED_sfixed - return UNRESOLVED_sfixed]; - - -- Direct conversion functions. Example: - -- signal uf1 : ufixed (3 downto -3); - -- uf1 <= from_string ("0110.100"); -- 6.5 - -- In this case the "." is not optional, and the size of - -- the output must match exactly. - - function from_string ( - bstring : STRING) -- binary string - return UNRESOLVED_ufixed; - alias from_bstring is from_string [STRING return UNRESOLVED_ufixed]; - alias from_binary_string is from_string [STRING return UNRESOLVED_ufixed]; - - -- Direct octal and hex conversion functions. In this case - -- the string lengths must match. Example: - -- signal sf1 := sfixed (5 downto -3); - -- sf1 <= from_ostring ("71.4") -- -6.5 - - function from_ostring ( - ostring : STRING) -- Octal string - return UNRESOLVED_ufixed; - alias from_octal_string is from_ostring [STRING return UNRESOLVED_ufixed]; - - function from_hstring ( - hstring : STRING) -- hex string - return UNRESOLVED_ufixed; - alias from_hex_string is from_hstring [STRING return UNRESOLVED_ufixed]; - - function from_string ( - bstring : STRING) -- binary string - return UNRESOLVED_sfixed; - alias from_bstring is from_string [STRING return UNRESOLVED_sfixed]; - alias from_binary_string is from_string [STRING return UNRESOLVED_sfixed]; - - function from_ostring ( - ostring : STRING) -- Octal string - return UNRESOLVED_sfixed; - alias from_octal_string is from_ostring [STRING return UNRESOLVED_sfixed]; - - function from_hstring ( - hstring : STRING) -- hex string - return UNRESOLVED_sfixed; - alias from_hex_string is from_hstring [STRING return UNRESOLVED_sfixed]; --- rtl_synthesis on --- pragma synthesis_on - - -- IN VHDL-2006 std_logic_vector is a subtype of std_ulogic_vector, so these - -- extra functions are needed for compatability. - function to_ufixed ( - arg : STD_LOGIC_VECTOR; -- shifted vector - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_ufixed; - - function to_ufixed ( - arg : STD_LOGIC_VECTOR; -- shifted vector - size_res : UNRESOLVED_ufixed) -- for size only - return UNRESOLVED_ufixed; - - function to_sfixed ( - arg : STD_LOGIC_VECTOR; -- shifted vector - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_sfixed; - - function to_sfixed ( - arg : STD_LOGIC_VECTOR; -- shifted vector - size_res : UNRESOLVED_sfixed) -- for size only - return UNRESOLVED_sfixed; - - -- unsigned fixed point - function to_UFix ( - arg : STD_LOGIC_VECTOR; - width : NATURAL; -- width of vector - fraction : NATURAL) -- width of fraction - return UNRESOLVED_ufixed; - - -- signed fixed point - function to_SFix ( - arg : STD_LOGIC_VECTOR; - width : NATURAL; -- width of vector - fraction : NATURAL) -- width of fraction - return UNRESOLVED_sfixed; - -end package fixed_pkg; -------------------------------------------------------------------------------- --- Proposed package body for the VHDL-200x-FT fixed_pkg package --- (Fixed point math package) --- This package body supplies a recommended implementation of these functions --- Version : $Revision: 1.21 $ --- Date : $Date: 2007/09/26 18:08:53 $ --- --- Created for VHDL-200X-ft, David Bishop (dbishop@vhdl.org) -------------------------------------------------------------------------------- -library IEEE; -use IEEE.MATH_REAL.all; - -package body fixed_pkg is - -- Author David Bishop (dbishop@vhdl.org) - -- Other contributers: Jim Lewis, Yannick Grugni, Ryan W. Hilton - -- null array constants - constant NAUF : UNRESOLVED_ufixed (0 downto 1) := (others => '0'); - constant NASF : UNRESOLVED_sfixed (0 downto 1) := (others => '0'); - constant NSLV : STD_ULOGIC_VECTOR (0 downto 1) := (others => '0'); - - -- This differed constant will tell you if the package body is synthesizable - -- or implemented as real numbers, set to "true" if synthesizable. - constant fixedsynth_or_real : BOOLEAN := true; - - -- %%% Replicated functions - function maximum ( - l, r : integer) -- inputs - return integer is - begin -- function max - if l > r then return l; - else return r; - end if; - end function maximum; - - function minimum ( - l, r : integer) -- inputs - return integer is - begin -- function min - if l > r then return r; - else return l; - end if; - end function minimum; - - function "sra" (arg : SIGNED; count : INTEGER) - return SIGNED is - begin - if (COUNT >= 0) then - return SHIFT_RIGHT(arg, count); - else - return SHIFT_LEFT(arg, -count); - end if; - end function "sra"; - - function or_reduce (arg : STD_ULOGIC_VECTOR) - return STD_LOGIC is - variable Upper, Lower : STD_ULOGIC; - variable Half : INTEGER; - variable BUS_int : STD_ULOGIC_VECTOR (arg'length - 1 downto 0); - variable Result : STD_ULOGIC; - begin - if (arg'length < 1) then -- In the case of a NULL range - Result := '0'; - else - BUS_int := to_ux01 (arg); - if (BUS_int'length = 1) then - Result := BUS_int (BUS_int'left); - elsif (BUS_int'length = 2) then - Result := BUS_int (BUS_int'right) or BUS_int (BUS_int'left); - else - Half := (BUS_int'length + 1) / 2 + BUS_int'right; - Upper := or_reduce (BUS_int (BUS_int'left downto Half)); - Lower := or_reduce (BUS_int (Half - 1 downto BUS_int'right)); - Result := Upper or Lower; - end if; - end if; - return Result; - end function or_reduce; - - -- purpose: AND all of the bits in a vector together - -- This is a copy of the proposed "and_reduce" from 1076.3 - function and_reduce (arg : STD_ULOGIC_VECTOR) - return STD_LOGIC is - variable Upper, Lower : STD_ULOGIC; - variable Half : INTEGER; - variable BUS_int : STD_ULOGIC_VECTOR (arg'length - 1 downto 0); - variable Result : STD_ULOGIC; - begin - if (arg'length < 1) then -- In the case of a NULL range - Result := '1'; - else - BUS_int := to_ux01 (arg); - if (BUS_int'length = 1) then - Result := BUS_int (BUS_int'left); - elsif (BUS_int'length = 2) then - Result := BUS_int (BUS_int'right) and BUS_int (BUS_int'left); - else - Half := (BUS_int'length + 1) / 2 + BUS_int'right; - Upper := and_reduce (BUS_int (BUS_int'left downto Half)); - Lower := and_reduce (BUS_int (Half - 1 downto BUS_int'right)); - Result := Upper and Lower; - end if; - end if; - return Result; - end function and_reduce; - - function xor_reduce (arg : STD_ULOGIC_VECTOR) return STD_ULOGIC is - variable Upper, Lower : STD_ULOGIC; - variable Half : INTEGER; - variable BUS_int : STD_ULOGIC_VECTOR (arg'length - 1 downto 0); - variable Result : STD_ULOGIC := '0'; -- In the case of a NULL range - begin - if (arg'length >= 1) then - BUS_int := to_ux01 (arg); - if (BUS_int'length = 1) then - Result := BUS_int (BUS_int'left); - elsif (BUS_int'length = 2) then - Result := BUS_int(BUS_int'right) xor BUS_int(BUS_int'left); - else - Half := (BUS_int'length + 1) / 2 + BUS_int'right; - Upper := xor_reduce (BUS_int (BUS_int'left downto Half)); - Lower := xor_reduce (BUS_int (Half - 1 downto BUS_int'right)); - Result := Upper xor Lower; - end if; - end if; - return Result; - end function xor_reduce; - - function nand_reduce(arg : std_ulogic_vector) return STD_ULOGIC is - begin - return not and_reduce (arg); - end function nand_reduce; - function nor_reduce(arg : std_ulogic_vector) return STD_ULOGIC is - begin - return not or_reduce (arg); - end function nor_reduce; - function xnor_reduce(arg : std_ulogic_vector) return STD_ULOGIC is - begin - return not xor_reduce (arg); - end function xnor_reduce; - -- Match table, copied form new std_logic_1164 --- type stdlogic_table is array(STD_ULOGIC, STD_ULOGIC) of STD_ULOGIC; --- constant match_logic_table : stdlogic_table := ( --- ----------------------------------------------------- --- -- U X 0 1 Z W L H - | | --- ----------------------------------------------------- --- ('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', '1'), -- | U | --- ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', '1'), -- | X | --- ('U', 'X', '1', '0', 'X', 'X', '1', '0', '1'), -- | 0 | --- ('U', 'X', '0', '1', 'X', 'X', '0', '1', '1'), -- | 1 | --- ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', '1'), -- | Z | --- ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', '1'), -- | W | --- ('U', 'X', '1', '0', 'X', 'X', '1', '0', '1'), -- | L | --- ('U', 'X', '0', '1', 'X', 'X', '0', '1', '1'), -- | H | --- ('1', '1', '1', '1', '1', '1', '1', '1', '1') -- | - | --- ); - --- constant no_match_logic_table : stdlogic_table := ( --- ----------------------------------------------------- --- -- U X 0 1 Z W L H - | | --- ----------------------------------------------------- --- ('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', '0'), -- | U | --- ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', '0'), -- | X | --- ('U', 'X', '0', '1', 'X', 'X', '0', '1', '0'), -- | 0 | --- ('U', 'X', '1', '0', 'X', 'X', '1', '0', '0'), -- | 1 | --- ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', '0'), -- | Z | --- ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', '0'), -- | W | --- ('U', 'X', '0', '1', 'X', 'X', '0', '1', '0'), -- | L | --- ('U', 'X', '1', '0', 'X', 'X', '1', '0', '0'), -- | H | --- ('0', '0', '0', '0', '0', '0', '0', '0', '0') -- | - | --- ); - - ------------------------------------------------------------------- - -- ?= functions, Similar to "std_match", but returns "std_ulogic". - ------------------------------------------------------------------- - function \?=\ (l, r : STD_ULOGIC) return STD_ULOGIC is - variable lx, rx : STD_ULOGIC; - begin --- return match_logic_table (l, r); - lx := to_x01(l); - rx := to_x01(r); - if lx = 'X' or rx = 'X' then - return 'X'; - elsif lx = rx then - return '1'; - else - return '0'; - end if; - end function \?=\; - function \?/=\ (l, r : STD_ULOGIC) return STD_ULOGIC is - begin --- return no_match_logic_table (l, r); - return not \?=\ (l, r); - end function \?/=\; - -- "?=" operator is similar to "std_match", but returns a std_ulogic.. - -- Id: M.2B - function \?=\ (L, R: UNSIGNED) return STD_ULOGIC is - constant L_LEFT : INTEGER := L'LENGTH-1; - constant R_LEFT : INTEGER := R'LENGTH-1; - alias XL : UNSIGNED(L_LEFT downto 0) is L; - alias XR : UNSIGNED(R_LEFT downto 0) is R; - constant SIZE : NATURAL := MAXIMUM(L'LENGTH, R'LENGTH); - variable LX : UNSIGNED(SIZE-1 downto 0); - variable RX : UNSIGNED(SIZE-1 downto 0); - variable result, result1 : STD_ULOGIC; -- result - begin - -- Logically identical to an "=" operator. - if ((L'LENGTH < 1) or (R'LENGTH < 1)) then - assert NO_WARNING - report "NUMERIC_STD.""?="": null detected, returning X" - severity warning; - return 'X'; - else - LX := RESIZE(XL, SIZE); - RX := RESIZE(XR, SIZE); - result := '1'; - for i in LX'low to LX'high loop - result1 := \?=\(LX(i), RX(i)); - if result1 = 'U' then - return 'U'; - elsif result1 = 'X' or result = 'X' then - result := 'X'; - else - result := result and result1; - end if; - end loop; - return result; - end if; - end function \?=\; - - -- Id: M.3B - function \?=\ (L, R: SIGNED) return std_ulogic is - constant L_LEFT : INTEGER := L'LENGTH-1; - constant R_LEFT : INTEGER := R'LENGTH-1; - alias XL : SIGNED(L_LEFT downto 0) is L; - alias XR : SIGNED(R_LEFT downto 0) is R; - constant SIZE : NATURAL := MAXIMUM(L'LENGTH, R'LENGTH); - variable LX : SIGNED(SIZE-1 downto 0); - variable RX : SIGNED(SIZE-1 downto 0); - variable result, result1 : STD_ULOGIC; -- result - begin -- ?= - if ((L'LENGTH < 1) or (R'LENGTH < 1)) then - assert NO_WARNING - report "NUMERIC_STD.""?="": null detected, returning X" - severity warning; - return 'X'; - else - LX := RESIZE(XL, SIZE); - RX := RESIZE(XR, SIZE); - result := '1'; - for i in LX'low to LX'high loop - result1 := \?=\ (LX(i), RX(i)); - if result1 = 'U' then - return 'U'; - elsif result1 = 'X' or result = 'X' then - result := 'X'; - else - result := result and result1; - end if; - end loop; - return result; - end if; - end function \?=\; - - function \?/=\ (L, R : UNSIGNED) return std_ulogic is - constant L_LEFT : INTEGER := L'LENGTH-1; - constant R_LEFT : INTEGER := R'LENGTH-1; - alias XL : UNSIGNED(L_LEFT downto 0) is L; - alias XR : UNSIGNED(R_LEFT downto 0) is R; - constant SIZE : NATURAL := MAXIMUM(L'LENGTH, R'LENGTH); - variable LX : UNSIGNED(SIZE-1 downto 0); - variable RX : UNSIGNED(SIZE-1 downto 0); - variable result, result1 : STD_ULOGIC; -- result - begin -- ?= - if ((L'LENGTH < 1) or (R'LENGTH < 1)) then - assert NO_WARNING - report "NUMERIC_STD.""?/="": null detected, returning X" - severity warning; - return 'X'; - else - LX := RESIZE(XL, SIZE); - RX := RESIZE(XR, SIZE); - result := '0'; - for i in LX'low to LX'high loop - result1 := \?/=\ (LX(i), RX(i)); - if result1 = 'U' then - return 'U'; - elsif result1 = 'X' or result = 'X' then - result := 'X'; - else - result := result or result1; - end if; - end loop; - return result; - end if; - end function \?/=\; - - function \?/=\ (L, R : SIGNED) return std_ulogic is - constant L_LEFT : INTEGER := L'LENGTH-1; - constant R_LEFT : INTEGER := R'LENGTH-1; - alias XL : SIGNED(L_LEFT downto 0) is L; - alias XR : SIGNED(R_LEFT downto 0) is R; - constant SIZE : NATURAL := MAXIMUM(L'LENGTH, R'LENGTH); - variable LX : SIGNED(SIZE-1 downto 0); - variable RX : SIGNED(SIZE-1 downto 0); - variable result, result1 : STD_ULOGIC; -- result - begin -- ?= - if ((L'LENGTH < 1) or (R'LENGTH < 1)) then - assert NO_WARNING - report "NUMERIC_STD.""?/="": null detected, returning X" - severity warning; - return 'X'; - else - LX := RESIZE(XL, SIZE); - RX := RESIZE(XR, SIZE); - result := '0'; - for i in LX'low to LX'high loop - result1 := \?/=\ (LX(i), RX(i)); - if result1 = 'U' then - return 'U'; - elsif result1 = 'X' or result = 'X' then - result := 'X'; - else - result := result or result1; - end if; - end loop; - return result; - end if; - end function \?/=\; - - function Is_X ( s : UNSIGNED ) return BOOLEAN is - begin - return Is_X (STD_LOGIC_VECTOR (s)); - end function Is_X; - - function Is_X ( s : SIGNED ) return BOOLEAN is - begin - return Is_X (STD_LOGIC_VECTOR (s)); - end function Is_X; - function \?>\ (L, R : UNSIGNED) return STD_ULOGIC is - begin - if ((l'length < 1) or (r'length < 1)) then - assert NO_WARNING - report "NUMERIC_STD.""?>"": null detected, returning X" - severity warning; - return 'X'; - else - for i in L'range loop - if L(i) = '-' then - report "NUMERIC_STD.""?>"": '-' found in compare string" - severity error; - return 'X'; - end if; - end loop; - for i in R'range loop - if R(i) = '-' then - report "NUMERIC_STD.""?>"": '-' found in compare string" - severity error; - return 'X'; - end if; - end loop; - if is_x(l) or is_x(r) then - return 'X'; - elsif l > r then - return '1'; - else - return '0'; - end if; - end if; - end function \?>\; - -- %%% function "?>" (L, R : UNSIGNED) return std_ulogic is - -- %%% end function "?>"\; - function \?>\ (L, R : SIGNED) return STD_ULOGIC is - begin - if ((l'length < 1) or (r'length < 1)) then - assert NO_WARNING - report "NUMERIC_STD.""?>"": null detected, returning X" - severity warning; - return 'X'; - else - for i in L'range loop - if L(i) = '-' then - report "NUMERIC_STD.""?>"": '-' found in compare string" - severity error; - return 'X'; - end if; - end loop; - for i in R'range loop - if R(i) = '-' then - report "NUMERIC_STD.""?>"": '-' found in compare string" - severity error; - return 'X'; - end if; - end loop; - if is_x(l) or is_x(r) then - return 'X'; - elsif l > r then - return '1'; - else - return '0'; - end if; - end if; - end function \?>\; - function \?>=\ (L, R : UNSIGNED) return STD_ULOGIC is - begin - if ((l'length < 1) or (r'length < 1)) then - assert NO_WARNING - report "NUMERIC_STD.""?>="": null detected, returning X" - severity warning; - return 'X'; - else - for i in L'range loop - if L(i) = '-' then - report "NUMERIC_STD.""?>="": '-' found in compare string" - severity error; - return 'X'; - end if; - end loop; - for i in R'range loop - if R(i) = '-' then - report "NUMERIC_STD.""?>="": '-' found in compare string" - severity error; - return 'X'; - end if; - end loop; - if is_x(l) or is_x(r) then - return 'X'; - elsif l >= r then - return '1'; - else - return '0'; - end if; - end if; - end function \?>=\; - -- %%% function "?>=" (L, R : UNSIGNED) return std_ulogic is - -- %%% end function "?>="; - function \?>=\ (L, R : SIGNED) return STD_ULOGIC is - begin - if ((l'length < 1) or (r'length < 1)) then - assert NO_WARNING - report "NUMERIC_STD.""?>="": null detected, returning X" - severity warning; - return 'X'; - else - for i in L'range loop - if L(i) = '-' then - report "NUMERIC_STD.""?>="": '-' found in compare string" - severity error; - return 'X'; - end if; - end loop; - for i in R'range loop - if R(i) = '-' then - report "NUMERIC_STD.""?>="": '-' found in compare string" - severity error; - return 'X'; - end if; - end loop; - if is_x(l) or is_x(r) then - return 'X'; - elsif l >= r then - return '1'; - else - return '0'; - end if; - end if; - end function \?>=\; - function \?<\ (L, R : UNSIGNED) return STD_ULOGIC is - begin - if ((l'length < 1) or (r'length < 1)) then - assert NO_WARNING - report "NUMERIC_STD.""?<"": null detected, returning X" - severity warning; - return 'X'; - else - for i in L'range loop - if L(i) = '-' then - report "NUMERIC_STD.""?<"": '-' found in compare string" - severity error; - return 'X'; - end if; - end loop; - for i in R'range loop - if R(i) = '-' then - report "NUMERIC_STD.""?<"": '-' found in compare string" - severity error; - return 'X'; - end if; - end loop; - if is_x(l) or is_x(r) then - return 'X'; - elsif l < r then - return '1'; - else - return '0'; - end if; - end if; - end function \?<\; - -- %%% function "?<" (L, R : UNSIGNED) return std_ulogic is - -- %%% end function "?<"; - function \?<\ (L, R : SIGNED) return STD_ULOGIC is - begin - if ((l'length < 1) or (r'length < 1)) then - assert NO_WARNING - report "NUMERIC_STD.""?<"": null detected, returning X" - severity warning; - return 'X'; - else - for i in L'range loop - if L(i) = '-' then - report "NUMERIC_STD.""?<"": '-' found in compare string" - severity error; - return 'X'; - end if; - end loop; - for i in R'range loop - if R(i) = '-' then - report "NUMERIC_STD.""?<"": '-' found in compare string" - severity error; - return 'X'; - end if; - end loop; - if is_x(l) or is_x(r) then - return 'X'; - elsif l < r then - return '1'; - else - return '0'; - end if; - end if; - end function \?<\; - function \?<=\ (L, R : UNSIGNED) return STD_ULOGIC is - begin - if ((l'length < 1) or (r'length < 1)) then - assert NO_WARNING - report "NUMERIC_STD.""?<="": null detected, returning X" - severity warning; - return 'X'; - else - for i in L'range loop - if L(i) = '-' then - report "NUMERIC_STD.""?<="": '-' found in compare string" - severity error; - return 'X'; - end if; - end loop; - for i in R'range loop - if R(i) = '-' then - report "NUMERIC_STD.""?<="": '-' found in compare string" - severity error; - return 'X'; - end if; - end loop; - if is_x(l) or is_x(r) then - return 'X'; - elsif l <= r then - return '1'; - else - return '0'; - end if; - end if; - end function \?<=\; - -- %%% function "?<=" (L, R : UNSIGNED) return std_ulogic is - -- %%% end function "?<="; - function \?<=\ (L, R : SIGNED) return STD_ULOGIC is - begin - if ((l'length < 1) or (r'length < 1)) then - assert NO_WARNING - report "NUMERIC_STD.""?<="": null detected, returning X" - severity warning; - return 'X'; - else - for i in L'range loop - if L(i) = '-' then - report "NUMERIC_STD.""?<="": '-' found in compare string" - severity error; - return 'X'; - end if; - end loop; - for i in R'range loop - if R(i) = '-' then - report "NUMERIC_STD.""?<="": '-' found in compare string" - severity error; - return 'X'; - end if; - end loop; - if is_x(l) or is_x(r) then - return 'X'; - elsif l <= r then - return '1'; - else - return '0'; - end if; - end if; - end function \?<=\; - --- %%% END replicated functions - -- Special version of "minimum" to do some boundary checking without errors - function mins (l, r : INTEGER) - return INTEGER is - begin -- function mins - if (L = INTEGER'low or R = INTEGER'low) then - return 0; -- error condition, silent - end if; - return minimum (L, R); - end function mins; - - -- Special version of "minimum" to do some boundary checking with errors - function mine (l, r : INTEGER) - return INTEGER is - begin -- function mine - if (L = INTEGER'low or R = INTEGER'low) then - report "fixed_pkg:" - & " Unbounded number passed, was a literal used?" - severity error; - return 0; - end if; - return minimum (L, R); - end function mine; - - -- The following functions are used only internally. Every function - -- calls "cleanvec" either directly or indirectly. - -- purpose: Fixes "downto" problem and resolves meta states - function cleanvec ( - arg : UNRESOLVED_sfixed) -- input - return UNRESOLVED_sfixed is - constant left_index : INTEGER := maximum(arg'left, arg'right); - constant right_index : INTEGER := mins(arg'left, arg'right); - variable result : UNRESOLVED_sfixed (arg'range); - begin -- function cleanvec - assert not (arg'ascending and (arg'low /= INTEGER'low)) - report "fixed_pkg:" - & " Vector passed using a ""to"" range, expected is ""downto""" - severity error; - return arg; - end function cleanvec; - - -- purpose: Fixes "downto" problem and resolves meta states - function cleanvec ( - arg : UNRESOLVED_ufixed) -- input - return UNRESOLVED_ufixed is - constant left_index : INTEGER := maximum(arg'left, arg'right); - constant right_index : INTEGER := mins(arg'left, arg'right); - variable result : UNRESOLVED_ufixed (arg'range); - begin -- function cleanvec - assert not (arg'ascending and (arg'low /= INTEGER'low)) - report "fixed_pkg:" - & " Vector passed using a ""to"" range, expected is ""downto""" - severity error; - return arg; - end function cleanvec; - - -- Type convert a "unsigned" into a "ufixed", used internally - function to_fixed ( - arg : UNSIGNED; -- shifted vector - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (left_index downto right_index); - begin -- function to_fixed - result := UNRESOLVED_ufixed(arg); - return result; - end function to_fixed; - - -- Type convert a "signed" into an "sfixed", used internally - function to_fixed ( - arg : SIGNED; -- shifted vector - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (left_index downto right_index); - begin -- function to_fixed - result := UNRESOLVED_sfixed(arg); - return result; - end function to_fixed; - - -- Type convert a "ufixed" into an "unsigned", used internally - function to_uns ( - arg : UNRESOLVED_ufixed) -- fp vector - return UNSIGNED is - subtype t is UNSIGNED(arg'high - arg'low downto 0); - variable slv : t; - begin -- function to_uns - slv := t(arg); - return slv; - end function to_uns; - - -- Type convert an "sfixed" into a "signed", used internally - function to_s ( - arg : UNRESOLVED_sfixed) -- fp vector - return SIGNED is - subtype t is SIGNED(arg'high - arg'low downto 0); - variable slv : t; - begin -- function to_s - slv := t(arg); - return slv; - end function to_s; - - -- adds 1 to the LSB of the number - procedure round_up (arg : in UNRESOLVED_ufixed; - result : out UNRESOLVED_ufixed; - overflowx : out BOOLEAN) is - variable arguns, resuns : UNSIGNED (arg'high-arg'low+1 downto 0) - := (others => '0'); - begin -- round_up - arguns (arguns'high-1 downto 0) := to_uns (arg); - resuns := arguns + 1; - result := to_fixed(resuns(arg'high-arg'low - downto 0), arg'high, arg'low); - overflowx := (resuns(resuns'high) = '1'); - end procedure round_up; - - -- adds 1 to the LSB of the number - procedure round_up (arg : in UNRESOLVED_sfixed; - result : out UNRESOLVED_sfixed; - overflowx : out BOOLEAN) is - variable args, ress : SIGNED (arg'high-arg'low+1 downto 0); - begin -- round_up - args (args'high-1 downto 0) := to_s (arg); - args(args'high) := arg(arg'high); -- sign extend - ress := args + 1; - result := to_fixed(ress (ress'high-1 - downto 0), arg'high, arg'low); - overflowx := ((arg(arg'high) /= ress(ress'high-1)) - and (or_reduce (STD_ULOGIC_VECTOR(ress)) /= '0')); - end procedure round_up; - - -- Rounding - Performs a "round_nearest" (IEEE 754) which rounds up - -- when the remainder is > 0.5. If the remainder IS 0.5 then if the - -- bottom bit is a "1" it is rounded, otherwise it remains the same. - function round_fixed (arg : UNRESOLVED_ufixed; - remainder : UNRESOLVED_ufixed; - overflow_style : fixed_overflow_style_type := fixed_overflow_style) - return UNRESOLVED_ufixed is - variable rounds : BOOLEAN; - variable round_overflow : BOOLEAN; - variable result : UNRESOLVED_ufixed (arg'range); - begin - rounds := false; - if (remainder'length > 1) then - if (remainder (remainder'high) = '1') then - rounds := (arg(arg'low) = '1') - or (or_reduce (to_sulv(remainder(remainder'high-1 downto - remainder'low))) = '1'); - end if; - else - rounds := (arg(arg'low) = '1') and (remainder (remainder'high) = '1'); - end if; - if rounds then - round_up(arg => arg, - result => result, - overflowx => round_overflow); - else - result := arg; - end if; - if (overflow_style = fixed_saturate) and round_overflow then - result := saturate (result'high, result'low); - end if; - return result; - end function round_fixed; - - -- Rounding case statement - function round_fixed (arg : UNRESOLVED_sfixed; - remainder : UNRESOLVED_sfixed; - overflow_style : fixed_overflow_style_type := fixed_overflow_style) - return UNRESOLVED_sfixed is - variable rounds : BOOLEAN; - variable round_overflow : BOOLEAN; - variable result : UNRESOLVED_sfixed (arg'range); - begin - rounds := false; - if (remainder'length > 1) then - if (remainder (remainder'high) = '1') then - rounds := (arg(arg'low) = '1') - or (or_reduce (to_sulv(remainder(remainder'high-1 downto - remainder'low))) = '1'); - end if; - else - rounds := (arg(arg'low) = '1') and (remainder (remainder'high) = '1'); - end if; - if rounds then - round_up(arg => arg, - result => result, - overflowx => round_overflow); - else - result := arg; - end if; - if round_overflow then - if (overflow_style = fixed_saturate) then - if arg(arg'high) = '0' then - result := saturate (result'high, result'low); - else - result := not saturate (result'high, result'low); - end if; - -- Sign bit not fixed when wrapping - end if; - end if; - return result; - end function round_fixed; - - -- converts an sfixed into a ufixed. The output is the same length as the - -- input, because abs("1000") = "1000" = 8. - function to_ufixed ( - arg : UNRESOLVED_sfixed) - return UNRESOLVED_ufixed - is - constant left_index : INTEGER := arg'high; - constant right_index : INTEGER := mine(arg'low, arg'low); - variable xarg : UNRESOLVED_sfixed(left_index+1 downto right_index); - variable result : UNRESOLVED_ufixed(left_index downto right_index); - begin - if arg'length < 1 then - return NAUF; - end if; - xarg := abs(arg); - result := UNRESOLVED_ufixed (xarg (left_index downto right_index)); - return result; - end function to_ufixed; - ------------------------------------------------------------------------------ --- Visible functions ------------------------------------------------------------------------------ - - -- Conversion functions. These are needed for synthesis where typically - -- the only input and output type is a std_logic_vector. - function to_sulv ( - arg : UNRESOLVED_ufixed) -- fixed point vector - return STD_ULOGIC_VECTOR is - variable result : STD_ULOGIC_VECTOR (arg'length-1 downto 0); - begin - if arg'length < 1 then - return NSLV; - end if; - result := STD_ULOGIC_VECTOR (arg); - return result; - end function to_sulv; - - function to_sulv ( - arg : UNRESOLVED_sfixed) -- fixed point vector - return STD_ULOGIC_VECTOR is - variable result : STD_ULOGIC_VECTOR (arg'length-1 downto 0); - begin - if arg'length < 1 then - return NSLV; - end if; - result := STD_ULOGIC_VECTOR (arg); - return result; - end function to_sulv; - - function to_slv ( - arg : UNRESOLVED_ufixed) -- fixed point vector - return STD_LOGIC_VECTOR is - begin - return std_logic_vector(to_sulv(arg)); - end function to_slv; - - function to_slv ( - arg : UNRESOLVED_sfixed) -- fixed point vector - return STD_LOGIC_VECTOR is - begin - return std_logic_vector(to_sulv(arg)); - end function to_slv; - - function to_ufixed ( - arg : STD_ULOGIC_VECTOR; -- shifted vector - constant left_index : INTEGER; - constant right_index : INTEGER) - return unresolved_ufixed is - variable result : UNRESOLVED_ufixed (left_index downto right_index); - begin - if (arg'length < 1 or right_index > left_index) then - return NAUF; - end if; - if (arg'length /= result'length) then - report "fixed_pkg:" & "TO_UFIXED(SLV) " - & "Vector lengths do not match. Input length is " - & INTEGER'image(arg'length) & " and output will be " - & INTEGER'image(result'length) & " wide." - severity error; - return NAUF; - else - result := to_fixed (arg => UNSIGNED(arg), - left_index => left_index, - right_index => right_index); - return result; - end if; - end function to_ufixed; - - function to_sfixed ( - arg : STD_ULOGIC_VECTOR; -- shifted vector - constant left_index : INTEGER; - constant right_index : INTEGER) - return unresolved_sfixed is - variable result : UNRESOLVED_sfixed (left_index downto right_index); - begin - if (arg'length < 1 or right_index > left_index) then - return NASF; - end if; - if (arg'length /= result'length) then - report "fixed_pkg:" & "TO_SFIXED(SLV) " - & "Vector lengths do not match. Input length is " - & INTEGER'image(arg'length) & " and output will be " - & INTEGER'image(result'length) & " wide." - severity error; - return NASF; - else - result := to_fixed (arg => SIGNED(arg), - left_index => left_index, - right_index => right_index); - return result; - end if; - end function to_sfixed; - - -- Two's complement number, Grows the vector by 1 bit. - -- because "abs (1000.000) = 01000.000" or abs(-16) = 16. - function "abs" ( - arg : UNRESOLVED_sfixed) -- fixed point input - return UNRESOLVED_sfixed is - constant left_index : INTEGER := arg'high; - constant right_index : INTEGER := mine(arg'low, arg'low); - variable ressns : SIGNED (arg'length downto 0); - variable result : UNRESOLVED_sfixed (left_index+1 downto right_index); - begin - if (arg'length < 1 or result'length < 1) then - return NASF; - end if; - ressns (arg'length-1 downto 0) := to_s (cleanvec (arg)); - ressns (arg'length) := ressns (arg'length-1); -- expand sign bit - result := to_fixed (abs(ressns), left_index+1, right_index); - return result; - end function "abs"; - - -- also grows the vector by 1 bit. - function "-" ( - arg : UNRESOLVED_sfixed) -- fixed point input - return UNRESOLVED_sfixed is - constant left_index : INTEGER := arg'high+1; - constant right_index : INTEGER := mine(arg'low, arg'low); - variable ressns : SIGNED (arg'length downto 0); - variable result : UNRESOLVED_sfixed (left_index downto right_index); - begin - if (arg'length < 1 or result'length < 1) then - return NASF; - end if; - ressns (arg'length-1 downto 0) := to_s (cleanvec(arg)); - ressns (arg'length) := ressns (arg'length-1); -- expand sign bit - result := to_fixed (-ressns, left_index, right_index); - return result; - end function "-"; - - -- Addition - function "+" ( - l, r : UNRESOLVED_ufixed) -- ufixed(a downto b) + ufixed(c downto d) = - return UNRESOLVED_ufixed is -- ufixed(max(a,c)+1 downto min(b,d)) - constant left_index : INTEGER := maximum(l'high, r'high)+1; - constant right_index : INTEGER := mine(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - variable result : UNRESOLVED_ufixed (left_index downto right_index); - variable lslv, rslv : UNSIGNED (left_index-right_index - downto 0); - variable result_slv : UNSIGNED (left_index-right_index - downto 0); - begin - if (l'length < 1 or r'length < 1 or result'length < 1) then - return NAUF; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_uns (lresize); - rslv := to_uns (rresize); - result_slv := lslv + rslv; - result := to_fixed(result_slv, left_index, right_index); - return result; - end function "+"; - - function "+" ( - l, r : UNRESOLVED_sfixed) -- sfixed(a downto b) + sfixed(c downto d) = - return UNRESOLVED_sfixed is -- sfixed(max(a,c)+1 downto min(b,d)) - constant left_index : INTEGER := maximum(l'high, r'high)+1; - constant right_index : INTEGER := mine(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - variable result : UNRESOLVED_sfixed (left_index downto right_index); - variable lslv, rslv : SIGNED (left_index-right_index downto 0); - variable result_slv : SIGNED (left_index-right_index downto 0); - begin - if (l'length < 1 or r'length < 1 or result'length < 1) then - return NASF; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_s (lresize); - rslv := to_s (rresize); - result_slv := lslv + rslv; - result := to_fixed(result_slv, left_index, right_index); - return result; - end function "+"; - - -- Subtraction - function "-" ( - l, r : UNRESOLVED_ufixed) -- ufixed(a downto b) - ufixed(c downto d) = - return UNRESOLVED_ufixed is -- ufixed(max(a,c)+1 downto min(b,d)) - constant left_index : INTEGER := maximum(l'high, r'high)+1; - constant right_index : INTEGER := mine(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - variable result : UNRESOLVED_ufixed (left_index downto right_index); - variable lslv, rslv : UNSIGNED (left_index-right_index - downto 0); - variable result_slv : UNSIGNED (left_index-right_index - downto 0); - begin - if (l'length < 1 or r'length < 1 or result'length < 1) then - return NAUF; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_uns (lresize); - rslv := to_uns (rresize); - result_slv := lslv - rslv; - result := to_fixed(result_slv, left_index, right_index); - return result; - end function "-"; - - function "-" ( - l, r : UNRESOLVED_sfixed) -- sfixed(a downto b) - sfixed(c downto d) = - return UNRESOLVED_sfixed is -- sfixed(max(a,c)+1 downto min(b,d)) - constant left_index : INTEGER := maximum(l'high, r'high)+1; - constant right_index : INTEGER := mine(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - variable result : UNRESOLVED_sfixed (left_index downto right_index); - variable lslv, rslv : SIGNED (left_index-right_index downto 0); - variable result_slv : SIGNED (left_index-right_index downto 0); - begin - if (l'length < 1 or r'length < 1 or result'length < 1) then - return NASF; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_s (lresize); - rslv := to_s (rresize); - result_slv := lslv - rslv; - result := to_fixed(result_slv, left_index, right_index); - return result; - end function "-"; - - function "*" ( - l, r : UNRESOLVED_ufixed) -- ufixed(a downto b) * ufixed(c downto d) = - return UNRESOLVED_ufixed is -- ufixed(a+c+1 downto b+d) - variable lslv : UNSIGNED (l'length-1 downto 0); - variable rslv : UNSIGNED (r'length-1 downto 0); - variable result_slv : UNSIGNED (r'length+l'length-1 downto 0); - variable result : UNRESOLVED_ufixed (l'high + r'high+1 downto - mine(l'low, l'low) + mine(r'low, r'low)); - begin - if (l'length < 1 or r'length < 1 or - result'length /= result_slv'length) then - return NAUF; - end if; - lslv := to_uns (cleanvec(l)); - rslv := to_uns (cleanvec(r)); - result_slv := lslv * rslv; - result := to_fixed (result_slv, result'high, result'low); - return result; - end function "*"; - - function "*" ( - l, r : UNRESOLVED_sfixed) -- sfixed(a downto b) * sfixed(c downto d) = - return UNRESOLVED_sfixed is -- sfixed(a+c+1 downto b+d) - variable lslv : SIGNED (l'length-1 downto 0); - variable rslv : SIGNED (r'length-1 downto 0); - variable result_slv : SIGNED (r'length+l'length-1 downto 0); - variable result : UNRESOLVED_sfixed (l'high + r'high+1 downto - mine(l'low, l'low) + mine(r'low, r'low)); - begin - if (l'length < 1 or r'length < 1 or - result'length /= result_slv'length) then - return NASF; - end if; - lslv := to_s (cleanvec(l)); - rslv := to_s (cleanvec(r)); - result_slv := lslv * rslv; - result := to_fixed (result_slv, result'high, result'low); - return result; - end function "*"; - --- function "/" ( --- l, r : UNRESOLVED_ufixed) -- ufixed(a downto b) / ufixed(c downto d) = --- return UNRESOLVED_ufixed is -- ufixed(a-d downto b-c-1) --- begin --- return divide (l, r); --- end function "/"; - --- function "/" ( --- l, r : UNRESOLVED_sfixed) -- sfixed(a downto b) / sfixed(c downto d) = --- return UNRESOLVED_sfixed is -- sfixed(a-d+1 downto b-c) --- begin --- return divide (l, r); --- end function "/"; - - -- This version of divide gives the user more control - -- ufixed(a downto b) / ufixed(c downto d) = ufixed(a-d downto b-c-1) --- function divide ( --- l, r : UNRESOLVED_ufixed; --- constant round_style : fixed_round_style_type := fixed_round_style; --- constant guard_bits : NATURAL := fixed_guard_bits) --- return UNRESOLVED_ufixed is --- variable result : UNRESOLVED_ufixed (l'high - mine(r'low, r'low) downto --- mine (l'low, l'low) - r'high -1); --- variable dresult : UNRESOLVED_ufixed (result'high downto result'low -guard_bits); --- variable lresize : UNRESOLVED_ufixed (l'high downto l'high - dresult'length+1); --- variable lslv : UNSIGNED (lresize'length-1 downto 0); --- variable rslv : UNSIGNED (r'length-1 downto 0); --- variable result_slv : UNSIGNED (lresize'length-1 downto 0); --- begin --- if (l'length < 1 or r'length < 1 or --- mins(r'low, r'low) /= r'low or mins(l'low, l'low) /= l'low) then --- return NAUF; --- end if; --- lresize := resize (arg => l, --- left_index => lresize'high, --- right_index => lresize'low, --- overflow_style => fixed_wrap, -- vector only grows --- round_style => fixed_truncate); --- lslv := to_uns (cleanvec (lresize)); --- rslv := to_uns (cleanvec (r)); --- if (rslv = 0) then --- report "fixed_pkg:" --- & "DIVIDE(ufixed) Division by zero" severity error; --- result := saturate (result'high, result'low); -- saturate --- else --- result_slv := lslv / rslv; --- dresult := to_fixed (result_slv, dresult'high, dresult'low); --- result := resize (arg => dresult, --- left_index => result'high, --- right_index => result'low, --- overflow_style => fixed_wrap, -- overflow impossible --- round_style => round_style); --- end if; --- return result; --- end function divide; - - -- sfixed(a downto b) / sfixed(c downto d) = sfixed(a-d+1 downto b-c) --- function divide ( --- l, r : UNRESOLVED_sfixed; --- constant round_style : fixed_round_style_type := fixed_round_style; --- constant guard_bits : NATURAL := fixed_guard_bits) --- return UNRESOLVED_sfixed is --- variable result : UNRESOLVED_sfixed (l'high - mine(r'low, r'low) + 1 downto --- mine (l'low, l'low) - r'high); --- variable dresult : UNRESOLVED_sfixed (result'high downto result'low-guard_bits); --- variable lresize : UNRESOLVED_sfixed (l'high+1 downto l'high+1 -dresult'length+1); --- variable lslv : SIGNED (lresize'length-1 downto 0); --- variable rslv : SIGNED (r'length-1 downto 0); --- variable result_slv : SIGNED (lresize'length-1 downto 0); --- begin --- if (l'length < 1 or r'length < 1 or --- mins(r'low, r'low) /= r'low or mins(l'low, l'low) /= l'low) then --- return NASF; --- end if; --- lresize := resize (arg => l, --- left_index => lresize'high, --- right_index => lresize'low, --- overflow_style => fixed_wrap, -- vector only grows --- round_style => fixed_truncate); --- lslv := to_s (cleanvec (lresize)); --- rslv := to_s (cleanvec (r)); --- if (rslv = 0) then --- report "fixed_pkg:" --- & "DIVIDE(sfixed) Division by zero" severity error; --- result := saturate (result'high, result'low); --- else --- result_slv := lslv / rslv; --- dresult := to_fixed (result_slv, dresult'high, dresult'low); --- result := resize (arg => dresult, --- left_index => result'high, --- right_index => result'low, --- overflow_style => fixed_wrap, -- overflow impossible --- round_style => round_style); --- end if; --- return result; --- end function divide; - - -- 1 / ufixed(a downto b) = ufixed(-b downto -a-1) --- function reciprocal ( --- arg : UNRESOLVED_ufixed; -- fixed point input --- constant round_style : fixed_round_style_type := fixed_round_style; --- constant guard_bits : NATURAL := fixed_guard_bits) --- return UNRESOLVED_ufixed is --- constant one : UNRESOLVED_ufixed (0 downto 0) := "1"; --- begin --- return divide (l => one, --- r => arg, --- round_style => round_style, --- guard_bits => guard_bits); --- end function reciprocal; - - -- 1 / sfixed(a downto b) = sfixed(-b+1 downto -a) --- function reciprocal ( --- arg : UNRESOLVED_sfixed; -- fixed point input --- constant round_style : fixed_round_style_type := fixed_round_style; --- constant guard_bits : NATURAL := fixed_guard_bits) --- return UNRESOLVED_sfixed is --- constant one : UNRESOLVED_sfixed (1 downto 0) := "01"; -- extra bit. --- variable resultx : UNRESOLVED_sfixed (-mine(arg'low, arg'low)+2 downto -arg'high); --- begin --- if (arg'length < 1 or resultx'length < 1) then --- return NASF; --- else --- resultx := divide (l => one, --- r => arg, --- round_style => round_style, --- guard_bits => guard_bits); --- return resultx (resultx'high-1 downto resultx'low); -- remove extra bit --- end if; --- end function reciprocal; - - -- ufixed (a downto b) rem ufixed (c downto d) - -- = ufixed (min(a,c) downto min(b,d)) --- function "rem" ( --- l, r : UNRESOLVED_ufixed) -- fixed point input --- return UNRESOLVED_ufixed is --- begin --- return remainder (l, r); --- end function "rem"; - --- -- remainder --- -- sfixed (a downto b) rem sfixed (c downto d) --- -- = sfixed (min(a,c) downto min(b,d)) --- function "rem" ( --- l, r : UNRESOLVED_sfixed) -- fixed point input --- return UNRESOLVED_sfixed is --- begin --- return remainder (l, r); --- end function "rem"; - - -- ufixed (a downto b) rem ufixed (c downto d) - -- = ufixed (min(a,c) downto min(b,d)) --- function remainder ( --- l, r : UNRESOLVED_ufixed; -- fixed point input --- constant round_style : fixed_round_style_type := fixed_round_style; --- constant guard_bits : NATURAL := fixed_guard_bits) --- return UNRESOLVED_ufixed is --- variable result : UNRESOLVED_ufixed (minimum(l'high, r'high) downto --- mine(l'low, r'low)); --- variable lresize : UNRESOLVED_ufixed (maximum(l'high, r'low) downto --- mins(r'low, r'low)-guard_bits); --- variable rresize : UNRESOLVED_ufixed (r'high downto r'low-guard_bits); --- variable dresult : UNRESOLVED_ufixed (rresize'range); --- variable lslv : UNSIGNED (lresize'length-1 downto 0); --- variable rslv : UNSIGNED (rresize'length-1 downto 0); --- variable result_slv : UNSIGNED (rslv'range); --- begin --- if (l'length < 1 or r'length < 1 or --- mins(r'low, r'low) /= r'low or mins(l'low, l'low) /= l'low) then --- return NAUF; --- end if; --- lresize := resize (arg => l, --- left_index => lresize'high, --- right_index => lresize'low, --- overflow_style => fixed_wrap, -- vector only grows --- round_style => fixed_truncate); --- lslv := to_uns (lresize); --- rresize := resize (arg => r, --- left_index => rresize'high, --- right_index => rresize'low, --- overflow_style => fixed_wrap, -- vector only grows --- round_style => fixed_truncate); --- rslv := to_uns (rresize); --- if (rslv = 0) then --- report "fixed_pkg:" --- & "remainder(ufixed) Division by zero" severity error; --- result := saturate (result'high, result'low); -- saturate --- else --- if (r'low <= l'high) then --- result_slv := lslv rem rslv; --- dresult := to_fixed (result_slv, dresult'high, dresult'low); --- result := resize (arg => dresult, --- left_index => result'high, --- right_index => result'low, --- overflow_style => fixed_wrap, -- can't overflow --- round_style => round_style); --- end if; --- if l'low < r'low then --- result(mins(r'low-1, l'high) downto l'low) := --- cleanvec(l(mins(r'low-1, l'high) downto l'low)); --- end if; --- end if; --- return result; --- end function remainder; - --- -- remainder --- -- sfixed (a downto b) rem sfixed (c downto d) --- -- = sfixed (min(a,c) downto min(b,d)) --- function remainder ( --- l, r : UNRESOLVED_sfixed; -- fixed point input --- constant round_style : fixed_round_style_type := fixed_round_style; --- constant guard_bits : NATURAL := fixed_guard_bits) --- return UNRESOLVED_sfixed is --- variable l_abs : UNRESOLVED_ufixed (l'range); --- variable r_abs : UNRESOLVED_ufixed (r'range); --- variable result : UNRESOLVED_sfixed (minimum(r'high, l'high) downto --- mine(r'low, l'low)); --- variable neg_result : UNRESOLVED_sfixed (minimum(r'high, l'high)+1 downto --- mins(r'low, l'low)); --- begin --- if (l'length < 1 or r'length < 1 or --- mins(r'low, r'low) /= r'low or mins(l'low, l'low) /= l'low) then --- return NASF; --- end if; --- l_abs := to_ufixed (l); --- r_abs := to_ufixed (r); --- result := UNRESOLVED_sfixed (remainder ( --- l => l_abs, --- r => r_abs, --- round_style => round_style)); --- neg_result := -result; --- if l(l'high) = '1' then --- result := neg_result(result'range); --- end if; --- return result; --- end function remainder; - --- -- modulo --- -- ufixed (a downto b) mod ufixed (c downto d) --- -- = ufixed (min(a,c) downto min(b, d)) --- function "mod" ( --- l, r : UNRESOLVED_ufixed) -- fixed point input --- return UNRESOLVED_ufixed is --- begin --- return modulo (l, r); --- end function "mod"; - --- -- sfixed (a downto b) mod sfixed (c downto d) --- -- = sfixed (c downto min(b, d)) --- function "mod" ( --- l, r : UNRESOLVED_sfixed) -- fixed point input --- return UNRESOLVED_sfixed is --- begin --- return modulo(l, r); --- end function "mod"; - --- -- modulo --- -- ufixed (a downto b) mod ufixed (c downto d) --- -- = ufixed (min(a,c) downto min(b, d)) --- function modulo ( --- l, r : UNRESOLVED_ufixed; -- fixed point input --- constant round_style : fixed_round_style_type := fixed_round_style; --- constant guard_bits : NATURAL := fixed_guard_bits) --- return UNRESOLVED_ufixed is --- begin --- return remainder(l => l, --- r => r, --- round_style => round_style, --- guard_bits => guard_bits); --- end function modulo; - --- -- sfixed (a downto b) mod sfixed (c downto d) --- -- = sfixed (c downto min(b, d)) --- function modulo ( --- l, r : UNRESOLVED_sfixed; -- fixed point input --- constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; --- constant round_style : fixed_round_style_type := fixed_round_style; --- constant guard_bits : NATURAL := fixed_guard_bits) --- return UNRESOLVED_sfixed is --- variable l_abs : UNRESOLVED_ufixed (l'range); --- variable r_abs : UNRESOLVED_ufixed (r'range); --- variable result : UNRESOLVED_sfixed (r'high downto --- mine(r'low, l'low)); --- variable dresult : UNRESOLVED_sfixed (minimum(r'high, l'high)+1 downto --- mins(r'low, l'low)); --- variable dresult_not_zero : BOOLEAN; --- begin --- if (l'length < 1 or r'length < 1 or --- mins(r'low, r'low) /= r'low or mins(l'low, l'low) /= l'low) then --- return NASF; --- end if; --- l_abs := to_ufixed (l); --- r_abs := to_ufixed (r); --- dresult := "0" & UNRESOLVED_sfixed(remainder (l => l_abs, --- r => r_abs, --- round_style => round_style)); --- if (to_s(dresult) = 0) then --- dresult_not_zero := false; --- else --- dresult_not_zero := true; --- end if; --- if to_x01(l(l'high)) = '1' and to_x01(r(r'high)) = '0' --- and dresult_not_zero then --- result := resize (arg => r - dresult, --- left_index => result'high, --- right_index => result'low, --- overflow_style => overflow_style, --- round_style => round_style); --- elsif to_x01(l(l'high)) = '1' and to_x01(r(r'high)) = '1' then --- result := resize (arg => -dresult, --- left_index => result'high, --- right_index => result'low, --- overflow_style => overflow_style, --- round_style => round_style); --- elsif to_x01(l(l'high)) = '0' and to_x01(r(r'high)) = '1' --- and dresult_not_zero then --- result := resize (arg => dresult + r, --- left_index => result'high, --- right_index => result'low, --- overflow_style => overflow_style, --- round_style => round_style); --- else --- result := resize (arg => dresult, --- left_index => result'high, --- right_index => result'low, --- overflow_style => overflow_style, --- round_style => round_style); --- end if; --- return result; --- end function modulo; - - -- Procedure for those who need an "accumulator" function - procedure add_carry ( - L, R : in UNRESOLVED_ufixed; - c_in : in STD_ULOGIC; - result : out UNRESOLVED_ufixed; - c_out : out STD_ULOGIC) is - constant left_index : INTEGER := maximum(l'high, r'high)+1; - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - variable lslv, rslv : UNSIGNED (left_index-right_index - downto 0); - variable result_slv : UNSIGNED (left_index-right_index - downto 0); - variable cx : UNSIGNED (0 downto 0); -- Carry in - begin - if (l'length < 1 or r'length < 1) then - result := NAUF; - c_out := '0'; - else - cx (0) := c_in; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_uns (lresize); - rslv := to_uns (rresize); - result_slv := lslv + rslv + cx; - c_out := result_slv(left_index); - result := to_fixed(result_slv (left_index-right_index-1 downto 0), - left_index-1, right_index); - end if; - end procedure add_carry; - - procedure add_carry ( - L, R : in UNRESOLVED_sfixed; - c_in : in STD_ULOGIC; - result : out UNRESOLVED_sfixed; - c_out : out STD_ULOGIC) is - constant left_index : INTEGER := maximum(l'high, r'high)+1; - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - variable lslv, rslv : SIGNED (left_index-right_index - downto 0); - variable result_slv : SIGNED (left_index-right_index - downto 0); - variable cx : SIGNED (1 downto 0); -- Carry in - begin - if (l'length < 1 or r'length < 1) then - result := NASF; - c_out := '0'; - else - cx (1) := '0'; - cx (0) := c_in; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_s (lresize); - rslv := to_s (rresize); - result_slv := lslv + rslv + cx; - c_out := result_slv(left_index); - result := to_fixed(result_slv (left_index-right_index-1 downto 0), - left_index-1, right_index); - end if; - end procedure add_carry; - - -- Scales the result by a power of 2. Width of input = width of output with - -- the decimal point moved. - function scalb (y : UNRESOLVED_ufixed; N : INTEGER) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (y'high+N downto y'low+N); - begin - if y'length < 1 then - return NAUF; - else - result := y; - return result; - end if; - end function scalb; - - function scalb (y : UNRESOLVED_ufixed; N : SIGNED) - return UNRESOLVED_ufixed is - begin - return scalb (y => y, - N => to_integer(N)); - end function scalb; - - function scalb (y : UNRESOLVED_sfixed; N : INTEGER) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (y'high+N downto y'low+N); - begin - if y'length < 1 then - return NASF; - else - result := y; - return result; - end if; - end function scalb; - - function scalb (y : UNRESOLVED_sfixed; N : SIGNED) - return UNRESOLVED_sfixed is - begin - return scalb (y => y, - N => to_integer(N)); - end function scalb; - - function Is_Negative (arg : UNRESOLVED_sfixed) return BOOLEAN is - begin - if to_X01(arg(arg'high)) = '1' then - return true; - else - return false; - end if; - end function Is_Negative; - - function find_rightmost (arg : UNRESOLVED_ufixed; y : STD_ULOGIC) - return INTEGER is - begin - for_loop : for i in arg'reverse_range loop - if \?=\ (arg(i), y) = '1' then - return i; - end if; - end loop; - return arg'high+1; -- return out of bounds 'high - end function find_rightmost; - - function find_leftmost (arg : UNRESOLVED_ufixed; y : STD_ULOGIC) - return INTEGER is - begin - for_loop : for i in arg'range loop - if \?=\ (arg(i), y) = '1' then - return i; - end if; - end loop; - return arg'low-1; -- return out of bounds 'low - end function find_leftmost; - - function find_rightmost (arg : UNRESOLVED_sfixed; y : STD_ULOGIC) - return INTEGER is - begin - for_loop : for i in arg'reverse_range loop - if \?=\ (arg(i), y) = '1' then - return i; - end if; - end loop; - return arg'high+1; -- return out of bounds 'high - end function find_rightmost; - - function find_leftmost (arg : UNRESOLVED_sfixed; y : STD_ULOGIC) - return INTEGER is - begin - for_loop : for i in arg'range loop - if \?=\ (arg(i), y) = '1' then - return i; - end if; - end loop; - return arg'low-1; -- return out of bounds 'low - end function find_leftmost; - - function "sll" (ARG : UNRESOLVED_ufixed; COUNT : INTEGER) - return UNRESOLVED_ufixed is - variable argslv : UNSIGNED (arg'length-1 downto 0); - variable result : UNRESOLVED_ufixed (arg'range); - begin - argslv := to_uns (arg); - argslv := argslv sll COUNT; - result := to_fixed (argslv, result'high, result'low); - return result; - end function "sll"; - - function "srl" (ARG : UNRESOLVED_ufixed; COUNT : INTEGER) - return UNRESOLVED_ufixed is - variable argslv : UNSIGNED (arg'length-1 downto 0); - variable result : UNRESOLVED_ufixed (arg'range); - begin - argslv := to_uns (arg); - argslv := argslv srl COUNT; - result := to_fixed (argslv, result'high, result'low); - return result; - end function "srl"; - - function "rol" (ARG : UNRESOLVED_ufixed; COUNT : INTEGER) - return UNRESOLVED_ufixed is - variable argslv : UNSIGNED (arg'length-1 downto 0); - variable result : UNRESOLVED_ufixed (arg'range); - begin - argslv := to_uns (arg); - argslv := argslv rol COUNT; - result := to_fixed (argslv, result'high, result'low); - return result; - end function "rol"; - - function "ror" (ARG : UNRESOLVED_ufixed; COUNT : INTEGER) - return UNRESOLVED_ufixed is - variable argslv : UNSIGNED (arg'length-1 downto 0); - variable result : UNRESOLVED_ufixed (arg'range); - begin - argslv := to_uns (arg); - argslv := argslv ror COUNT; - result := to_fixed (argslv, result'high, result'low); - return result; - end function "ror"; - - function "sla" (ARG : UNRESOLVED_ufixed; COUNT : INTEGER) - return UNRESOLVED_ufixed is - variable argslv : UNSIGNED (arg'length-1 downto 0); - variable result : UNRESOLVED_ufixed (arg'range); - begin - argslv := to_uns (arg); - -- Arithmetic shift on an unsigned is a logical shift - argslv := argslv sll COUNT; - result := to_fixed (argslv, result'high, result'low); - return result; - end function "sla"; - - function "sra" (ARG : UNRESOLVED_ufixed; COUNT : INTEGER) - return UNRESOLVED_ufixed is - variable argslv : UNSIGNED (arg'length-1 downto 0); - variable result : UNRESOLVED_ufixed (arg'range); - begin - argslv := to_uns (arg); - -- Arithmetic shift on an unsigned is a logical shift - argslv := argslv srl COUNT; - result := to_fixed (argslv, result'high, result'low); - return result; - end function "sra"; - - function "sll" (ARG : UNRESOLVED_sfixed; COUNT : INTEGER) - return UNRESOLVED_sfixed is - variable argslv : SIGNED (arg'length-1 downto 0); - variable result : UNRESOLVED_sfixed (arg'range); - begin - argslv := to_s (arg); - argslv := argslv sll COUNT; - result := to_fixed (argslv, result'high, result'low); - return result; - end function "sll"; - - function "srl" (ARG : UNRESOLVED_sfixed; COUNT : INTEGER) - return UNRESOLVED_sfixed is - variable argslv : SIGNED (arg'length-1 downto 0); - variable result : UNRESOLVED_sfixed (arg'range); - begin - argslv := to_s (arg); - argslv := argslv srl COUNT; - result := to_fixed (argslv, result'high, result'low); - return result; - end function "srl"; - - function "rol" (ARG : UNRESOLVED_sfixed; COUNT : INTEGER) - return UNRESOLVED_sfixed is - variable argslv : SIGNED (arg'length-1 downto 0); - variable result : UNRESOLVED_sfixed (arg'range); - begin - argslv := to_s (arg); - argslv := argslv rol COUNT; - result := to_fixed (argslv, result'high, result'low); - return result; - end function "rol"; - - function "ror" (ARG : UNRESOLVED_sfixed; COUNT : INTEGER) - return UNRESOLVED_sfixed is - variable argslv : SIGNED (arg'length-1 downto 0); - variable result : UNRESOLVED_sfixed (arg'range); - begin - argslv := to_s (arg); - argslv := argslv ror COUNT; - result := to_fixed (argslv, result'high, result'low); - return result; - end function "ror"; - - function "sla" (ARG : UNRESOLVED_sfixed; COUNT : INTEGER) - return UNRESOLVED_sfixed is - variable argslv : SIGNED (arg'length-1 downto 0); - variable result : UNRESOLVED_sfixed (arg'range); - begin - argslv := to_s (arg); - if COUNT > 0 then - -- Arithmetic shift left on a 2's complement number is a logic shift - argslv := argslv sll COUNT; - else - argslv := argslv sra -COUNT; - end if; - result := to_fixed (argslv, result'high, result'low); - return result; - end function "sla"; - - function "sra" (ARG : UNRESOLVED_sfixed; COUNT : INTEGER) - return UNRESOLVED_sfixed is - variable argslv : SIGNED (arg'length-1 downto 0); - variable result : UNRESOLVED_sfixed (arg'range); - begin - argslv := to_s (arg); - if COUNT > 0 then - argslv := argslv sra COUNT; - else - -- Arithmetic shift left on a 2's complement number is a logic shift - argslv := argslv sll -COUNT; - end if; - result := to_fixed (argslv, result'high, result'low); - return result; - end function "sra"; - - -- Because some people want the older functions. - function SHIFT_LEFT (ARG : UNRESOLVED_ufixed; COUNT : NATURAL) - return UNRESOLVED_ufixed is - begin - if (ARG'length < 1) then - return NAUF; - end if; - return ARG sla COUNT; - end function SHIFT_LEFT; - - function SHIFT_RIGHT (ARG : UNRESOLVED_ufixed; COUNT : NATURAL) - return UNRESOLVED_ufixed is - begin - if (ARG'length < 1) then - return NAUF; - end if; - return ARG sra COUNT; - end function SHIFT_RIGHT; - - function SHIFT_LEFT (ARG : UNRESOLVED_sfixed; COUNT : NATURAL) - return UNRESOLVED_sfixed is - begin - if (ARG'length < 1) then - return NASF; - end if; - return ARG sla COUNT; - end function SHIFT_LEFT; - - function SHIFT_RIGHT (ARG : UNRESOLVED_sfixed; COUNT : NATURAL) - return UNRESOLVED_sfixed is - begin - if (ARG'length < 1) then - return NASF; - end if; - return ARG sra COUNT; - end function SHIFT_RIGHT; - - ---------------------------------------------------------------------------- - -- logical functions - ---------------------------------------------------------------------------- - function "not" (L : UNRESOLVED_ufixed) return UNRESOLVED_ufixed is - variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto - begin - RESULT := not to_sulv(L); - return to_ufixed(RESULT, L'high, L'low); - end function "not"; - - function "and" (L, R : UNRESOLVED_ufixed) return UNRESOLVED_ufixed is - variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto - begin - if (L'high = R'high and L'low = R'low) then - RESULT := to_sulv(L) and to_sulv(R); - else - assert NO_WARNING - report "fixed_pkg:" - & """and"": Range error L'RANGE /= R'RANGE" - severity warning; - RESULT := (others => 'X'); - end if; - return to_ufixed(RESULT, L'high, L'low); - end function "and"; - - function "or" (L, R : UNRESOLVED_ufixed) return UNRESOLVED_ufixed is - variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto - begin - if (L'high = R'high and L'low = R'low) then - RESULT := to_sulv(L) or to_sulv(R); - else - assert NO_WARNING - report "fixed_pkg:" - & """or"": Range error L'RANGE /= R'RANGE" - severity warning; - RESULT := (others => 'X'); - end if; - return to_ufixed(RESULT, L'high, L'low); - end function "or"; - - function "nand" (L, R : UNRESOLVED_ufixed) return UNRESOLVED_ufixed is - variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto - begin - if (L'high = R'high and L'low = R'low) then - RESULT := to_sulv(L) nand to_sulv(R); - else - assert NO_WARNING - report "fixed_pkg:" - & """nand"": Range error L'RANGE /= R'RANGE" - severity warning; - RESULT := (others => 'X'); - end if; - return to_ufixed(RESULT, L'high, L'low); - end function "nand"; - - function "nor" (L, R : UNRESOLVED_ufixed) return UNRESOLVED_ufixed is - variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto - begin - if (L'high = R'high and L'low = R'low) then - RESULT := to_sulv(L) nor to_sulv(R); - else - assert NO_WARNING - report "fixed_pkg:" - & """nor"": Range error L'RANGE /= R'RANGE" - severity warning; - RESULT := (others => 'X'); - end if; - return to_ufixed(RESULT, L'high, L'low); - end function "nor"; - - function "xor" (L, R : UNRESOLVED_ufixed) return UNRESOLVED_ufixed is - variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto - begin - if (L'high = R'high and L'low = R'low) then - RESULT := to_sulv(L) xor to_sulv(R); - else - assert NO_WARNING - report "fixed_pkg:" - & """xor"": Range error L'RANGE /= R'RANGE" - severity warning; - RESULT := (others => 'X'); - end if; - return to_ufixed(RESULT, L'high, L'low); - end function "xor"; - - function "xnor" (L, R : UNRESOLVED_ufixed) return UNRESOLVED_ufixed is - variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto - begin - if (L'high = R'high and L'low = R'low) then - RESULT := to_sulv(L) xnor to_sulv(R); - else - assert NO_WARNING - report "fixed_pkg:" - & """xnor"": Range error L'RANGE /= R'RANGE" - severity warning; - RESULT := (others => 'X'); - end if; - return to_ufixed(RESULT, L'high, L'low); - end function "xnor"; - - function "not" (L : UNRESOLVED_sfixed) return UNRESOLVED_sfixed is - variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto - begin - RESULT := not to_sulv(L); - return to_sfixed(RESULT, L'high, L'low); - end function "not"; - - function "and" (L, R : UNRESOLVED_sfixed) return UNRESOLVED_sfixed is - variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto - begin - if (L'high = R'high and L'low = R'low) then - RESULT := to_sulv(L) and to_sulv(R); - else - assert NO_WARNING - report "fixed_pkg:" - & """and"": Range error L'RANGE /= R'RANGE" - severity warning; - RESULT := (others => 'X'); - end if; - return to_sfixed(RESULT, L'high, L'low); - end function "and"; - - function "or" (L, R : UNRESOLVED_sfixed) return UNRESOLVED_sfixed is - variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto - begin - if (L'high = R'high and L'low = R'low) then - RESULT := to_sulv(L) or to_sulv(R); - else - assert NO_WARNING - report "fixed_pkg:" - & """or"": Range error L'RANGE /= R'RANGE" - severity warning; - RESULT := (others => 'X'); - end if; - return to_sfixed(RESULT, L'high, L'low); - end function "or"; - - function "nand" (L, R : UNRESOLVED_sfixed) return UNRESOLVED_sfixed is - variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto - begin - if (L'high = R'high and L'low = R'low) then - RESULT := to_sulv(L) nand to_sulv(R); - else - assert NO_WARNING - report "fixed_pkg:" - & """nand"": Range error L'RANGE /= R'RANGE" - severity warning; - RESULT := (others => 'X'); - end if; - return to_sfixed(RESULT, L'high, L'low); - end function "nand"; - - function "nor" (L, R : UNRESOLVED_sfixed) return UNRESOLVED_sfixed is - variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto - begin - if (L'high = R'high and L'low = R'low) then - RESULT := to_sulv(L) nor to_sulv(R); - else - assert NO_WARNING - report "fixed_pkg:" - & """nor"": Range error L'RANGE /= R'RANGE" - severity warning; - RESULT := (others => 'X'); - end if; - return to_sfixed(RESULT, L'high, L'low); - end function "nor"; - - function "xor" (L, R : UNRESOLVED_sfixed) return UNRESOLVED_sfixed is - variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto - begin - if (L'high = R'high and L'low = R'low) then - RESULT := to_sulv(L) xor to_sulv(R); - else - assert NO_WARNING - report "fixed_pkg:" - & """xor"": Range error L'RANGE /= R'RANGE" - severity warning; - RESULT := (others => 'X'); - end if; - return to_sfixed(RESULT, L'high, L'low); - end function "xor"; - - function "xnor" (L, R : UNRESOLVED_sfixed) return UNRESOLVED_sfixed is - variable RESULT : STD_ULOGIC_VECTOR(L'length-1 downto 0); -- force downto - begin - if (L'high = R'high and L'low = R'low) then - RESULT := to_sulv(L) xnor to_sulv(R); - else - assert NO_WARNING - report "fixed_pkg:" - & """xnor"": Range error L'RANGE /= R'RANGE" - severity warning; - RESULT := (others => 'X'); - end if; - return to_sfixed(RESULT, L'high, L'low); - end function "xnor"; - - -- Vector and std_ulogic functions, same as functions in numeric_std - function "and" (L : STD_ULOGIC; R : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (R'range); - begin - for i in result'range loop - result(i) := L and R(i); - end loop; - return result; - end function "and"; - - function "and" (L : UNRESOLVED_ufixed; R : STD_ULOGIC) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (L'range); - begin - for i in result'range loop - result(i) := L(i) and R; - end loop; - return result; - end function "and"; - - function "or" (L : STD_ULOGIC; R : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (R'range); - begin - for i in result'range loop - result(i) := L or R(i); - end loop; - return result; - end function "or"; - - function "or" (L : UNRESOLVED_ufixed; R : STD_ULOGIC) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (L'range); - begin - for i in result'range loop - result(i) := L(i) or R; - end loop; - return result; - end function "or"; - - function "nand" (L : STD_ULOGIC; R : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (R'range); - begin - for i in result'range loop - result(i) := L nand R(i); - end loop; - return result; - end function "nand"; - - function "nand" (L : UNRESOLVED_ufixed; R : STD_ULOGIC) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (L'range); - begin - for i in result'range loop - result(i) := L(i) nand R; - end loop; - return result; - end function "nand"; - - function "nor" (L : STD_ULOGIC; R : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (R'range); - begin - for i in result'range loop - result(i) := L nor R(i); - end loop; - return result; - end function "nor"; - - function "nor" (L : UNRESOLVED_ufixed; R : STD_ULOGIC) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (L'range); - begin - for i in result'range loop - result(i) := L(i) nor R; - end loop; - return result; - end function "nor"; - - function "xor" (L : STD_ULOGIC; R : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (R'range); - begin - for i in result'range loop - result(i) := L xor R(i); - end loop; - return result; - end function "xor"; - - function "xor" (L : UNRESOLVED_ufixed; R : STD_ULOGIC) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (L'range); - begin - for i in result'range loop - result(i) := L(i) xor R; - end loop; - return result; - end function "xor"; - - function "xnor" (L : STD_ULOGIC; R : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (R'range); - begin - for i in result'range loop - result(i) := L xnor R(i); - end loop; - return result; - end function "xnor"; - - function "xnor" (L : UNRESOLVED_ufixed; R : STD_ULOGIC) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (L'range); - begin - for i in result'range loop - result(i) := L(i) xnor R; - end loop; - return result; - end function "xnor"; - - function "and" (L : STD_ULOGIC; R : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (R'range); - begin - for i in result'range loop - result(i) := L and R(i); - end loop; - return result; - end function "and"; - - function "and" (L : UNRESOLVED_sfixed; R : STD_ULOGIC) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (L'range); - begin - for i in result'range loop - result(i) := L(i) and R; - end loop; - return result; - end function "and"; - - function "or" (L : STD_ULOGIC; R : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (R'range); - begin - for i in result'range loop - result(i) := L or R(i); - end loop; - return result; - end function "or"; - - function "or" (L : UNRESOLVED_sfixed; R : STD_ULOGIC) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (L'range); - begin - for i in result'range loop - result(i) := L(i) or R; - end loop; - return result; - end function "or"; - - function "nand" (L : STD_ULOGIC; R : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (R'range); - begin - for i in result'range loop - result(i) := L nand R(i); - end loop; - return result; - end function "nand"; - - function "nand" (L : UNRESOLVED_sfixed; R : STD_ULOGIC) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (L'range); - begin - for i in result'range loop - result(i) := L(i) nand R; - end loop; - return result; - end function "nand"; - - function "nor" (L : STD_ULOGIC; R : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (R'range); - begin - for i in result'range loop - result(i) := L nor R(i); - end loop; - return result; - end function "nor"; - - function "nor" (L : UNRESOLVED_sfixed; R : STD_ULOGIC) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (L'range); - begin - for i in result'range loop - result(i) := L(i) nor R; - end loop; - return result; - end function "nor"; - - function "xor" (L : STD_ULOGIC; R : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (R'range); - begin - for i in result'range loop - result(i) := L xor R(i); - end loop; - return result; - end function "xor"; - - function "xor" (L : UNRESOLVED_sfixed; R : STD_ULOGIC) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (L'range); - begin - for i in result'range loop - result(i) := L(i) xor R; - end loop; - return result; - end function "xor"; - - function "xnor" (L : STD_ULOGIC; R : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (R'range); - begin - for i in result'range loop - result(i) := L xnor R(i); - end loop; - return result; - end function "xnor"; - - function "xnor" (L : UNRESOLVED_sfixed; R : STD_ULOGIC) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (L'range); - begin - for i in result'range loop - result(i) := L(i) xnor R; - end loop; - return result; - end function "xnor"; - - -- Reduction operator_reduces - function and_reduce (l : UNRESOLVED_ufixed) return STD_ULOGIC is - begin - return and_reduce (to_sulv(l)); - end function and_reduce; - - function nand_reduce (l : UNRESOLVED_ufixed) return STD_ULOGIC is - begin - return nand_reduce (to_sulv(l)); - end function nand_reduce; - - function or_reduce (l : UNRESOLVED_ufixed) return STD_ULOGIC is - begin - return or_reduce (to_sulv(l)); - end function or_reduce; - - function nor_reduce (l : UNRESOLVED_ufixed) return STD_ULOGIC is - begin - return nor_reduce (to_sulv(l)); - end function nor_reduce; - - function xor_reduce (l : UNRESOLVED_ufixed) return STD_ULOGIC is - begin - return xor_reduce (to_sulv(l)); - end function xor_reduce; - - function xnor_reduce (l : UNRESOLVED_ufixed) return STD_ULOGIC is - begin - return xnor_reduce (to_sulv(l)); - end function xnor_reduce; - - function and_reduce (l : UNRESOLVED_sfixed) return STD_ULOGIC is - begin - return and_reduce (to_sulv(l)); - end function and_reduce; - - function nand_reduce (l : UNRESOLVED_sfixed) return STD_ULOGIC is - begin - return nand_reduce (to_sulv(l)); - end function nand_reduce; - - function or_reduce (l : UNRESOLVED_sfixed) return STD_ULOGIC is - begin - return or_reduce (to_sulv(l)); - end function or_reduce; - - function nor_reduce (l : UNRESOLVED_sfixed) return STD_ULOGIC is - begin - return nor_reduce (to_sulv(l)); - end function nor_reduce; - - function xor_reduce (l : UNRESOLVED_sfixed) return STD_ULOGIC is - begin - return xor_reduce (to_sulv(l)); - end function xor_reduce; - - function xnor_reduce (l : UNRESOLVED_sfixed) return STD_ULOGIC is - begin - return xnor_reduce (to_sulv(l)); - end function xnor_reduce; - -- End reduction operator_reduces - - function \?=\ (L, R : UNRESOLVED_ufixed) return STD_ULOGIC is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - variable lslv, rslv : UNSIGNED (lresize'length-1 downto 0); - begin -- ?= - if ((L'length < 1) or (R'length < 1)) then - assert NO_WARNING - report "fixed_pkg:" - & """?="": null detected, returning X" - severity warning; - return 'X'; - else - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_uns (lresize); - rslv := to_uns (rresize); - return \?=\ (lslv, rslv); - end if; - end function \?=\; - - function \?/=\ (L, R : UNRESOLVED_ufixed) return STD_ULOGIC is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - variable lslv, rslv : UNSIGNED (lresize'length-1 downto 0); - begin -- ?/= - if ((L'length < 1) or (R'length < 1)) then - assert NO_WARNING - report "fixed_pkg:" - & """?/="": null detected, returning X" - severity warning; - return 'X'; - else - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_uns (lresize); - rslv := to_uns (rresize); - return \?/=\ (lslv, rslv); - end if; - end function \?/=\; - - function \?>\ (L, R : UNRESOLVED_ufixed) return STD_ULOGIC is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - variable lslv, rslv : UNSIGNED (lresize'length-1 downto 0); - begin -- ?> - if ((l'length < 1) or (r'length < 1)) then - assert NO_WARNING - report "fixed_pkg:" - & """?>"": null detected, returning X" - severity warning; - return 'X'; - else - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_uns (lresize); - rslv := to_uns (rresize); - return \?>\ (lslv, rslv); - end if; - end function \?>\; - - function \?>=\ (L, R : UNRESOLVED_ufixed) return STD_ULOGIC is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - variable lslv, rslv : UNSIGNED (lresize'length-1 downto 0); - begin -- ?>= - if ((l'length < 1) or (r'length < 1)) then - assert NO_WARNING - report "fixed_pkg:" - & """?>="": null detected, returning X" - severity warning; - return 'X'; - else - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_uns (lresize); - rslv := to_uns (rresize); - return \?>=\ (lslv, rslv); - end if; - end function \?>=\; - - function \?<\ (L, R : UNRESOLVED_ufixed) return STD_ULOGIC is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - variable lslv, rslv : UNSIGNED (lresize'length-1 downto 0); - begin -- ?< - if ((l'length < 1) or (r'length < 1)) then - assert NO_WARNING - report "fixed_pkg:" - & """?<"": null detected, returning X" - severity warning; - return 'X'; - else - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_uns (lresize); - rslv := to_uns (rresize); - return \?<\ (lslv, rslv); - end if; - end function \?<\; - - function \?<=\ (L, R : UNRESOLVED_ufixed) return STD_ULOGIC is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - variable lslv, rslv : UNSIGNED (lresize'length-1 downto 0); - begin -- ?<= - if ((l'length < 1) or (r'length < 1)) then - assert NO_WARNING - report "fixed_pkg:" - & """?<="": null detected, returning X" - severity warning; - return 'X'; - else - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_uns (lresize); - rslv := to_uns (rresize); - return \?<=\ (lslv, rslv); - end if; - end function \?<=\; - - function \?=\ (L, R : UNRESOLVED_sfixed) return STD_ULOGIC is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - variable lslv, rslv : SIGNED (lresize'length-1 downto 0); - begin -- ?= - if ((L'length < 1) or (R'length < 1)) then - assert NO_WARNING - report "fixed_pkg:" - & """?="": null detected, returning X" - severity warning; - return 'X'; - else - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_s (lresize); - rslv := to_s (rresize); - return \?=\ (lslv, rslv); - end if; - end function \?=\; - - function \?/=\ (L, R : UNRESOLVED_sfixed) return STD_ULOGIC is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - variable lslv, rslv : SIGNED (lresize'length-1 downto 0); - begin -- ?/= - if ((L'length < 1) or (R'length < 1)) then - assert NO_WARNING - report "fixed_pkg:" - & """?/="": null detected, returning X" - severity warning; - return 'X'; - else - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_s (lresize); - rslv := to_s (rresize); - return \?/=\ (lslv, rslv); - end if; - end function \?/=\; - - function \?>\ (L, R : UNRESOLVED_sfixed) return STD_ULOGIC is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - variable lslv, rslv : SIGNED (lresize'length-1 downto 0); - begin -- ?> - if ((l'length < 1) or (r'length < 1)) then - assert NO_WARNING - report "fixed_pkg:" - & """?>"": null detected, returning X" - severity warning; - return 'X'; - else - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_s (lresize); - rslv := to_s (rresize); - return \?>\ (lslv, rslv); - end if; - end function \?>\; - - function \?>=\ (L, R : UNRESOLVED_sfixed) return STD_ULOGIC is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - variable lslv, rslv : SIGNED (lresize'length-1 downto 0); - begin -- ?>= - if ((l'length < 1) or (r'length < 1)) then - assert NO_WARNING - report "fixed_pkg:" - & """?>="": null detected, returning X" - severity warning; - return 'X'; - else - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_s (lresize); - rslv := to_s (rresize); - return \?>=\ (lslv, rslv); - end if; - end function \?>=\; - - function \?<\ (L, R : UNRESOLVED_sfixed) return STD_ULOGIC is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - variable lslv, rslv : SIGNED (lresize'length-1 downto 0); - begin -- ?< - if ((l'length < 1) or (r'length < 1)) then - assert NO_WARNING - report "fixed_pkg:" - & """?<"": null detected, returning X" - severity warning; - return 'X'; - else - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_s (lresize); - rslv := to_s (rresize); - return \?<\ (lslv, rslv); - end if; - end function \?<\; - - function \?<=\ (L, R : UNRESOLVED_sfixed) return STD_ULOGIC is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - variable lslv, rslv : SIGNED (lresize'length-1 downto 0); - begin -- ?<= - if ((l'length < 1) or (r'length < 1)) then - assert NO_WARNING - report "fixed_pkg:" - & """?<="": null detected, returning X" - severity warning; - return 'X'; - else - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_s (lresize); - rslv := to_s (rresize); - return \?<=\ (lslv, rslv); - end if; - end function \?<=\; - - -- Match function, similar to "std_match" from numeric_std - function std_match (L, R : UNRESOLVED_ufixed) return BOOLEAN is - begin - if (L'high = R'high and L'low = R'low) then - return std_match(to_sulv(L), to_sulv(R)); - else - assert NO_WARNING - report "fixed_pkg:" - & "STD_MATCH: L'RANGE /= R'RANGE, returning FALSE" - severity warning; - return false; - end if; - end function std_match; - - function std_match (L, R : UNRESOLVED_sfixed) return BOOLEAN is - begin - if (L'high = R'high and L'low = R'low) then - return std_match(to_sulv(L), to_sulv(R)); - else - assert NO_WARNING - report "fixed_pkg:" - & "STD_MATCH: L'RANGE /= R'RANGE, returning FALSE" - severity warning; - return false; - end if; - end function std_match; - - -- compare functions - function "=" ( - l, r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - variable lslv, rslv : UNSIGNED (lresize'length-1 downto 0); - begin - if (l'length < 1 or r'length < 1) then - assert NO_WARNING - report "fixed_pkg:" - & """="": null argument detected, returning FALSE" - severity warning; - return false; - elsif (Is_X(l) or Is_X(r)) then - assert NO_WARNING - report "fixed_pkg:" - & """="": metavalue detected, returning FALSE" - severity warning; - return false; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_uns (lresize); - rslv := to_uns (rresize); - return lslv = rslv; - end function "="; - - function "=" ( - l, r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - variable lslv, rslv : SIGNED (lresize'length-1 downto 0); - begin - if (l'length < 1 or r'length < 1) then - assert NO_WARNING - report "fixed_pkg:" - & """="": null argument detected, returning FALSE" - severity warning; - return false; - elsif (Is_X(l) or Is_X(r)) then - assert NO_WARNING - report "fixed_pkg:" - & """="": metavalue detected, returning FALSE" - severity warning; - return false; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_s (lresize); - rslv := to_s (rresize); - return lslv = rslv; - end function "="; - - function "/=" ( - l, r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - variable lslv, rslv : UNSIGNED (lresize'length-1 downto 0); - begin - if (l'length < 1 or r'length < 1) then - assert NO_WARNING - report "fixed_pkg:" - & """/="": null argument detected, returning TRUE" - severity warning; - return true; - elsif (Is_X(l) or Is_X(r)) then - assert NO_WARNING - report "fixed_pkg:" - & """/="": metavalue detected, returning TRUE" - severity warning; - return true; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_uns (lresize); - rslv := to_uns (rresize); - return lslv /= rslv; - end function "/="; - - function "/=" ( - l, r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - variable lslv, rslv : SIGNED (lresize'length-1 downto 0); - begin - if (l'length < 1 or r'length < 1) then - assert NO_WARNING - report "fixed_pkg:" - & """/="": null argument detected, returning TRUE" - severity warning; - return true; - elsif (Is_X(l) or Is_X(r)) then - assert NO_WARNING - report "fixed_pkg:" - & """/="": metavalue detected, returning TRUE" - severity warning; - return true; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_s (lresize); - rslv := to_s (rresize); - return lslv /= rslv; - end function "/="; - - function ">" ( - l, r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - variable lslv, rslv : UNSIGNED (lresize'length-1 downto 0); - begin - if (l'length < 1 or r'length < 1) then - assert NO_WARNING - report "fixed_pkg:" - & """>"": null argument detected, returning FALSE" - severity warning; - return false; - elsif (Is_X(l) or Is_X(r)) then - assert NO_WARNING - report "fixed_pkg:" - & """>"": metavalue detected, returning FALSE" - severity warning; - return false; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_uns (lresize); - rslv := to_uns (rresize); - return lslv > rslv; - end function ">"; - - function ">" ( - l, r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - variable lslv, rslv : SIGNED (lresize'length-1 downto 0); - begin - if (l'length < 1 or r'length < 1) then - assert NO_WARNING - report "fixed_pkg:" - & """>"": null argument detected, returning FALSE" - severity warning; - return false; - elsif (Is_X(l) or Is_X(r)) then - assert NO_WARNING - report "fixed_pkg:" - & """>"": metavalue detected, returning FALSE" - severity warning; - return false; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_s (lresize); - rslv := to_s (rresize); - return lslv > rslv; - end function ">"; - - function "<" ( - l, r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - variable lslv, rslv : UNSIGNED (lresize'length-1 downto 0); - begin - if (l'length < 1 or r'length < 1) then - assert NO_WARNING - report "fixed_pkg:" - & """<"": null argument detected, returning FALSE" - severity warning; - return false; - elsif (Is_X(l) or Is_X(r)) then - assert NO_WARNING - report "fixed_pkg:" - & """<"": metavalue detected, returning FALSE" - severity warning; - return false; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_uns (lresize); - rslv := to_uns (rresize); - return lslv < rslv; - end function "<"; - - function "<" ( - l, r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - variable lslv, rslv : SIGNED (lresize'length-1 downto 0); - begin - if (l'length < 1 or r'length < 1) then - assert NO_WARNING - report "fixed_pkg:" - & """<"": null argument detected, returning FALSE" - severity warning; - return false; - elsif (Is_X(l) or Is_X(r)) then - assert NO_WARNING - report "fixed_pkg:" - & """<"": metavalue detected, returning FALSE" - severity warning; - return false; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_s (lresize); - rslv := to_s (rresize); - return lslv < rslv; - end function "<"; - - function ">=" ( - l, r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - variable lslv, rslv : UNSIGNED (lresize'length-1 downto 0); - begin - if (l'length < 1 or r'length < 1) then - assert NO_WARNING - report "fixed_pkg:" - & """>="": null argument detected, returning FALSE" - severity warning; - return false; - elsif (Is_X(l) or Is_X(r)) then - assert NO_WARNING - report "fixed_pkg:" - & """>="": metavalue detected, returning FALSE" - severity warning; - return false; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_uns (lresize); - rslv := to_uns (rresize); - return lslv >= rslv; - end function ">="; - - function ">=" ( - l, r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - variable lslv, rslv : SIGNED (lresize'length-1 downto 0); - begin - if (l'length < 1 or r'length < 1) then - assert NO_WARNING - report "fixed_pkg:" - & """>="": null argument detected, returning FALSE" - severity warning; - return false; - elsif (Is_X(l) or Is_X(r)) then - assert NO_WARNING - report "fixed_pkg:" - & """>="": metavalue detected, returning FALSE" - severity warning; - return false; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_s (lresize); - rslv := to_s (rresize); - return lslv >= rslv; - end function ">="; - - function "<=" ( - l, r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - variable lslv, rslv : UNSIGNED (lresize'length-1 downto 0); - begin - if (l'length < 1 or r'length < 1) then - assert NO_WARNING - report "fixed_pkg:" - & """<="": null argument detected, returning FALSE" - severity warning; - return false; - elsif (Is_X(l) or Is_X(r)) then - assert NO_WARNING - report "fixed_pkg:" - & """<="": metavalue detected, returning FALSE" - severity warning; - return false; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_uns (lresize); - rslv := to_uns (rresize); - return lslv <= rslv; - end function "<="; - - function "<=" ( - l, r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - variable lslv, rslv : SIGNED (lresize'length-1 downto 0); - begin - if (l'length < 1 or r'length < 1) then - assert NO_WARNING - report "fixed_pkg:" - & """<="": null argument detected, returning FALSE" - severity warning; - return false; - elsif (Is_X(l) or Is_X(r)) then - assert NO_WARNING - report "fixed_pkg:" - & """<="": metavalue detected, returning FALSE" - severity warning; - return false; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - lslv := to_s (lresize); - rslv := to_s (rresize); - return lslv <= rslv; - end function "<="; - - -- overloads of the default maximum and minimum functions - function maximum (l, r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - begin - if (l'length < 1 or r'length < 1) then - return NAUF; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - if lresize > rresize then return lresize; - else return rresize; - end if; - end function maximum; - - function maximum (l, r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - begin - if (l'length < 1 or r'length < 1) then - return NASF; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - if lresize > rresize then return lresize; - else return rresize; - end if; - end function maximum; - - function minimum (l, r : UNRESOLVED_ufixed) return UNRESOLVED_ufixed is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_ufixed (left_index downto right_index); - begin - if (l'length < 1 or r'length < 1) then - return NAUF; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - if lresize > rresize then return rresize; - else return lresize; - end if; - end function minimum; - - function minimum (l, r : UNRESOLVED_sfixed) return UNRESOLVED_sfixed is - constant left_index : INTEGER := maximum(l'high, r'high); - constant right_index : INTEGER := mins(l'low, r'low); - variable lresize, rresize : UNRESOLVED_sfixed (left_index downto right_index); - begin - if (l'length < 1 or r'length < 1) then - return NASF; - end if; - lresize := resize (l, left_index, right_index); - rresize := resize (r, left_index, right_index); - if lresize > rresize then return rresize; - else return lresize; - end if; - end function minimum; - - function to_ufixed ( - arg : NATURAL; -- integer - constant left_index : INTEGER; -- left index (high index) - constant right_index : INTEGER := 0; -- right index - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_ufixed is - constant fw : INTEGER := mins (right_index, right_index); -- catch literals - variable result : UNRESOLVED_ufixed (left_index downto fw); - variable sresult : UNRESOLVED_ufixed (left_index downto 0) := - (others => '0'); -- integer portion - variable argx : NATURAL; -- internal version of arg - begin - if (result'length < 1) then - return NAUF; - end if; - if arg /= 0 then - argx := arg; - for I in 0 to sresult'left loop - if (argx mod 2) = 0 then - sresult(I) := '0'; - else - sresult(I) := '1'; - end if; - argx := argx/2; - end loop; - if argx /= 0 then - assert NO_WARNING - report "fixed_pkg:" - & "TO_UFIXED(NATURAL): vector truncated" - severity warning; - if overflow_style = fixed_saturate then - return saturate (left_index, right_index); - end if; - end if; - result := resize (arg => sresult, - left_index => left_index, - right_index => right_index, - round_style => round_style, - overflow_style => overflow_style); - else - result := (others => '0'); - end if; - return result; - end function to_ufixed; - - function to_sfixed ( - arg : INTEGER; -- integer - constant left_index : INTEGER; -- left index (high index) - constant right_index : INTEGER := 0; -- right index - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_sfixed is - constant fw : INTEGER := mins (right_index, right_index); -- catch literals - variable result : UNRESOLVED_sfixed (left_index downto fw); - variable sresult : UNRESOLVED_sfixed (left_index downto 0) := - (others => '0'); -- integer portion - variable argx : INTEGER; -- internal version of arg - variable sign : STD_ULOGIC; -- sign of input - begin - if (result'length < 1) then -- null range - return NASF; - end if; - if arg /= 0 then - if (arg < 0) then - sign := '1'; - argx := -(arg + 1); - else - sign := '0'; - argx := arg; - end if; - for I in 0 to sresult'left loop - if (argx mod 2) = 0 then - sresult(I) := sign; - else - sresult(I) := not sign; - end if; - argx := argx/2; - end loop; - if argx /= 0 or left_index < 0 or sign /= sresult(sresult'left) then - assert NO_WARNING - report "fixed_pkg:" - & "TO_SFIXED(INTEGER): vector truncated" - severity warning; - if overflow_style = fixed_saturate then -- saturate - if arg < 0 then - result := not saturate (result'high, result'low); -- underflow - else - result := saturate (result'high, result'low); -- overflow - end if; - return result; - end if; - end if; - result := resize (arg => sresult, - left_index => left_index, - right_index => right_index, - round_style => round_style, - overflow_style => overflow_style); - else - result := (others => '0'); - end if; - return result; - end function to_sfixed; - - function to_ufixed ( - arg : REAL; -- real - constant left_index : INTEGER; -- left index (high index) - constant right_index : INTEGER; -- right index - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style; - constant guard_bits : NATURAL := fixed_guard_bits) -- # of guard bits - return UNRESOLVED_ufixed is - constant fw : INTEGER := mins (right_index, right_index); -- catch literals - variable result : UNRESOLVED_ufixed (left_index downto fw) := - (others => '0'); - variable Xresult : UNRESOLVED_ufixed (left_index downto - fw-guard_bits) := - (others => '0'); - variable presult : REAL; --- variable overflow_needed : BOOLEAN; - begin - -- If negative or null range, return. - if (left_index < fw) then - return NAUF; - end if; - if (arg < 0.0) then - report "fixed_pkg:" - & "TO_UFIXED: Negative argument passed " - & REAL'image(arg) severity error; - return result; - end if; - presult := arg; - if presult >= (2.0**(left_index+1)) then - assert NO_WARNING report "fixed_pkg:" - & "TO_UFIXED(REAL): vector truncated" - severity warning; - if overflow_style = fixed_wrap then - presult := presult mod (2.0**(left_index+1)); -- wrap - else - return saturate (result'high, result'low); - end if; - end if; - for i in Xresult'range loop - if presult >= 2.0**i then - Xresult(i) := '1'; - presult := presult - 2.0**i; - else - Xresult(i) := '0'; - end if; - end loop; - if guard_bits > 0 and round_style = fixed_round then - result := round_fixed (arg => Xresult (left_index - downto right_index), - remainder => Xresult (right_index-1 downto - right_index-guard_bits), - overflow_style => overflow_style); - else - result := Xresult (result'range); - end if; - return result; - end function to_ufixed; - - function to_sfixed ( - arg : REAL; -- real - constant left_index : INTEGER; -- left index (high index) - constant right_index : INTEGER; -- right index - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style; - constant guard_bits : NATURAL := fixed_guard_bits) -- # of guard bits - return UNRESOLVED_sfixed is - constant fw : INTEGER := mins (right_index, right_index); -- catch literals - variable result : UNRESOLVED_sfixed (left_index downto fw) := - (others => '0'); - variable Xresult : UNRESOLVED_sfixed (left_index+1 downto fw-guard_bits) := - (others => '0'); - variable presult : REAL; - begin - if (left_index < fw) then -- null range - return NASF; - end if; - if (arg >= (2.0**left_index) or arg < -(2.0**left_index)) then - assert NO_WARNING report "fixed_pkg:" - & "TO_SFIXED(REAL): vector truncated" - severity warning; - if overflow_style = fixed_saturate then - if arg < 0.0 then -- saturate - result := not saturate (result'high, result'low); -- underflow - else - result := saturate (result'high, result'low); -- overflow - end if; - return result; - else - presult := abs(arg) mod (2.0**(left_index+1)); -- wrap - end if; - else - presult := abs(arg); - end if; - for i in Xresult'range loop - if presult >= 2.0**i then - Xresult(i) := '1'; - presult := presult - 2.0**i; - else - Xresult(i) := '0'; - end if; - end loop; - if arg < 0.0 then - Xresult := to_fixed(-to_s(Xresult), Xresult'high, Xresult'low); - end if; - if guard_bits > 0 and round_style = fixed_round then - result := round_fixed (arg => Xresult (left_index - downto right_index), - remainder => Xresult (right_index-1 downto - right_index-guard_bits), - overflow_style => overflow_style); - else - result := Xresult (result'range); - end if; - return result; - end function to_sfixed; - - function to_ufixed ( - arg : UNSIGNED; -- unsigned - constant left_index : INTEGER; -- left index (high index) - constant right_index : INTEGER := 0; -- right index - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_ufixed is - constant ARG_LEFT : INTEGER := ARG'length-1; - alias XARG : UNSIGNED(ARG_LEFT downto 0) is ARG; - variable result : UNRESOLVED_ufixed (left_index downto right_index); - begin - if arg'length < 1 or (left_index < right_index) then - return NAUF; - end if; - result := resize (arg => UNRESOLVED_ufixed (XARG), - left_index => left_index, - right_index => right_index, - round_style => round_style, - overflow_style => overflow_style); - return result; - end function to_ufixed; - - -- converted version - function to_ufixed ( - arg : UNSIGNED) -- unsigned - return UNRESOLVED_ufixed is - constant ARG_LEFT : INTEGER := ARG'length-1; - alias XARG : UNSIGNED(ARG_LEFT downto 0) is ARG; - begin - if arg'length < 1 then - return NAUF; - end if; - return UNRESOLVED_ufixed(xarg); - end function to_ufixed; - - function to_sfixed ( - arg : SIGNED; -- signed - constant left_index : INTEGER; -- left index (high index) - constant right_index : INTEGER := 0; -- right index - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_sfixed is - constant ARG_LEFT : INTEGER := ARG'length-1; - alias XARG : SIGNED(ARG_LEFT downto 0) is ARG; - variable result : UNRESOLVED_sfixed (left_index downto right_index); - begin - if arg'length < 1 or (left_index < right_index) then - return NASF; - end if; - result := resize (arg => UNRESOLVED_sfixed (XARG), - left_index => left_index, - right_index => right_index, - round_style => round_style, - overflow_style => overflow_style); - return result; - end function to_sfixed; - - -- converted version - function to_sfixed ( - arg : SIGNED) -- signed - return UNRESOLVED_sfixed is - constant ARG_LEFT : INTEGER := ARG'length-1; - alias XARG : SIGNED(ARG_LEFT downto 0) is ARG; - begin - if arg'length < 1 then - return NASF; - end if; - return UNRESOLVED_sfixed(xarg); - end function to_sfixed; - - function to_sfixed (arg : UNRESOLVED_ufixed) return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (arg'high+1 downto arg'low); - begin - if arg'length < 1 then - return NASF; - end if; - result (arg'high downto arg'low) := UNRESOLVED_sfixed(cleanvec(arg)); - result (arg'high+1) := '0'; - return result; - end function to_sfixed; - - -- Because of the fairly complicated sizing rules in the fixed point - -- packages these functions are provided to compute the result ranges - -- Example: - -- signal uf1 : ufixed (3 downto -3); - -- signal uf2 : ufixed (4 downto -2); - -- signal uf1multuf2 : ufixed (ufixed_high (3, -3, '*', 4, -2) downto - -- ufixed_low (3, -3, '*', 4, -2)); - -- uf1multuf2 <= uf1 * uf2; - -- Valid characters: '+', '-', '*', '/', 'r' or 'R' (rem), 'm' or 'M' (mod), - -- '1' (reciprocal), 'A', 'a' (abs), 'N', 'n' (-sfixed) - function ufixed_high (left_index, right_index : INTEGER; - operation : CHARACTER := 'X'; - left_index2, right_index2 : INTEGER := 0) - return INTEGER is - begin - case operation is - when '+'| '-' => return maximum (left_index, left_index2) + 1; - when '*' => return left_index + left_index2 + 1; - when '/' => return left_index - right_index2; - when '1' => return -right_index; -- reciprocal - when 'R'|'r' => return mins (left_index, left_index2); -- "rem" - when 'M'|'m' => return mins (left_index, left_index2); -- "mod" - when others => return left_index; -- For abs and default - end case; - end function ufixed_high; - - function ufixed_low (left_index, right_index : INTEGER; - operation : CHARACTER := 'X'; - left_index2, right_index2 : INTEGER := 0) - return INTEGER is - begin - case operation is - when '+'| '-' => return mins (right_index, right_index2); - when '*' => return right_index + right_index2; - when '/' => return right_index - left_index2 - 1; - when '1' => return -left_index - 1; -- reciprocal - when 'R'|'r' => return mins (right_index, right_index2); -- "rem" - when 'M'|'m' => return mins (right_index, right_index2); -- "mod" - when others => return right_index; -- for abs and default - end case; - end function ufixed_low; - - function sfixed_high (left_index, right_index : INTEGER; - operation : CHARACTER := 'X'; - left_index2, right_index2 : INTEGER := 0) - return INTEGER is - begin - case operation is - when '+'| '-' => return maximum (left_index, left_index2) + 1; - when '*' => return left_index + left_index2 + 1; - when '/' => return left_index - right_index2 + 1; - when '1' => return -right_index + 1; -- reciprocal - when 'R'|'r' => return mins (left_index, left_index2); -- "rem" - when 'M'|'m' => return left_index2; -- "mod" - when 'A'|'a' => return left_index + 1; -- "abs" - when 'N'|'n' => return left_index + 1; -- -sfixed - when others => return left_index; - end case; - end function sfixed_high; - - function sfixed_low (left_index, right_index : INTEGER; - operation : CHARACTER := 'X'; - left_index2, right_index2 : INTEGER := 0) - return INTEGER is - begin - case operation is - when '+'| '-' => return mins (right_index, right_index2); - when '*' => return right_index + right_index2; - when '/' => return right_index - left_index2; - when '1' => return -left_index; -- reciprocal - when 'R'|'r' => return mins (right_index, right_index2); -- "rem" - when 'M'|'m' => return mins (right_index, right_index2); -- "mod" - when others => return right_index; -- default for abs, neg and default - end case; - end function sfixed_low; - - -- Same as above, but using the "size_res" input only for their ranges: - -- signal uf1multuf2 : ufixed (ufixed_high (uf1, '*', uf2) downto - -- ufixed_low (uf1, '*', uf2)); - -- uf1multuf2 <= uf1 * uf2; - function ufixed_high (size_res : UNRESOLVED_ufixed; - operation : CHARACTER := 'X'; - size_res2 : UNRESOLVED_ufixed) - return INTEGER is - begin - return ufixed_high (left_index => size_res'high, - right_index => size_res'low, - operation => operation, - left_index2 => size_res2'high, - right_index2 => size_res2'low); - end function ufixed_high; - - function ufixed_low (size_res : UNRESOLVED_ufixed; - operation : CHARACTER := 'X'; - size_res2 : UNRESOLVED_ufixed) - return INTEGER is - begin - return ufixed_low (left_index => size_res'high, - right_index => size_res'low, - operation => operation, - left_index2 => size_res2'high, - right_index2 => size_res2'low); - end function ufixed_low; - - function sfixed_high (size_res : UNRESOLVED_sfixed; - operation : CHARACTER := 'X'; - size_res2 : UNRESOLVED_sfixed) - return INTEGER is - begin - return sfixed_high (left_index => size_res'high, - right_index => size_res'low, - operation => operation, - left_index2 => size_res2'high, - right_index2 => size_res2'low); - end function sfixed_high; - - function sfixed_low (size_res : UNRESOLVED_sfixed; - operation : CHARACTER := 'X'; - size_res2 : UNRESOLVED_sfixed) - return INTEGER is - begin - return sfixed_low (left_index => size_res'high, - right_index => size_res'low, - operation => operation, - left_index2 => size_res2'high, - right_index2 => size_res2'low); - end function sfixed_low; - - -- purpose: returns a saturated number - function saturate ( - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_ufixed is - constant sat : UNRESOLVED_ufixed (left_index downto right_index) := - (others => '1'); - begin - return sat; - end function saturate; - - -- purpose: returns a saturated number - function saturate ( - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_sfixed is - variable sat : UNRESOLVED_sfixed (left_index downto right_index) := - (others => '1'); - begin - -- saturate positive, to saturate negative, just do "not saturate()" - sat (left_index) := '0'; - return sat; - end function saturate; - - function saturate ( - size_res : UNRESOLVED_ufixed) -- only the size of this is used - return UNRESOLVED_ufixed is - begin - return saturate (size_res'high, size_res'low); - end function saturate; - - function saturate ( - size_res : UNRESOLVED_sfixed) -- only the size of this is used - return UNRESOLVED_sfixed is - begin - return saturate (size_res'high, size_res'low); - end function saturate; - - -- As a concession to those who use a graphical DSP environment, - -- these functions take parameters in those tools format and create - -- fixed point numbers. These functions are designed to convert from - -- a std_logic_vector to the VHDL fixed point format using the conventions - -- of these packages. In a pure VHDL environment you should use the - -- "to_ufixed" and "to_sfixed" routines. - -- Unsigned fixed point - function to_UFix ( - arg : STD_ULOGIC_VECTOR; - width : NATURAL; -- width of vector - fraction : NATURAL) -- width of fraction - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (width-fraction-1 downto -fraction); - begin - if (arg'length /= result'length) then - report "fixed_pkg:" - & "TO_UFIX (STD_ULOGIC_VECTOR) " - & "Vector lengths do not match. Input length is " - & INTEGER'image(arg'length) & " and output will be " - & INTEGER'image(result'length) & " wide." - severity error; - return NAUF; - else - result := to_ufixed (arg, result'high, result'low); - return result; - end if; - end function to_UFix; - - -- signed fixed point - function to_SFix ( - arg : STD_ULOGIC_VECTOR; - width : NATURAL; -- width of vector - fraction : NATURAL) -- width of fraction - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (width-fraction-1 downto -fraction); - begin - if (arg'length /= result'length) then - report "fixed_pkg:" - & "TO_SFIX (STD_ULOGIC_VECTOR) " - & "Vector lengths do not match. Input length is " - & INTEGER'image(arg'length) & " and output will be " - & INTEGER'image(result'length) & " wide." - severity error; - return NASF; - else - result := to_sfixed (arg, result'high, result'low); - return result; - end if; - end function to_SFix; - - -- finding the bounds of a number. These functions can be used like this: - -- signal xxx : ufixed (7 downto -3); - -- -- Which is the same as "ufixed (UFix_high (11,3) downto UFix_low(11,3))" - -- signal yyy : ufixed (UFix_high (11, 3, "+", 11, 3) - -- downto UFix_low(11, 3, "+", 11, 3)); - -- Where "11" is the width of xxx (xxx'length), - -- and 3 is the lower bound (abs (xxx'low)) - -- In a pure VHDL environment use "ufixed_high" and "ufixed_low" - function ufix_high ( - width, fraction : NATURAL; - operation : CHARACTER := 'X'; - width2, fraction2 : NATURAL := 0) - return INTEGER is - begin - return ufixed_high (left_index => width - 1 - fraction, - right_index => -fraction, - operation => operation, - left_index2 => width2 - 1 - fraction2, - right_index2 => -fraction2); - end function ufix_high; - - function ufix_low ( - width, fraction : NATURAL; - operation : CHARACTER := 'X'; - width2, fraction2 : NATURAL := 0) - return INTEGER is - begin - return ufixed_low (left_index => width - 1 - fraction, - right_index => -fraction, - operation => operation, - left_index2 => width2 - 1 - fraction2, - right_index2 => -fraction2); - end function ufix_low; - - function sfix_high ( - width, fraction : NATURAL; - operation : CHARACTER := 'X'; - width2, fraction2 : NATURAL := 0) - return INTEGER is - begin - return sfixed_high (left_index => width - fraction, - right_index => -fraction, - operation => operation, - left_index2 => width2 - fraction2, - right_index2 => -fraction2); - end function sfix_high; - - function sfix_low ( - width, fraction : NATURAL; - operation : CHARACTER := 'X'; - width2, fraction2 : NATURAL := 0) - return INTEGER is - begin - return sfixed_low (left_index => width - fraction, - right_index => -fraction, - operation => operation, - left_index2 => width2 - fraction2, - right_index2 => -fraction2); - end function sfix_low; - - function to_unsigned ( - arg : UNRESOLVED_ufixed; -- ufixed point input - constant size : NATURAL; -- length of output - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNSIGNED is - begin - return to_uns(resize (arg => arg, - left_index => size-1, - right_index => 0, - round_style => round_style, - overflow_style => overflow_style)); - end function to_unsigned; - - function to_unsigned ( - arg : UNRESOLVED_ufixed; -- ufixed point input - size_res : UNSIGNED; -- length of output - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNSIGNED is - begin - return to_unsigned (arg => arg, - size => size_res'length, - round_style => round_style, - overflow_style => overflow_style); - end function to_unsigned; - - function to_signed ( - arg : UNRESOLVED_sfixed; -- sfixed point input - constant size : NATURAL; -- length of output - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return SIGNED is - begin - return to_s(resize (arg => arg, - left_index => size-1, - right_index => 0, - round_style => round_style, - overflow_style => overflow_style)); - end function to_signed; - - function to_signed ( - arg : UNRESOLVED_sfixed; -- sfixed point input - size_res : SIGNED; -- used for length of output - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return SIGNED is - begin - return to_signed (arg => arg, - size => size_res'length, - round_style => round_style, - overflow_style => overflow_style); - end function to_signed; - - function to_real ( - arg : UNRESOLVED_ufixed) -- ufixed point input - return REAL is - constant left_index : INTEGER := arg'high; - constant right_index : INTEGER := arg'low; - variable result : REAL; -- result - variable arg_int : UNRESOLVED_ufixed (left_index downto right_index); - begin - if (arg'length < 1) then - return 0.0; - end if; - arg_int := to_x01(cleanvec(arg)); - if (Is_X(arg_int)) then - assert NO_WARNING - report "fixed_pkg:" - & "TO_REAL (ufixed): metavalue detected, returning 0.0" - severity warning; - return 0.0; - end if; - result := 0.0; - for i in arg_int'range loop - if (arg_int(i) = '1') then - result := result + (2.0**i); - end if; - end loop; - return result; - end function to_real; - - function to_real ( - arg : UNRESOLVED_sfixed) -- ufixed point input - return REAL is - constant left_index : INTEGER := arg'high; - constant right_index : INTEGER := arg'low; - variable result : REAL; -- result - variable arg_int : UNRESOLVED_sfixed (left_index downto right_index); - -- unsigned version of argument - variable arg_uns : UNRESOLVED_ufixed (left_index downto right_index); - -- absolute of argument - begin - if (arg'length < 1) then - return 0.0; - end if; - arg_int := to_x01(cleanvec(arg)); - if (Is_X(arg_int)) then - assert NO_WARNING - report "fixed_pkg:" - & "TO_REAL (sfixed): metavalue detected, returning 0.0" - severity warning; - return 0.0; - end if; - arg_uns := to_ufixed (arg_int); - result := to_real (arg_uns); - if (arg_int(arg_int'high) = '1') then - result := -result; - end if; - return result; - end function to_real; - - function to_integer ( - arg : UNRESOLVED_ufixed; -- fixed point input - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return NATURAL is - constant left_index : INTEGER := arg'high; - variable arg_uns : UNSIGNED (left_index+1 downto 0) - := (others => '0'); - begin - if (arg'length < 1) then - return 0; - end if; - if (Is_X (arg)) then - assert NO_WARNING - report "fixed_pkg:" - & "TO_INTEGER (ufixed): metavalue detected, returning 0" - severity warning; - return 0; - end if; - if (left_index < -1) then - return 0; - end if; - arg_uns := to_uns(resize (arg => arg, - left_index => arg_uns'high, - right_index => 0, - round_style => round_style, - overflow_style => overflow_style)); - return to_integer (arg_uns); - end function to_integer; - - function to_integer ( - arg : UNRESOLVED_sfixed; -- fixed point input - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return INTEGER is - constant left_index : INTEGER := arg'high; - constant right_index : INTEGER := arg'low; - variable arg_s : SIGNED (left_index+1 downto 0); - begin - if (arg'length < 1) then - return 0; - end if; - if (Is_X (arg)) then - assert NO_WARNING - report "fixed_pkg:" - & "TO_INTEGER (sfixed): metavalue detected, returning 0" - severity warning; - return 0; - end if; - if (left_index < -1) then - return 0; - end if; - arg_s := to_s(resize (arg => arg, - left_index => arg_s'high, - right_index => 0, - round_style => round_style, - overflow_style => overflow_style)); - return to_integer (arg_s); - end function to_integer; - - function to_01 ( - s : UNRESOLVED_ufixed; -- ufixed point input - constant XMAP : STD_ULOGIC := '0') -- Map x to - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (s'range); -- result - begin - if (s'length < 1) then - assert NO_WARNING - report "fixed_pkg:" - & "TO_01(ufixed): null detected, returning NULL" - severity warning; - return NAUF; - end if; - return to_fixed (to_01(to_uns(s), XMAP), s'high, s'low); - end function to_01; - - function to_01 ( - s : UNRESOLVED_sfixed; -- sfixed point input - constant XMAP : STD_ULOGIC := '0') -- Map x to - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (s'range); - begin - if (s'length < 1) then - assert NO_WARNING - report "fixed_pkg:" - & "TO_01(sfixed): null detected, returning NULL" - severity warning; - return NASF; - end if; - return to_fixed (to_01(to_s(s), XMAP), s'high, s'low); - end function to_01; - - function Is_X ( - arg : UNRESOLVED_ufixed) - return BOOLEAN is - variable argslv : STD_ULOGIC_VECTOR (arg'length-1 downto 0); -- slv - begin - argslv := to_sulv(arg); - return Is_X (argslv); - end function Is_X; - - function Is_X ( - arg : UNRESOLVED_sfixed) - return BOOLEAN is - variable argslv : STD_ULOGIC_VECTOR (arg'length-1 downto 0); -- slv - begin - argslv := to_sulv(arg); - return Is_X (argslv); - end function Is_X; - - function To_X01 ( - arg : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed is - begin - return to_ufixed (To_X01(to_sulv(arg)), arg'high, arg'low); - end function To_X01; - - function to_X01 ( - arg : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed is - begin - return to_sfixed (To_X01(to_sulv(arg)), arg'high, arg'low); - end function To_X01; - - function To_X01Z ( - arg : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed is - begin - return to_ufixed (To_X01Z(to_sulv(arg)), arg'high, arg'low); - end function To_X01Z; - - function to_X01Z ( - arg : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed is - begin - return to_sfixed (To_X01Z(to_sulv(arg)), arg'high, arg'low); - end function To_X01Z; - - function To_UX01 ( - arg : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed is - begin - return to_ufixed (To_UX01(to_sulv(arg)), arg'high, arg'low); - end function To_UX01; - - function to_UX01 ( - arg : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed is - begin - return to_sfixed (To_UX01(to_sulv(arg)), arg'high, arg'low); - end function To_UX01; - - function resize ( - arg : UNRESOLVED_ufixed; -- input - constant left_index : INTEGER; -- integer portion - constant right_index : INTEGER; -- size of fraction - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_ufixed is - constant arghigh : INTEGER := maximum (arg'high, arg'low); - constant arglow : INTEGER := mine (arg'high, arg'low); - variable invec : UNRESOLVED_ufixed (arghigh downto arglow); - variable result : UNRESOLVED_ufixed(left_index downto right_index) := - (others => '0'); - variable needs_rounding : BOOLEAN := false; - begin -- resize - if (arg'length < 1) or (result'length < 1) then - return NAUF; - elsif (invec'length < 1) then - return result; -- string literal value - else - invec := cleanvec(arg); - if (right_index > arghigh) then -- return top zeros - needs_rounding := (round_style = fixed_round) and - (right_index = arghigh+1); - elsif (left_index < arglow) then -- return overflow - if (overflow_style = fixed_saturate) and - (or_reduce(to_sulv(invec)) = '1') then - result := saturate (result'high, result'low); -- saturate - end if; - elsif (arghigh > left_index) then - -- wrap or saturate? - if (overflow_style = fixed_saturate and - or_reduce (to_sulv(invec(arghigh downto left_index+1))) = '1') - then - result := saturate (result'high, result'low); -- saturate - else - if (arglow >= right_index) then - result (left_index downto arglow) := - invec(left_index downto arglow); - else - result (left_index downto right_index) := - invec (left_index downto right_index); - needs_rounding := (round_style = fixed_round); -- round - end if; - end if; - else -- arghigh <= integer width - if (arglow >= right_index) then - result (arghigh downto arglow) := invec; - else - result (arghigh downto right_index) := - invec (arghigh downto right_index); - needs_rounding := (round_style = fixed_round); -- round - end if; - end if; - -- Round result - if needs_rounding then - result := round_fixed (arg => result, - remainder => invec (right_index-1 - downto arglow), - overflow_style => overflow_style); - end if; - return result; - end if; - end function resize; - - function resize ( - arg : UNRESOLVED_sfixed; -- input - constant left_index : INTEGER; -- integer portion - constant right_index : INTEGER; -- size of fraction - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_sfixed is - constant arghigh : INTEGER := maximum (arg'high, arg'low); - constant arglow : INTEGER := mine (arg'high, arg'low); - variable invec : UNRESOLVED_sfixed (arghigh downto arglow); - variable result : UNRESOLVED_sfixed(left_index downto right_index) := - (others => '0'); - variable reduced : STD_ULOGIC; - variable needs_rounding : BOOLEAN := false; -- rounding - begin -- resize - if (arg'length < 1) or (result'length < 1) then - return NASF; - elsif (invec'length < 1) then - return result; -- string literal value - else - invec := cleanvec(arg); - if (right_index > arghigh) then -- return top zeros - if (arg'low /= INTEGER'low) then -- check for a literal - result := (others => arg(arghigh)); -- sign extend - end if; - needs_rounding := (round_style = fixed_round) and - (right_index = arghigh+1); - elsif (left_index < arglow) then -- return overflow - if (overflow_style = fixed_saturate) then - reduced := or_reduce (to_sulv(invec)); - if (reduced = '1') then - if (invec(arghigh) = '0') then - -- saturate POSITIVE - result := saturate (result'high, result'low); - else - -- saturate negative - result := not saturate (result'high, result'low); - end if; - -- else return 0 (input was 0) - end if; - -- else return 0 (wrap) - end if; - elsif (arghigh > left_index) then - if (invec(arghigh) = '0') then - reduced := or_reduce (to_sulv(invec(arghigh-1 downto - left_index))); - if overflow_style = fixed_saturate and reduced = '1' then - -- saturate positive - result := saturate (result'high, result'low); - else - if (right_index > arglow) then - result := invec (left_index downto right_index); - needs_rounding := (round_style = fixed_round); - else - result (left_index downto arglow) := - invec (left_index downto arglow); - end if; - end if; - else - reduced := and_reduce (to_sulv(invec(arghigh-1 downto - left_index))); - if overflow_style = fixed_saturate and reduced = '0' then - result := not saturate (result'high, result'low); - else - if (right_index > arglow) then - result := invec (left_index downto right_index); - needs_rounding := (round_style = fixed_round); - else - result (left_index downto arglow) := - invec (left_index downto arglow); - end if; - end if; - end if; - else -- arghigh <= integer width - if (arglow >= right_index) then - result (arghigh downto arglow) := invec; - else - result (arghigh downto right_index) := - invec (arghigh downto right_index); - needs_rounding := (round_style = fixed_round); -- round - end if; - if (left_index > arghigh) then -- sign extend - result(left_index downto arghigh+1) := (others => invec(arghigh)); - end if; - end if; - -- Round result - if (needs_rounding) then - result := round_fixed (arg => result, - remainder => invec (right_index-1 - downto arglow), - overflow_style => overflow_style); - end if; - return result; - end if; - end function resize; - - -- size_res functions - -- These functions compute the size from a passed variable named "size_res" - -- The only part of this variable used it it's size, it is never passed - -- to a lower level routine. - function to_ufixed ( - arg : STD_ULOGIC_VECTOR; -- shifted vector - size_res : UNRESOLVED_ufixed) -- for size only - return UNRESOLVED_ufixed is - constant fw : INTEGER := mine (size_res'low, size_res'low); -- catch literals - variable result : UNRESOLVED_ufixed (size_res'left downto fw); - begin - if (result'length < 1 or arg'length < 1) then - return NAUF; - else - result := to_ufixed (arg => arg, - left_index => size_res'high, - right_index => size_res'low); - return result; - end if; - end function to_ufixed; - - function to_sfixed ( - arg : STD_ULOGIC_VECTOR; -- shifted vector - size_res : UNRESOLVED_sfixed) -- for size only - return UNRESOLVED_sfixed is - constant fw : INTEGER := mine (size_res'low, size_res'low); -- catch literals - variable result : UNRESOLVED_sfixed (size_res'left downto fw); - begin - if (result'length < 1 or arg'length < 1) then - return NASF; - else - result := to_sfixed (arg => arg, - left_index => size_res'high, - right_index => size_res'low); - return result; - end if; - end function to_sfixed; - - function to_ufixed ( - arg : NATURAL; -- integer - size_res : UNRESOLVED_ufixed; -- for size only - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_ufixed is - constant fw : INTEGER := mine (size_res'low, size_res'low); -- catch literals - variable result : UNRESOLVED_ufixed (size_res'left downto fw); - begin - if (result'length < 1) then - return NAUF; - else - result := to_ufixed (arg => arg, - left_index => size_res'high, - right_index => size_res'low, - round_style => round_style, - overflow_style => overflow_style); - return result; - end if; - end function to_ufixed; - - function to_sfixed ( - arg : INTEGER; -- integer - size_res : UNRESOLVED_sfixed; -- for size only - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_sfixed is - constant fw : INTEGER := mine (size_res'low, size_res'low); -- catch literals - variable result : UNRESOLVED_sfixed (size_res'left downto fw); - begin - if (result'length < 1) then - return NASF; - else - result := to_sfixed (arg => arg, - left_index => size_res'high, - right_index => size_res'low, - round_style => round_style, - overflow_style => overflow_style); - return result; - end if; - end function to_sfixed; - - function to_ufixed ( - arg : REAL; -- real - size_res : UNRESOLVED_ufixed; -- for size only - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style; - constant guard_bits : NATURAL := fixed_guard_bits) -- # of guard bits - return UNRESOLVED_ufixed is - constant fw : INTEGER := mine (size_res'low, size_res'low); -- catch literals - variable result : UNRESOLVED_ufixed (size_res'left downto fw); - begin - if (result'length < 1) then - return NAUF; - else - result := to_ufixed (arg => arg, - left_index => size_res'high, - right_index => size_res'low, - guard_bits => guard_bits, - round_style => round_style, - overflow_style => overflow_style); - return result; - end if; - end function to_ufixed; - - function to_sfixed ( - arg : REAL; -- real - size_res : UNRESOLVED_sfixed; -- for size only - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style; - constant guard_bits : NATURAL := fixed_guard_bits) -- # of guard bits - return UNRESOLVED_sfixed is - constant fw : INTEGER := mine (size_res'low, size_res'low); -- catch literals - variable result : UNRESOLVED_sfixed (size_res'left downto fw); - begin - if (result'length < 1) then - return NASF; - else - result := to_sfixed (arg => arg, - left_index => size_res'high, - right_index => size_res'low, - guard_bits => guard_bits, - round_style => round_style, - overflow_style => overflow_style); - return result; - end if; - end function to_sfixed; - - function to_ufixed ( - arg : UNSIGNED; -- unsigned - size_res : UNRESOLVED_ufixed; -- for size only - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_ufixed is - constant fw : INTEGER := mine (size_res'low, size_res'low); -- catch literals - variable result : UNRESOLVED_ufixed (size_res'left downto fw); - begin - if (result'length < 1 or arg'length < 1) then - return NAUF; - else - result := to_ufixed (arg => arg, - left_index => size_res'high, - right_index => size_res'low, - round_style => round_style, - overflow_style => overflow_style); - return result; - end if; - end function to_ufixed; - - function to_sfixed ( - arg : SIGNED; -- signed - size_res : UNRESOLVED_sfixed; -- for size only - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_sfixed is - constant fw : INTEGER := mine (size_res'low, size_res'low); -- catch literals - variable result : UNRESOLVED_sfixed (size_res'left downto fw); - begin - if (result'length < 1 or arg'length < 1) then - return NASF; - else - result := to_sfixed (arg => arg, - left_index => size_res'high, - right_index => size_res'low, - round_style => round_style, - overflow_style => overflow_style); - return result; - end if; - end function to_sfixed; - - function resize ( - arg : UNRESOLVED_ufixed; -- input - size_res : UNRESOLVED_ufixed; -- for size only - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_ufixed is - constant fw : INTEGER := mine (size_res'low, size_res'low); -- catch literals - variable result : UNRESOLVED_ufixed (size_res'high downto fw); - begin - if (result'length < 1 or arg'length < 1) then - return NAUF; - else - result := resize (arg => arg, - left_index => size_res'high, - right_index => size_res'low, - round_style => round_style, - overflow_style => overflow_style); - return result; - end if; - end function resize; - - function resize ( - arg : UNRESOLVED_sfixed; -- input - size_res : UNRESOLVED_sfixed; -- for size only - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; - constant round_style : fixed_round_style_type := fixed_round_style) - return UNRESOLVED_sfixed is - constant fw : INTEGER := mine (size_res'low, size_res'low); -- catch literals - variable result : UNRESOLVED_sfixed (size_res'high downto fw); - begin - if (result'length < 1 or arg'length < 1) then - return NASF; - else - result := resize (arg => arg, - left_index => size_res'high, - right_index => size_res'low, - round_style => round_style, - overflow_style => overflow_style); - return result; - end if; - end function resize; - - -- Overloaded math functions for real - function "+" ( - l : UNRESOLVED_ufixed; -- fixed point input - r : REAL) - return UNRESOLVED_ufixed is - begin - return (l + to_ufixed (r, l'high, l'low)); - end function "+"; - - function "+" ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return UNRESOLVED_ufixed is - begin - return (to_ufixed (l, r'high, r'low) + r); - end function "+"; - - function "+" ( - l : UNRESOLVED_sfixed; -- fixed point input - r : REAL) - return UNRESOLVED_sfixed is - begin - return (l + to_sfixed (r, l'high, l'low)); - end function "+"; - - function "+" ( - l : REAL; - r : UNRESOLVED_sfixed) -- fixed point input - return UNRESOLVED_sfixed is - begin - return (to_sfixed (l, r'high, r'low) + r); - end function "+"; - - function "-" ( - l : UNRESOLVED_ufixed; -- fixed point input - r : REAL) - return UNRESOLVED_ufixed is - begin - return (l - to_ufixed (r, l'high, l'low)); - end function "-"; - - function "-" ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return UNRESOLVED_ufixed is - begin - return (to_ufixed (l, r'high, r'low) - r); - end function "-"; - - function "-" ( - l : UNRESOLVED_sfixed; -- fixed point input - r : REAL) - return UNRESOLVED_sfixed is - begin - return (l - to_sfixed (r, l'high, l'low)); - end function "-"; - - function "-" ( - l : REAL; - r : UNRESOLVED_sfixed) -- fixed point input - return UNRESOLVED_sfixed is - begin - return (to_sfixed (l, r'high, r'low) - r); - end function "-"; - - function "*" ( - l : UNRESOLVED_ufixed; -- fixed point input - r : REAL) - return UNRESOLVED_ufixed is - begin - return (l * to_ufixed (r, l'high, l'low)); - end function "*"; - - function "*" ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return UNRESOLVED_ufixed is - begin - return (to_ufixed (l, r'high, r'low) * r); - end function "*"; - - function "*" ( - l : UNRESOLVED_sfixed; -- fixed point input - r : REAL) - return UNRESOLVED_sfixed is - begin - return (l * to_sfixed (r, l'high, l'low)); - end function "*"; - - function "*" ( - l : REAL; - r : UNRESOLVED_sfixed) -- fixed point input - return UNRESOLVED_sfixed is - begin - return (to_sfixed (l, r'high, r'low) * r); - end function "*"; - --- function "/" ( --- l : UNRESOLVED_ufixed; -- fixed point input --- r : REAL) --- return UNRESOLVED_ufixed is --- begin --- return (l / to_ufixed (r, l'high, l'low)); --- end function "/"; - --- function "/" ( --- l : REAL; --- r : UNRESOLVED_ufixed) -- fixed point input --- return UNRESOLVED_ufixed is --- begin --- return (to_ufixed (l, r'high, r'low) / r); --- end function "/"; - --- function "/" ( --- l : UNRESOLVED_sfixed; -- fixed point input --- r : REAL) --- return UNRESOLVED_sfixed is --- begin --- return (l / to_sfixed (r, l'high, l'low)); --- end function "/"; - --- function "/" ( --- l : REAL; --- r : UNRESOLVED_sfixed) -- fixed point input --- return UNRESOLVED_sfixed is --- begin --- return (to_sfixed (l, r'high, r'low) / r); --- end function "/"; - --- function "rem" ( --- l : UNRESOLVED_ufixed; -- fixed point input --- r : REAL) --- return UNRESOLVED_ufixed is --- begin --- return (l rem to_ufixed (r, l'high, l'low)); --- end function "rem"; - --- function "rem" ( --- l : REAL; --- r : UNRESOLVED_ufixed) -- fixed point input --- return UNRESOLVED_ufixed is --- begin --- return (to_ufixed (l, r'high, r'low) rem r); --- end function "rem"; - --- function "rem" ( --- l : UNRESOLVED_sfixed; -- fixed point input --- r : REAL) --- return UNRESOLVED_sfixed is --- begin --- return (l rem to_sfixed (r, l'high, l'low)); --- end function "rem"; - --- function "rem" ( --- l : REAL; --- r : UNRESOLVED_sfixed) -- fixed point input --- return UNRESOLVED_sfixed is --- begin --- return (to_sfixed (l, r'high, r'low) rem r); --- end function "rem"; - --- function "mod" ( --- l : UNRESOLVED_ufixed; -- fixed point input --- r : REAL) --- return UNRESOLVED_ufixed is --- begin --- return (l mod to_ufixed (r, l'high, l'low)); --- end function "mod"; - --- function "mod" ( --- l : REAL; --- r : UNRESOLVED_ufixed) -- fixed point input --- return UNRESOLVED_ufixed is --- begin --- return (to_ufixed (l, r'high, r'low) mod r); --- end function "mod"; - --- function "mod" ( --- l : UNRESOLVED_sfixed; -- fixed point input --- r : REAL) --- return UNRESOLVED_sfixed is --- begin --- return (l mod to_sfixed (r, l'high, l'low)); --- end function "mod"; - --- function "mod" ( --- l : REAL; --- r : UNRESOLVED_sfixed) -- fixed point input --- return UNRESOLVED_sfixed is --- begin --- return (to_sfixed (l, r'high, r'low) mod r); --- end function "mod"; - - -- Overloaded math functions for integers - function "+" ( - l : UNRESOLVED_ufixed; -- fixed point input - r : NATURAL) - return UNRESOLVED_ufixed is - begin - return (l + to_ufixed (r, l'high, 0)); - end function "+"; - - function "+" ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return UNRESOLVED_ufixed is - begin - return (to_ufixed (l, r'high, 0) + r); - end function "+"; - - function "+" ( - l : UNRESOLVED_sfixed; -- fixed point input - r : INTEGER) - return UNRESOLVED_sfixed is - begin - return (l + to_sfixed (r, l'high, 0)); - end function "+"; - - function "+" ( - l : INTEGER; - r : UNRESOLVED_sfixed) -- fixed point input - return UNRESOLVED_sfixed is - begin - return (to_sfixed (l, r'high, 0) + r); - end function "+"; - - -- Overloaded functions - function "-" ( - l : UNRESOLVED_ufixed; -- fixed point input - r : NATURAL) - return UNRESOLVED_ufixed is - begin - return (l - to_ufixed (r, l'high, 0)); - end function "-"; - - function "-" ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return UNRESOLVED_ufixed is - begin - return (to_ufixed (l, r'high, 0) - r); - end function "-"; - - function "-" ( - l : UNRESOLVED_sfixed; -- fixed point input - r : INTEGER) - return UNRESOLVED_sfixed is - begin - return (l - to_sfixed (r, l'high, 0)); - end function "-"; - - function "-" ( - l : INTEGER; - r : UNRESOLVED_sfixed) -- fixed point input - return UNRESOLVED_sfixed is - begin - return (to_sfixed (l, r'high, 0) - r); - end function "-"; - - -- Overloaded functions - function "*" ( - l : UNRESOLVED_ufixed; -- fixed point input - r : NATURAL) - return UNRESOLVED_ufixed is - begin - return (l * to_ufixed (r, l'high, 0)); - end function "*"; - - function "*" ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return UNRESOLVED_ufixed is - begin - return (to_ufixed (l, r'high, 0) * r); - end function "*"; - - function "*" ( - l : UNRESOLVED_sfixed; -- fixed point input - r : INTEGER) - return UNRESOLVED_sfixed is - begin - return (l * to_sfixed (r, l'high, 0)); - end function "*"; - - function "*" ( - l : INTEGER; - r : UNRESOLVED_sfixed) -- fixed point input - return UNRESOLVED_sfixed is - begin - return (to_sfixed (l, r'high, 0) * r); - end function "*"; - - -- Overloaded functions --- function "/" ( --- l : UNRESOLVED_ufixed; -- fixed point input --- r : NATURAL) --- return UNRESOLVED_ufixed is --- begin --- return (l / to_ufixed (r, l'high, 0)); --- end function "/"; - --- function "/" ( --- l : NATURAL; --- r : UNRESOLVED_ufixed) -- fixed point input --- return UNRESOLVED_ufixed is --- begin --- return (to_ufixed (l, r'high, 0) / r); --- end function "/"; - --- function "/" ( --- l : UNRESOLVED_sfixed; -- fixed point input --- r : INTEGER) --- return UNRESOLVED_sfixed is --- begin --- return (l / to_sfixed (r, l'high, 0)); --- end function "/"; - --- function "/" ( --- l : INTEGER; --- r : UNRESOLVED_sfixed) -- fixed point input --- return UNRESOLVED_sfixed is --- begin --- return (to_sfixed (l, r'high, 0) / r); --- end function "/"; - --- function "rem" ( --- l : UNRESOLVED_ufixed; -- fixed point input --- r : NATURAL) --- return UNRESOLVED_ufixed is --- begin --- return (l rem to_ufixed (r, l'high, 0)); --- end function "rem"; - --- function "rem" ( --- l : NATURAL; --- r : UNRESOLVED_ufixed) -- fixed point input --- return UNRESOLVED_ufixed is --- begin --- return (to_ufixed (l, r'high, 0) rem r); --- end function "rem"; - --- function "rem" ( --- l : UNRESOLVED_sfixed; -- fixed point input --- r : INTEGER) --- return UNRESOLVED_sfixed is --- begin --- return (l rem to_sfixed (r, l'high, 0)); --- end function "rem"; - --- function "rem" ( --- l : INTEGER; --- r : UNRESOLVED_sfixed) -- fixed point input --- return UNRESOLVED_sfixed is --- begin --- return (to_sfixed (l, r'high, 0) rem r); --- end function "rem"; - --- function "mod" ( --- l : UNRESOLVED_ufixed; -- fixed point input --- r : NATURAL) --- return UNRESOLVED_ufixed is --- begin --- return (l mod to_ufixed (r, l'high, 0)); --- end function "mod"; - --- function "mod" ( --- l : NATURAL; --- r : UNRESOLVED_ufixed) -- fixed point input --- return UNRESOLVED_ufixed is --- begin --- return (to_ufixed (l, r'high, 0) mod r); --- end function "mod"; - --- function "mod" ( --- l : UNRESOLVED_sfixed; -- fixed point input --- r : INTEGER) --- return UNRESOLVED_sfixed is --- begin --- return (l mod to_sfixed (r, l'high, 0)); --- end function "mod"; - --- function "mod" ( --- l : INTEGER; --- r : UNRESOLVED_sfixed) -- fixed point input --- return UNRESOLVED_sfixed is --- begin --- return (to_sfixed (l, r'high, 0) mod r); --- end function "mod"; - - -- overloaded ufixed compare functions with integer - function "=" ( - l : UNRESOLVED_ufixed; - r : NATURAL) -- fixed point input - return BOOLEAN is - begin - return (l = to_ufixed (r, l'high, l'low)); - end function "="; - - function "/=" ( - l : UNRESOLVED_ufixed; - r : NATURAL) -- fixed point input - return BOOLEAN is - begin - return (l /= to_ufixed (r, l'high, l'low)); - end function "/="; - - function ">=" ( - l : UNRESOLVED_ufixed; - r : NATURAL) -- fixed point input - return BOOLEAN is - begin - return (l >= to_ufixed (r, l'high, l'low)); - end function ">="; - - function "<=" ( - l : UNRESOLVED_ufixed; - r : NATURAL) -- fixed point input - return BOOLEAN is - begin - return (l <= to_ufixed (r, l'high, l'low)); - end function "<="; - - function ">" ( - l : UNRESOLVED_ufixed; - r : NATURAL) -- fixed point input - return BOOLEAN is - begin - return (l > to_ufixed (r, l'high, l'low)); - end function ">"; - - function "<" ( - l : UNRESOLVED_ufixed; - r : NATURAL) -- fixed point input - return BOOLEAN is - begin - return (l < to_ufixed (r, l'high, l'low)); - end function "<"; - - function \?=\ ( - l : UNRESOLVED_ufixed; - r : NATURAL) -- fixed point input - return STD_ULOGIC is - begin - return \?=\ (l, to_ufixed (r, l'high, l'low)); - end function \?=\; - - function \?/=\ ( - l : UNRESOLVED_ufixed; - r : NATURAL) -- fixed point input - return STD_ULOGIC is - begin - return \?/=\ (l, to_ufixed (r, l'high, l'low)); - end function \?/=\; - - function \?>=\ ( - l : UNRESOLVED_ufixed; - r : NATURAL) -- fixed point input - return STD_ULOGIC is - begin - return \?>=\ (l, to_ufixed (r, l'high, l'low)); - end function \?>=\; - - function \?<=\ ( - l : UNRESOLVED_ufixed; - r : NATURAL) -- fixed point input - return STD_ULOGIC is - begin - return \?<=\ (l, to_ufixed (r, l'high, l'low)); - end function \?<=\; - - function \?>\ ( - l : UNRESOLVED_ufixed; - r : NATURAL) -- fixed point input - return STD_ULOGIC is - begin - return \?>\ (l, to_ufixed (r, l'high, l'low)); - end function \?>\; - - function \?<\ ( - l : UNRESOLVED_ufixed; - r : NATURAL) -- fixed point input - return STD_ULOGIC is - begin - return \?<\ (l, to_ufixed (r, l'high, l'low)); - end function \?<\; - - function maximum ( - l : UNRESOLVED_ufixed; -- fixed point input - r : NATURAL) - return UNRESOLVED_ufixed is - begin - return maximum (l, to_ufixed (r, l'high, l'low)); - end function maximum; - - function minimum ( - l : UNRESOLVED_ufixed; -- fixed point input - r : NATURAL) - return UNRESOLVED_ufixed is - begin - return minimum (l, to_ufixed (r, l'high, l'low)); - end function minimum; - - -- NATURAL to ufixed - function "=" ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - begin - return (to_ufixed (l, r'high, r'low) = r); - end function "="; - - function "/=" ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - begin - return (to_ufixed (l, r'high, r'low) /= r); - end function "/="; - - function ">=" ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - begin - return (to_ufixed (l, r'high, r'low) >= r); - end function ">="; - - function "<=" ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - begin - return (to_ufixed (l, r'high, r'low) <= r); - end function "<="; - - function ">" ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - begin - return (to_ufixed (l, r'high, r'low) > r); - end function ">"; - - function "<" ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - begin - return (to_ufixed (l, r'high, r'low) < r); - end function "<"; - - function \?=\ ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return STD_ULOGIC is - begin - return \?=\ (to_ufixed (l, r'high, r'low), r); - end function \?=\; - - function \?/=\ ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return STD_ULOGIC is - begin - return \?/=\ (to_ufixed (l, r'high, r'low), r); - end function \?/=\; - - function \?>=\ ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return STD_ULOGIC is - begin - return \?>=\ (to_ufixed (l, r'high, r'low), r); - end function \?>=\; - - function \?<=\ ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return STD_ULOGIC is - begin - return \?<=\ (to_ufixed (l, r'high, r'low), r); - end function \?<=\; - - function \?>\ ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return STD_ULOGIC is - begin - return \?>\ (to_ufixed (l, r'high, r'low), r); - end function \?>\; - - function \?<\ ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return STD_ULOGIC is - begin - return \?<\ (to_ufixed (l, r'high, r'low), r); - end function \?<\; - - function maximum ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return UNRESOLVED_ufixed is - begin - return maximum (to_ufixed (l, r'high, r'low), r); - end function maximum; - - function minimum ( - l : NATURAL; - r : UNRESOLVED_ufixed) -- fixed point input - return UNRESOLVED_ufixed is - begin - return minimum (to_ufixed (l, r'high, r'low), r); - end function minimum; - - -- overloaded ufixed compare functions with real - function "=" ( - l : UNRESOLVED_ufixed; - r : REAL) - return BOOLEAN is - begin - return (l = to_ufixed (r, l'high, l'low)); - end function "="; - - function "/=" ( - l : UNRESOLVED_ufixed; - r : REAL) - return BOOLEAN is - begin - return (l /= to_ufixed (r, l'high, l'low)); - end function "/="; - - function ">=" ( - l : UNRESOLVED_ufixed; - r : REAL) - return BOOLEAN is - begin - return (l >= to_ufixed (r, l'high, l'low)); - end function ">="; - - function "<=" ( - l : UNRESOLVED_ufixed; - r : REAL) - return BOOLEAN is - begin - return (l <= to_ufixed (r, l'high, l'low)); - end function "<="; - - function ">" ( - l : UNRESOLVED_ufixed; - r : REAL) - return BOOLEAN is - begin - return (l > to_ufixed (r, l'high, l'low)); - end function ">"; - - function "<" ( - l : UNRESOLVED_ufixed; - r : REAL) - return BOOLEAN is - begin - return (l < to_ufixed (r, l'high, l'low)); - end function "<"; - - function \?=\ ( - l : UNRESOLVED_ufixed; - r : REAL) - return STD_ULOGIC is - begin - return \?=\ (l, to_ufixed (r, l'high, l'low)); - end function \?=\; - - function \?/=\ ( - l : UNRESOLVED_ufixed; - r : REAL) - return STD_ULOGIC is - begin - return \?/=\ (l, to_ufixed (r, l'high, l'low)); - end function \?/=\; - - function \?>=\ ( - l : UNRESOLVED_ufixed; - r : REAL) - return STD_ULOGIC is - begin - return \?>=\ (l, to_ufixed (r, l'high, l'low)); - end function \?>=\; - - function \?<=\ ( - l : UNRESOLVED_ufixed; - r : REAL) - return STD_ULOGIC is - begin - return \?<=\ (l, to_ufixed (r, l'high, l'low)); - end function \?<=\; - - function \?>\ ( - l : UNRESOLVED_ufixed; - r : REAL) - return STD_ULOGIC is - begin - return \?>\ (l, to_ufixed (r, l'high, l'low)); - end function \?>\; - - function \?<\ ( - l : UNRESOLVED_ufixed; - r : REAL) - return STD_ULOGIC is - begin - return \?<\ (l, to_ufixed (r, l'high, l'low)); - end function \?<\; - - function maximum ( - l : UNRESOLVED_ufixed; - r : REAL) - return UNRESOLVED_ufixed is - begin - return maximum (l, to_ufixed (r, l'high, l'low)); - end function maximum; - - function minimum ( - l : UNRESOLVED_ufixed; - r : REAL) - return UNRESOLVED_ufixed is - begin - return minimum (l, to_ufixed (r, l'high, l'low)); - end function minimum; - - -- real and ufixed - function "=" ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - begin - return (to_ufixed (l, r'high, r'low) = r); - end function "="; - - function "/=" ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - begin - return (to_ufixed (l, r'high, r'low) /= r); - end function "/="; - - function ">=" ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - begin - return (to_ufixed (l, r'high, r'low) >= r); - end function ">="; - - function "<=" ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - begin - return (to_ufixed (l, r'high, r'low) <= r); - end function "<="; - - function ">" ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - begin - return (to_ufixed (l, r'high, r'low) > r); - end function ">"; - - function "<" ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return BOOLEAN is - begin - return (to_ufixed (l, r'high, r'low) < r); - end function "<"; - - function \?=\ ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return STD_ULOGIC is - begin - return \?=\ (to_ufixed (l, r'high, r'low), r); - end function \?=\; - - function \?/=\ ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return STD_ULOGIC is - begin - return \?/=\ (to_ufixed (l, r'high, r'low), r); - end function \?/=\; - - function \?>=\ ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return STD_ULOGIC is - begin - return \?>=\ (to_ufixed (l, r'high, r'low), r); - end function \?>=\; - - function \?<=\ ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return STD_ULOGIC is - begin - return \?<=\ (to_ufixed (l, r'high, r'low), r); - end function \?<=\; - - function \?>\ ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return STD_ULOGIC is - begin - return \?>\ (to_ufixed (l, r'high, r'low), r); - end function \?>\; - - function \?<\ ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return STD_ULOGIC is - begin - return \?<\ (to_ufixed (l, r'high, r'low), r); - end function \?<\; - - function maximum ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return UNRESOLVED_ufixed is - begin - return maximum (to_ufixed (l, r'high, r'low), r); - end function maximum; - - function minimum ( - l : REAL; - r : UNRESOLVED_ufixed) -- fixed point input - return UNRESOLVED_ufixed is - begin - return minimum (to_ufixed (l, r'high, r'low), r); - end function minimum; - - -- overloaded sfixed compare functions with integer - function "=" ( - l : UNRESOLVED_sfixed; - r : INTEGER) - return BOOLEAN is - begin - return (l = to_sfixed (r, l'high, l'low)); - end function "="; - - function "/=" ( - l : UNRESOLVED_sfixed; - r : INTEGER) - return BOOLEAN is - begin - return (l /= to_sfixed (r, l'high, l'low)); - end function "/="; - - function ">=" ( - l : UNRESOLVED_sfixed; - r : INTEGER) - return BOOLEAN is - begin - return (l >= to_sfixed (r, l'high, l'low)); - end function ">="; - - function "<=" ( - l : UNRESOLVED_sfixed; - r : INTEGER) - return BOOLEAN is - begin - return (l <= to_sfixed (r, l'high, l'low)); - end function "<="; - - function ">" ( - l : UNRESOLVED_sfixed; - r : INTEGER) - return BOOLEAN is - begin - return (l > to_sfixed (r, l'high, l'low)); - end function ">"; - - function "<" ( - l : UNRESOLVED_sfixed; - r : INTEGER) - return BOOLEAN is - begin - return (l < to_sfixed (r, l'high, l'low)); - end function "<"; - - function \?=\ ( - l : UNRESOLVED_sfixed; - r : INTEGER) - return STD_ULOGIC is - begin - return \?=\ (l, to_sfixed (r, l'high, l'low)); - end function \?=\; - - function \?/=\ ( - l : UNRESOLVED_sfixed; - r : INTEGER) - return STD_ULOGIC is - begin - return \?/=\ (l, to_sfixed (r, l'high, l'low)); - end function \?/=\; - - function \?>=\ ( - l : UNRESOLVED_sfixed; - r : INTEGER) - return STD_ULOGIC is - begin - return \?>=\ (l, to_sfixed (r, l'high, l'low)); - end function \?>=\; - - function \?<=\ ( - l : UNRESOLVED_sfixed; - r : INTEGER) - return STD_ULOGIC is - begin - return \?<=\ (l, to_sfixed (r, l'high, l'low)); - end function \?<=\; - - function \?>\ ( - l : UNRESOLVED_sfixed; - r : INTEGER) - return STD_ULOGIC is - begin - return \?>\ (l, to_sfixed (r, l'high, l'low)); - end function \?>\; - - function \?<\ ( - l : UNRESOLVED_sfixed; - r : INTEGER) - return STD_ULOGIC is - begin - return \?<\ (l, to_sfixed (r, l'high, l'low)); - end function \?<\; - - function maximum ( - l : UNRESOLVED_sfixed; - r : INTEGER) - return UNRESOLVED_sfixed is - begin - return maximum (l, to_sfixed (r, l'high, l'low)); - end function maximum; - - function minimum ( - l : UNRESOLVED_sfixed; - r : INTEGER) - return UNRESOLVED_sfixed is - begin - return minimum (l, to_sfixed (r, l'high, l'low)); - end function minimum; - - -- integer and sfixed - function "=" ( - l : INTEGER; - r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - begin - return (to_sfixed (l, r'high, r'low) = r); - end function "="; - - function "/=" ( - l : INTEGER; - r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - begin - return (to_sfixed (l, r'high, r'low) /= r); - end function "/="; - - function ">=" ( - l : INTEGER; - r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - begin - return (to_sfixed (l, r'high, r'low) >= r); - end function ">="; - - function "<=" ( - l : INTEGER; - r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - begin - return (to_sfixed (l, r'high, r'low) <= r); - end function "<="; - - function ">" ( - l : INTEGER; - r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - begin - return (to_sfixed (l, r'high, r'low) > r); - end function ">"; - - function "<" ( - l : INTEGER; - r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - begin - return (to_sfixed (l, r'high, r'low) < r); - end function "<"; - - function \?=\ ( - l : INTEGER; - r : UNRESOLVED_sfixed) -- fixed point input - return STD_ULOGIC is - begin - return \?=\ (to_sfixed (l, r'high, r'low), r); - end function \?=\; - - function \?/=\ ( - l : INTEGER; - r : UNRESOLVED_sfixed) -- fixed point input - return STD_ULOGIC is - begin - return \?/=\ (to_sfixed (l, r'high, r'low), r); - end function \?/=\; - - function \?>=\ ( - l : INTEGER; - r : UNRESOLVED_sfixed) -- fixed point input - return STD_ULOGIC is - begin - return \?>=\ (to_sfixed (l, r'high, r'low), r); - end function \?>=\; - - function \?<=\ ( - l : INTEGER; - r : UNRESOLVED_sfixed) -- fixed point input - return STD_ULOGIC is - begin - return \?<=\ (to_sfixed (l, r'high, r'low), r); - end function \?<=\; - - function \?>\ ( - l : INTEGER; - r : UNRESOLVED_sfixed) -- fixed point input - return STD_ULOGIC is - begin - return \?>\ (to_sfixed (l, r'high, r'low), r); - end function \?>\; - - function \?<\ ( - l : INTEGER; - r : UNRESOLVED_sfixed) -- fixed point input - return STD_ULOGIC is - begin - return \?<\ (to_sfixed (l, r'high, r'low), r); - end function \?<\; - - function maximum ( - l : INTEGER; - r : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed is - begin - return maximum (to_sfixed (l, r'high, r'low), r); - end function maximum; - - function minimum ( - l : INTEGER; - r : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed is - begin - return minimum (to_sfixed (l, r'high, r'low), r); - end function minimum; - - -- overloaded sfixed compare functions with real - function "=" ( - l : UNRESOLVED_sfixed; - r : REAL) - return BOOLEAN is - begin - return (l = to_sfixed (r, l'high, l'low)); - end function "="; - - function "/=" ( - l : UNRESOLVED_sfixed; - r : REAL) - return BOOLEAN is - begin - return (l /= to_sfixed (r, l'high, l'low)); - end function "/="; - - function ">=" ( - l : UNRESOLVED_sfixed; - r : REAL) - return BOOLEAN is - begin - return (l >= to_sfixed (r, l'high, l'low)); - end function ">="; - - function "<=" ( - l : UNRESOLVED_sfixed; - r : REAL) - return BOOLEAN is - begin - return (l <= to_sfixed (r, l'high, l'low)); - end function "<="; - - function ">" ( - l : UNRESOLVED_sfixed; - r : REAL) - return BOOLEAN is - begin - return (l > to_sfixed (r, l'high, l'low)); - end function ">"; - - function "<" ( - l : UNRESOLVED_sfixed; - r : REAL) - return BOOLEAN is - begin - return (l < to_sfixed (r, l'high, l'low)); - end function "<"; - - function \?=\ ( - l : UNRESOLVED_sfixed; - r : REAL) - return STD_ULOGIC is - begin - return \?=\ (l, to_sfixed (r, l'high, l'low)); - end function \?=\; - - function \?/=\ ( - l : UNRESOLVED_sfixed; - r : REAL) - return STD_ULOGIC is - begin - return \?/=\ (l, to_sfixed (r, l'high, l'low)); - end function \?/=\; - - function \?>=\ ( - l : UNRESOLVED_sfixed; - r : REAL) - return STD_ULOGIC is - begin - return \?>=\ (l, to_sfixed (r, l'high, l'low)); - end function \?>=\; - - function \?<=\ ( - l : UNRESOLVED_sfixed; - r : REAL) - return STD_ULOGIC is - begin - return \?<=\ (l, to_sfixed (r, l'high, l'low)); - end function \?<=\; - - function \?>\ ( - l : UNRESOLVED_sfixed; - r : REAL) - return STD_ULOGIC is - begin - return \?>\ (l, to_sfixed (r, l'high, l'low)); - end function \?>\; - - function \?<\ ( - l : UNRESOLVED_sfixed; - r : REAL) - return STD_ULOGIC is - begin - return \?<\ (l, to_sfixed (r, l'high, l'low)); - end function \?<\; - - function maximum ( - l : UNRESOLVED_sfixed; - r : REAL) - return UNRESOLVED_sfixed is - begin - return maximum (l, to_sfixed (r, l'high, l'low)); - end function maximum; - - function minimum ( - l : UNRESOLVED_sfixed; - r : REAL) - return UNRESOLVED_sfixed is - begin - return minimum (l, to_sfixed (r, l'high, l'low)); - end function minimum; - - -- REAL and sfixed - function "=" ( - l : REAL; - r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - begin - return (to_sfixed (l, r'high, r'low) = r); - end function "="; - - function "/=" ( - l : REAL; - r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - begin - return (to_sfixed (l, r'high, r'low) /= r); - end function "/="; - - function ">=" ( - l : REAL; - r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - begin - return (to_sfixed (l, r'high, r'low) >= r); - end function ">="; - - function "<=" ( - l : REAL; - r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - begin - return (to_sfixed (l, r'high, r'low) <= r); - end function "<="; - - function ">" ( - l : REAL; - r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - begin - return (to_sfixed (l, r'high, r'low) > r); - end function ">"; - - function "<" ( - l : REAL; - r : UNRESOLVED_sfixed) -- fixed point input - return BOOLEAN is - begin - return (to_sfixed (l, r'high, r'low) < r); - end function "<"; - - function \?=\ ( - l : REAL; - r : UNRESOLVED_sfixed) -- fixed point input - return STD_ULOGIC is - begin - return \?=\ (to_sfixed (l, r'high, r'low), r); - end function \?=\; - - function \?/=\ ( - l : REAL; - r : UNRESOLVED_sfixed) -- fixed point input - return STD_ULOGIC is - begin - return \?/=\ (to_sfixed (l, r'high, r'low), r); - end function \?/=\; - - function \?>=\ ( - l : REAL; - r : UNRESOLVED_sfixed) -- fixed point input - return STD_ULOGIC is - begin - return \?>=\ (to_sfixed (l, r'high, r'low), r); - end function \?>=\; - - function \?<=\ ( - l : REAL; - r : UNRESOLVED_sfixed) -- fixed point input - return STD_ULOGIC is - begin - return \?<=\ (to_sfixed (l, r'high, r'low), r); - end function \?<=\; - - function \?>\ ( - l : REAL; - r : UNRESOLVED_sfixed) -- fixed point input - return STD_ULOGIC is - begin - return \?>\ (to_sfixed (l, r'high, r'low), r); - end function \?>\; - - function \?<\ ( - l : REAL; - r : UNRESOLVED_sfixed) -- fixed point input - return STD_ULOGIC is - begin - return \?<\ (to_sfixed (l, r'high, r'low), r); - end function \?<\; - - function maximum ( - l : REAL; - r : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed is - begin - return maximum (to_sfixed (l, r'high, r'low), r); - end function maximum; - - function minimum ( - l : REAL; - r : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed is - begin - return minimum (to_sfixed (l, r'high, r'low), r); - end function minimum; --- rtl_synthesis off --- pragma synthesis_off - -- copied from std_logic_textio - type MVL9plus is ('U', 'X', '0', '1', 'Z', 'W', 'L', 'H', '-', error); - type char_indexed_by_MVL9 is array (STD_ULOGIC) of CHARACTER; - type MVL9_indexed_by_char is array (CHARACTER) of STD_ULOGIC; - type MVL9plus_indexed_by_char is array (CHARACTER) of MVL9plus; - - constant MVL9_to_char : char_indexed_by_MVL9 := "UX01ZWLH-"; - constant char_to_MVL9 : MVL9_indexed_by_char := - ('U' => 'U', 'X' => 'X', '0' => '0', '1' => '1', 'Z' => 'Z', - 'W' => 'W', 'L' => 'L', 'H' => 'H', '-' => '-', others => 'U'); - constant char_to_MVL9plus : MVL9plus_indexed_by_char := - ('U' => 'U', 'X' => 'X', '0' => '0', '1' => '1', 'Z' => 'Z', - 'W' => 'W', 'L' => 'L', 'H' => 'H', '-' => '-', others => error); - constant NBSP : CHARACTER := CHARACTER'val(160); -- space character - constant NUS : STRING(2 to 1) := (others => ' '); - - -- %%% Replicated Textio functions - procedure Char2TriBits (C : CHARACTER; - RESULT : out STD_ULOGIC_VECTOR(2 downto 0); - GOOD : out BOOLEAN; - ISSUE_ERROR : in BOOLEAN) is - begin - case c is - when '0' => result := o"0"; good := true; - when '1' => result := o"1"; good := true; - when '2' => result := o"2"; good := true; - when '3' => result := o"3"; good := true; - when '4' => result := o"4"; good := true; - when '5' => result := o"5"; good := true; - when '6' => result := o"6"; good := true; - when '7' => result := o"7"; good := true; - when 'Z' => result := "ZZZ"; good := true; - when 'X' => result := "XXX"; good := true; - when others => - assert not ISSUE_ERROR - report "fixed_pkg:" - & "OREAD Error: Read a '" & c & - "', expected an Octal character (0-7)." - severity error; - result := "UUU"; - good := false; - end case; - end procedure Char2TriBits; - -- Hex Read and Write procedures for STD_ULOGIC_VECTOR. - -- Modified from the original to be more forgiving. - - procedure Char2QuadBits (C : CHARACTER; - RESULT : out STD_ULOGIC_VECTOR(3 downto 0); - GOOD : out BOOLEAN; - ISSUE_ERROR : in BOOLEAN) is - begin - case c is - when '0' => result := x"0"; good := true; - when '1' => result := x"1"; good := true; - when '2' => result := x"2"; good := true; - when '3' => result := x"3"; good := true; - when '4' => result := x"4"; good := true; - when '5' => result := x"5"; good := true; - when '6' => result := x"6"; good := true; - when '7' => result := x"7"; good := true; - when '8' => result := x"8"; good := true; - when '9' => result := x"9"; good := true; - when 'A' | 'a' => result := x"A"; good := true; - when 'B' | 'b' => result := x"B"; good := true; - when 'C' | 'c' => result := x"C"; good := true; - when 'D' | 'd' => result := x"D"; good := true; - when 'E' | 'e' => result := x"E"; good := true; - when 'F' | 'f' => result := x"F"; good := true; - when 'Z' => result := "ZZZZ"; good := true; - when 'X' => result := "XXXX"; good := true; - when others => - assert not ISSUE_ERROR - report "fixed_pkg:" - & "HREAD Error: Read a '" & c & - "', expected a Hex character (0-F)." - severity error; - result := "UUUU"; - good := false; - end case; - end procedure Char2QuadBits; - - -- purpose: Skips white space - procedure skip_whitespace ( - L : inout LINE) is - variable readOk : BOOLEAN; - variable c : CHARACTER; - begin - while L /= null and L.all'length /= 0 loop - if (L.all(1) = ' ' or L.all(1) = NBSP or L.all(1) = HT) then - read (l, c, readOk); - else - exit; - end if; - end loop; - end procedure skip_whitespace; - - function to_ostring (value : STD_ULOGIC_VECTOR) return STRING is - constant ne : INTEGER := (value'length+2)/3; - variable pad : STD_ULOGIC_VECTOR(0 to (ne*3 - value'length) - 1); - variable ivalue : STD_ULOGIC_VECTOR(0 to ne*3 - 1); - variable result : STRING(1 to ne); - variable tri : STD_ULOGIC_VECTOR(0 to 2); - begin - if value'length < 1 then - return NUS; - else - if value (value'left) = 'Z' then - pad := (others => 'Z'); - else - pad := (others => '0'); - end if; - ivalue := pad & value; - for i in 0 to ne-1 loop - tri := To_X01Z(ivalue(3*i to 3*i+2)); - case tri is - when o"0" => result(i+1) := '0'; - when o"1" => result(i+1) := '1'; - when o"2" => result(i+1) := '2'; - when o"3" => result(i+1) := '3'; - when o"4" => result(i+1) := '4'; - when o"5" => result(i+1) := '5'; - when o"6" => result(i+1) := '6'; - when o"7" => result(i+1) := '7'; - when "ZZZ" => result(i+1) := 'Z'; - when others => result(i+1) := 'X'; - end case; - end loop; - return result; - end if; - end function to_ostring; - ------------------------------------------------------------------- - function to_hstring (value : STD_ULOGIC_VECTOR) return STRING is - constant ne : INTEGER := (value'length+3)/4; - variable pad : STD_ULOGIC_VECTOR(0 to (ne*4 - value'length) - 1); - variable ivalue : STD_ULOGIC_VECTOR(0 to ne*4 - 1); - variable result : STRING(1 to ne); - variable quad : STD_ULOGIC_VECTOR(0 to 3); - begin - if value'length < 1 then - return NUS; - else - if value (value'left) = 'Z' then - pad := (others => 'Z'); - else - pad := (others => '0'); - end if; - ivalue := pad & value; - for i in 0 to ne-1 loop - quad := To_X01Z(ivalue(4*i to 4*i+3)); - case quad is - when x"0" => result(i+1) := '0'; - when x"1" => result(i+1) := '1'; - when x"2" => result(i+1) := '2'; - when x"3" => result(i+1) := '3'; - when x"4" => result(i+1) := '4'; - when x"5" => result(i+1) := '5'; - when x"6" => result(i+1) := '6'; - when x"7" => result(i+1) := '7'; - when x"8" => result(i+1) := '8'; - when x"9" => result(i+1) := '9'; - when x"A" => result(i+1) := 'A'; - when x"B" => result(i+1) := 'B'; - when x"C" => result(i+1) := 'C'; - when x"D" => result(i+1) := 'D'; - when x"E" => result(i+1) := 'E'; - when x"F" => result(i+1) := 'F'; - when "ZZZZ" => result(i+1) := 'Z'; - when others => result(i+1) := 'X'; - end case; - end loop; - return result; - end if; - end function to_hstring; - - --- %%% END replicated textio functions - - -- purpose: writes fixed point into a line - procedure write ( - L : inout LINE; -- input line - VALUE : in UNRESOLVED_ufixed; -- fixed point input - JUSTIFIED : in SIDE := right; - FIELD : in WIDTH := 0) is - variable s : STRING(1 to value'length +1) := (others => ' '); - variable sindx : INTEGER; - begin -- function write Example: 0011.1100 - sindx := 1; - for i in value'high downto value'low loop - if i = -1 then - s(sindx) := '.'; - sindx := sindx + 1; - end if; - s(sindx) := MVL9_to_char(STD_ULOGIC(value(i))); - sindx := sindx + 1; - end loop; - write(l, s, justified, field); - end procedure write; - - -- purpose: writes fixed point into a line - procedure write ( - L : inout LINE; -- input line - VALUE : in UNRESOLVED_sfixed; -- fixed point input - JUSTIFIED : in SIDE := right; - FIELD : in WIDTH := 0) is - variable s : STRING(1 to value'length +1); - variable sindx : INTEGER; - begin -- function write Example: 0011.1100 - sindx := 1; - for i in value'high downto value'low loop - if i = -1 then - s(sindx) := '.'; - sindx := sindx + 1; - end if; - s(sindx) := MVL9_to_char(STD_ULOGIC(value(i))); - sindx := sindx + 1; - end loop; - write(l, s, justified, field); - end procedure write; - - procedure READ(L : inout LINE; - VALUE : out UNRESOLVED_ufixed) is - -- Possible data: 00000.0000000 - -- 000000000000 - variable c : CHARACTER; - variable readOk : BOOLEAN; - variable i : INTEGER; -- index variable - variable mv : ufixed (VALUE'range); - variable lastu : BOOLEAN := false; -- last character was an "_" - variable founddot : BOOLEAN := false; -- found a "." - begin -- READ - VALUE := (VALUE'range => 'U'); - Skip_whitespace (L); - if VALUE'length > 0 then -- non Null input string - read (l, c, readOk); - i := value'high; - while i >= VALUE'low loop - if readOk = false then -- Bail out if there was a bad read - report "fixed_pkg:" & "READ(ufixed) " - & "End of string encountered" - severity error; - return; - elsif c = '_' then - if i = value'high then - report "fixed_pkg:" & "READ(ufixed) " - & "String begins with an ""_""" severity error; - return; - elsif lastu then - report "fixed_pkg:" & "READ(ufixed) " - & "Two underscores detected in input string ""__""" - severity error; - return; - else - lastu := true; - end if; - elsif c = '.' then -- binary point - if founddot then - report "fixed_pkg:" & "READ(ufixed) " - & "Two binary points found in input string" severity error; - return; - elsif i /= -1 then -- Seperator in the wrong spot - report "fixed_pkg:" & "READ(ufixed) " - & "Decimal point does not match number format " - severity error; - return; - end if; - founddot := true; - lastu := false; - elsif c = ' ' or c = NBSP or c = HT then -- reading done. - report "fixed_pkg:" & "READ(ufixed) " - & "Short read, Space encounted in input string" - severity error; - return; - elsif char_to_MVL9plus(c) = error then - report "fixed_pkg:" & "READ(ufixed) " - & "Character '" & - c & "' read, expected STD_ULOGIC literal." - severity error; - return; - else - mv(i) := char_to_MVL9(c); - i := i - 1; - if i < mv'low then - VALUE := mv; - return; - end if; - lastu := false; - end if; - read(L, c, readOk); - end loop; - end if; - end procedure READ; - - procedure READ(L : inout LINE; - VALUE : out UNRESOLVED_ufixed; - GOOD : out BOOLEAN) is - -- Possible data: 00000.0000000 - -- 000000000000 - variable c : CHARACTER; - variable readOk : BOOLEAN; - variable mv : ufixed (VALUE'range); - variable i : INTEGER; -- index variable - variable lastu : BOOLEAN := false; -- last character was an "_" - variable founddot : BOOLEAN := false; -- found a "." - begin -- READ - VALUE := (VALUE'range => 'U'); - Skip_whitespace (L); - if VALUE'length > 0 then - read (l, c, readOk); - i := value'high; - GOOD := false; - while i >= VALUE'low loop - if not readOk then -- Bail out if there was a bad read - return; - elsif c = '_' then - if i = value'high then -- Begins with an "_" - return; - elsif lastu then -- "__" detected - return; - else - lastu := true; - end if; - elsif c = '.' then -- binary point - if founddot then - return; - elsif i /= -1 then -- Seperator in the wrong spot - return; - end if; - founddot := true; - lastu := false; - elsif (char_to_MVL9plus(c) = error) then -- Illegal character/short read - return; - else - mv(i) := char_to_MVL9(c); - i := i - 1; - if i < mv'low then -- reading done - GOOD := true; - VALUE := mv; - return; - end if; - lastu := false; - end if; - read(L, c, readOk); - end loop; - else - GOOD := true; -- read into a null array - end if; - end procedure READ; - - procedure READ(L : inout LINE; - VALUE : out UNRESOLVED_sfixed) is - variable c : CHARACTER; - variable readOk : BOOLEAN; - variable i : INTEGER; -- index variable - variable mv : sfixed (VALUE'range); - variable lastu : BOOLEAN := false; -- last character was an "_" - variable founddot : BOOLEAN := false; -- found a "." - begin -- READ - VALUE := (VALUE'range => 'U'); - Skip_whitespace (L); - if VALUE'length > 0 then -- non Null input string - read (l, c, readOk); - i := value'high; - while i >= VALUE'low loop - if readOk = false then -- Bail out if there was a bad read - report "fixed_pkg:" & "READ(sfixed) " - & "End of string encountered" - severity error; - return; - elsif c = '_' then - if i = value'high then - report "fixed_pkg:" & "READ(sfixed) " - & "String begins with an ""_""" severity error; - return; - elsif lastu then - report "fixed_pkg:" & "READ(sfixed) " - & "Two underscores detected in input string ""__""" - severity error; - return; - else - lastu := true; - end if; - elsif c = '.' then -- binary point - if founddot then - report "fixed_pkg:" & "READ(sfixed) " - & "Two binary points found in input string" severity error; - return; - elsif i /= -1 then -- Seperator in the wrong spot - report "fixed_pkg:" & "READ(sfixed) " - & "Decimal point does not match number format " - severity error; - return; - end if; - founddot := true; - lastu := false; - elsif c = ' ' or c = NBSP or c = HT then -- reading done. - report "fixed_pkg:" & "READ(sfixed) " - & "Short read, Space encounted in input string" - severity error; - return; - elsif char_to_MVL9plus(c) = error then - report "fixed_pkg:" & "READ(sfixed) " - & "Character '" & - c & "' read, expected STD_ULOGIC literal." - severity error; - return; - else - mv(i) := char_to_MVL9(c); - i := i - 1; - if i < mv'low then - VALUE := mv; - return; - end if; - lastu := false; - end if; - read(L, c, readOk); - end loop; - end if; - end procedure READ; - - procedure READ(L : inout LINE; - VALUE : out UNRESOLVED_sfixed; - GOOD : out BOOLEAN) is - variable value_ufixed : UNRESOLVED_ufixed (VALUE'range); - begin -- READ - READ (L => L, VALUE => value_ufixed, GOOD => GOOD); - VALUE := UNRESOLVED_sfixed (value_ufixed); - end procedure READ; - - -- octal read and write - procedure owrite ( - L : inout LINE; -- input line - VALUE : in UNRESOLVED_ufixed; -- fixed point input - JUSTIFIED : in SIDE := right; - FIELD : in WIDTH := 0) is - begin -- Example 03.30 - write (L => L, - VALUE => to_ostring (VALUE), - JUSTIFIED => JUSTIFIED, - FIELD => FIELD); - end procedure owrite; - - procedure owrite ( - L : inout LINE; -- input line - VALUE : in UNRESOLVED_sfixed; -- fixed point input - JUSTIFIED : in SIDE := right; - FIELD : in WIDTH := 0) is - begin -- Example 03.30 - write (L => L, - VALUE => to_ostring (VALUE), - JUSTIFIED => JUSTIFIED, - FIELD => FIELD); - end procedure owrite; - - -- purpose: Routines common to the OREAD routines - procedure OREAD_common ( - L : inout LINE; - slv : out STD_ULOGIC_VECTOR; - igood : out BOOLEAN; - idex : out INTEGER; - constant bpoint : in INTEGER; -- binary point - constant message : in BOOLEAN; - constant smath : in BOOLEAN) is - - -- purpose: error message routine - procedure errmes ( - constant mess : in STRING) is -- error message - begin - if message then - if smath then - report "fixed_pkg:" - & "OREAD(sfixed) " - & mess - severity error; - else - report "fixed_pkg:" - & "OREAD(ufixed) " - & mess - severity error; - end if; - end if; - end procedure errmes; - variable xgood : BOOLEAN; - variable nybble : STD_ULOGIC_VECTOR (2 downto 0); -- 3 bits - variable c : CHARACTER; - variable i : INTEGER; - variable lastu : BOOLEAN := false; -- last character was an "_" - variable founddot : BOOLEAN := false; -- found a dot. - begin - Skip_whitespace (L); - if slv'length > 0 then - i := slv'high; - read (l, c, xgood); - while i > 0 loop - if xgood = false then - errmes ("Error: end of string encountered"); - exit; - elsif c = '_' then - if i = slv'length then - errmes ("Error: String begins with an ""_"""); - xgood := false; - exit; - elsif lastu then - errmes ("Error: Two underscores detected in input string ""__"""); - xgood := false; - exit; - else - lastu := true; - end if; - elsif (c = '.') then - if (i + 1 /= bpoint) then - errmes ("encountered ""."" at wrong index"); - xgood := false; - exit; - elsif i = slv'length then - errmes ("encounted a ""."" at the beginning of the line"); - xgood := false; - exit; - elsif founddot then - errmes ("Two ""."" encounted in input string"); - xgood := false; - exit; - end if; - founddot := true; - lastu := false; - else - Char2triBits(c, nybble, xgood, message); - if not xgood then - exit; - end if; - slv (i downto i-2) := nybble; - i := i - 3; - lastu := false; - end if; - if i > 0 then - read (L, c, xgood); - end if; - end loop; - idex := i; - igood := xgood; - else - igood := true; -- read into a null array - idex := -1; - end if; - end procedure OREAD_common; - - -- Note that for Octal and Hex read, you can not start with a ".", - -- the read is for numbers formatted "A.BC". These routines go to - -- the nearest bounds, so "F.E" will fit into an sfixed (2 downto -3). - procedure OREAD (L : inout LINE; - VALUE : out UNRESOLVED_ufixed) is - constant hbv : INTEGER := (((maximum(3, (VALUE'high+1))+2)/3)*3)-1; - constant lbv : INTEGER := ((mine(0, VALUE'low)-2)/3)*3; - variable slv : STD_ULOGIC_VECTOR (hbv-lbv downto 0); -- high bits - variable valuex : UNRESOLVED_ufixed (hbv downto lbv); - variable igood : BOOLEAN; - variable i : INTEGER; - begin - VALUE := (VALUE'range => 'U'); - OREAD_common ( L => L, - slv => slv, - igood => igood, - idex => i, - bpoint => -lbv, - message => true, - smath => false); - if igood then -- We did not get another error - if not ((i = -1) and -- We read everything, and high bits 0 - (or_reduce (slv(hbv-lbv downto VALUE'high+1-lbv)) = '0')) then - report "fixed_pkg:" - & "OREAD(ufixed): Vector truncated." - severity error; - else - if (or_reduce (slv(VALUE'low-lbv-1 downto 0)) = '1') then - assert NO_WARNING - report "fixed_pkg:" - & "OREAD(ufixed): Vector truncated" - severity warning; - end if; - valuex := to_ufixed (slv, hbv, lbv); - VALUE := valuex (VALUE'range); - end if; - end if; - end procedure OREAD; - - procedure OREAD(L : inout LINE; - VALUE : out UNRESOLVED_ufixed; - GOOD : out BOOLEAN) is - constant hbv : INTEGER := (((maximum(3, (VALUE'high+1))+2)/3)*3)-1; - constant lbv : INTEGER := ((mine(0, VALUE'low)-2)/3)*3; - variable slv : STD_ULOGIC_VECTOR (hbv-lbv downto 0); -- high bits - variable valuex : UNRESOLVED_ufixed (hbv downto lbv); - variable igood : BOOLEAN; - variable i : INTEGER; - begin - VALUE := (VALUE'range => 'U'); - OREAD_common ( L => L, - slv => slv, - igood => igood, - idex => i, - bpoint => -lbv, - message => false, - smath => false); - if (igood and -- We did not get another error - (i = -1) and -- We read everything, and high bits 0 - (or_reduce (slv(hbv-lbv downto VALUE'high+1-lbv)) = '0')) then - valuex := to_ufixed (slv, hbv, lbv); - VALUE := valuex (VALUE'range); - good := true; - else - good := false; - end if; - end procedure OREAD; - - procedure OREAD(L : inout LINE; - VALUE : out UNRESOLVED_sfixed) is - constant hbv : INTEGER := (((maximum(3, (VALUE'high+1))+2)/3)*3)-1; - constant lbv : INTEGER := ((mine(0, VALUE'low)-2)/3)*3; - variable slv : STD_ULOGIC_VECTOR (hbv-lbv downto 0); -- high bits - variable valuex : UNRESOLVED_sfixed (hbv downto lbv); - variable igood : BOOLEAN; - variable i : INTEGER; - begin - VALUE := (VALUE'range => 'U'); - OREAD_common ( L => L, - slv => slv, - igood => igood, - idex => i, - bpoint => -lbv, - message => true, - smath => true); - if igood then -- We did not get another error - if not ((i = -1) and -- We read everything - ((slv(VALUE'high-lbv) = '0' and -- sign bits = extra bits - or_reduce (slv(hbv-lbv downto VALUE'high+1-lbv)) = '0') or - (slv(VALUE'high-lbv) = '1' and - and_reduce (slv(hbv-lbv downto VALUE'high+1-lbv)) = '1'))) then - report "fixed_pkg:" - & "OREAD(sfixed): Vector truncated." - severity error; - else - if (or_reduce (slv(VALUE'low-lbv-1 downto 0)) = '1') then - assert NO_WARNING - report "fixed_pkg:" - & "OREAD(sfixed): Vector truncated" - severity warning; - end if; - valuex := to_sfixed (slv, hbv, lbv); - VALUE := valuex (VALUE'range); - end if; - end if; - end procedure OREAD; - - procedure OREAD(L : inout LINE; - VALUE : out UNRESOLVED_sfixed; - GOOD : out BOOLEAN) is - constant hbv : INTEGER := (((maximum(3, (VALUE'high+1))+2)/3)*3)-1; - constant lbv : INTEGER := ((mine(0, VALUE'low)-2)/3)*3; - variable slv : STD_ULOGIC_VECTOR (hbv-lbv downto 0); -- high bits - variable valuex : UNRESOLVED_sfixed (hbv downto lbv); - variable igood : BOOLEAN; - variable i : INTEGER; - begin - VALUE := (VALUE'range => 'U'); - OREAD_common ( L => L, - slv => slv, - igood => igood, - idex => i, - bpoint => -lbv, - message => false, - smath => true); - if (igood -- We did not get another error - and (i = -1) -- We read everything - and ((slv(VALUE'high-lbv) = '0' and -- sign bits = extra bits - or_reduce (slv(hbv-lbv downto VALUE'high+1-lbv)) = '0') or - (slv(VALUE'high-lbv) = '1' and - and_reduce (slv(hbv-lbv downto VALUE'high+1-lbv)) = '1'))) then - valuex := to_sfixed (slv, hbv, lbv); - VALUE := valuex (VALUE'range); - good := true; - else - good := false; - end if; - end procedure OREAD; - - -- hex read and write - procedure hwrite ( - L : inout LINE; -- input line - VALUE : in UNRESOLVED_ufixed; -- fixed point input - JUSTIFIED : in SIDE := right; - FIELD : in WIDTH := 0) is - begin -- Example 03.30 - write (L => L, - VALUE => to_hstring (VALUE), - JUSTIFIED => JUSTIFIED, - FIELD => FIELD); - end procedure hwrite; - - -- purpose: writes fixed point into a line - procedure hwrite ( - L : inout LINE; -- input line - VALUE : in UNRESOLVED_sfixed; -- fixed point input - JUSTIFIED : in SIDE := right; - FIELD : in WIDTH := 0) is - begin -- Example 03.30 - write (L => L, - VALUE => to_hstring (VALUE), - JUSTIFIED => JUSTIFIED, - FIELD => FIELD); - end procedure hwrite; - - -- purpose: Routines common to the OREAD routines - procedure HREAD_common ( - L : inout LINE; - slv : out STD_ULOGIC_VECTOR; - igood : out BOOLEAN; - idex : out INTEGER; - constant bpoint : in INTEGER; -- binary point - constant message : in BOOLEAN; - constant smath : in BOOLEAN) is - - -- purpose: error message routine - procedure errmes ( - constant mess : in STRING) is -- error message - begin - if message then - if smath then - report "fixed_pkg:" - & "HREAD(sfixed) " - & mess - severity error; - else - report "fixed_pkg:" - & "HREAD(ufixed) " - & mess - severity error; - end if; - end if; - end procedure errmes; - variable xgood : BOOLEAN; - variable nybble : STD_ULOGIC_VECTOR (3 downto 0); -- 4 bits - variable c : CHARACTER; - variable i : INTEGER; - variable lastu : BOOLEAN := false; -- last character was an "_" - variable founddot : BOOLEAN := false; -- found a dot. - begin - Skip_whitespace (L); - if slv'length > 0 then - i := slv'high; - read (l, c, xgood); - while i > 0 loop - if xgood = false then - errmes ("Error: end of string encountered"); - exit; - elsif c = '_' then - if i = slv'length then - errmes ("Error: String begins with an ""_"""); - xgood := false; - exit; - elsif lastu then - errmes ("Error: Two underscores detected in input string ""__"""); - xgood := false; - exit; - else - lastu := true; - end if; - elsif (c = '.') then - if (i + 1 /= bpoint) then - errmes ("encountered ""."" at wrong index"); - xgood := false; - exit; - elsif i = slv'length then - errmes ("encounted a ""."" at the beginning of the line"); - xgood := false; - exit; - elsif founddot then - errmes ("Two ""."" encounted in input string"); - xgood := false; - exit; - end if; - founddot := true; - lastu := false; - else - Char2QuadBits(c, nybble, xgood, message); - if not xgood then - exit; - end if; - slv (i downto i-3) := nybble; - i := i - 4; - lastu := false; - end if; - if i > 0 then - read (L, c, xgood); - end if; - end loop; - idex := i; - igood := xgood; - else - idex := -1; - igood := true; -- read null string - end if; - end procedure HREAD_common; - - procedure HREAD(L : inout LINE; - VALUE : out UNRESOLVED_ufixed) is - constant hbv : INTEGER := (((maximum(4, (VALUE'high+1))+3)/4)*4)-1; - constant lbv : INTEGER := ((mine(0, VALUE'low)-3)/4)*4; - variable slv : STD_ULOGIC_VECTOR (hbv-lbv downto 0); -- high bits - variable valuex : UNRESOLVED_ufixed (hbv downto lbv); - variable igood : BOOLEAN; - variable i : INTEGER; - begin - VALUE := (VALUE'range => 'U'); - HREAD_common ( L => L, - slv => slv, - igood => igood, - idex => i, - bpoint => -lbv, - message => false, - smath => false); - if igood then - if not ((i = -1) and -- We read everything, and high bits 0 - (or_reduce (slv(hbv-lbv downto VALUE'high+1-lbv)) = '0')) then - report "fixed_pkg:" - & "HREAD(ufixed): Vector truncated." - severity error; - else - if (or_reduce (slv(VALUE'low-lbv-1 downto 0)) = '1') then - assert NO_WARNING - report "fixed_pkg:" - & "HREAD(ufixed): Vector truncated" - severity warning; - end if; - valuex := to_ufixed (slv, hbv, lbv); - VALUE := valuex (VALUE'range); - end if; - end if; - end procedure HREAD; - - procedure HREAD(L : inout LINE; - VALUE : out UNRESOLVED_ufixed; - GOOD : out BOOLEAN) is - constant hbv : INTEGER := (((maximum(4, (VALUE'high+1))+3)/4)*4)-1; - constant lbv : INTEGER := ((mine(0, VALUE'low)-3)/4)*4; - variable slv : STD_ULOGIC_VECTOR (hbv-lbv downto 0); -- high bits - variable valuex : UNRESOLVED_ufixed (hbv downto lbv); - variable igood : BOOLEAN; - variable i : INTEGER; - begin - VALUE := (VALUE'range => 'U'); - HREAD_common ( L => L, - slv => slv, - igood => igood, - idex => i, - bpoint => -lbv, - message => false, - smath => false); - if (igood and -- We did not get another error - (i = -1) and -- We read everything, and high bits 0 - (or_reduce (slv(hbv-lbv downto VALUE'high+1-lbv)) = '0')) then - valuex := to_ufixed (slv, hbv, lbv); - VALUE := valuex (VALUE'range); - good := true; - else - good := false; - end if; - end procedure HREAD; - - procedure HREAD(L : inout LINE; - VALUE : out UNRESOLVED_sfixed) is - constant hbv : INTEGER := (((maximum(4, (VALUE'high+1))+3)/4)*4)-1; - constant lbv : INTEGER := ((mine(0, VALUE'low)-3)/4)*4; - variable slv : STD_ULOGIC_VECTOR (hbv-lbv downto 0); -- high bits - variable valuex : UNRESOLVED_sfixed (hbv downto lbv); - variable igood : BOOLEAN; - variable i : INTEGER; - begin - VALUE := (VALUE'range => 'U'); - HREAD_common ( L => L, - slv => slv, - igood => igood, - idex => i, - bpoint => -lbv, - message => true, - smath => true); - if igood then -- We did not get another error - if not ((i = -1) -- We read everything - and ((slv(VALUE'high-lbv) = '0' and -- sign bits = extra bits - or_reduce (slv(hbv-lbv downto VALUE'high+1-lbv)) = '0') or - (slv(VALUE'high-lbv) = '1' and - and_reduce (slv(hbv-lbv downto VALUE'high+1-lbv)) = '1'))) then - report "fixed_pkg:" - & "HREAD(sfixed): Vector truncated." - severity error; - else - if (or_reduce (slv(VALUE'low-lbv-1 downto 0)) = '1') then - assert NO_WARNING - report "fixed_pkg:" - & "HREAD(sfixed): Vector truncated" - severity warning; - end if; - valuex := to_sfixed (slv, hbv, lbv); - VALUE := valuex (VALUE'range); - end if; - end if; - end procedure HREAD; - - procedure HREAD(L : inout LINE; - VALUE : out UNRESOLVED_sfixed; - GOOD : out BOOLEAN) is - constant hbv : INTEGER := (((maximum(4, (VALUE'high+1))+3)/4)*4)-1; - constant lbv : INTEGER := ((mine(0, VALUE'low)-3)/4)*4; - variable slv : STD_ULOGIC_VECTOR (hbv-lbv downto 0); -- high bits - variable valuex : UNRESOLVED_sfixed (hbv downto lbv); - variable igood : BOOLEAN; - variable i : INTEGER; - begin - VALUE := (VALUE'range => 'U'); - HREAD_common ( L => L, - slv => slv, - igood => igood, - idex => i, - bpoint => -lbv, - message => false, - smath => true); - if (igood and -- We did not get another error - (i = -1) and -- We read everything - ((slv(VALUE'high-lbv) = '0' and -- sign bits = extra bits - or_reduce (slv(hbv-lbv downto VALUE'high+1-lbv)) = '0') or - (slv(VALUE'high-lbv) = '1' and - and_reduce (slv(hbv-lbv downto VALUE'high+1-lbv)) = '1'))) then - valuex := to_sfixed (slv, hbv, lbv); - VALUE := valuex (VALUE'range); - good := true; - else - good := false; - end if; - end procedure HREAD; - - function to_string (value : UNRESOLVED_ufixed) return STRING is - variable s : STRING(1 to value'length +1) := (others => ' '); - variable subval : UNRESOLVED_ufixed (value'high downto -1); - variable sindx : INTEGER; - begin - if value'length < 1 then - return NUS; - else - if value'high < 0 then - if value(value'high) = 'Z' then - return to_string (resize (sfixed(value), 0, value'low)); - else - return to_string (resize (value, 0, value'low)); - end if; - elsif value'low >= 0 then - if Is_X (value(value'low)) then - subval := (others => value(value'low)); - subval (value'range) := value; - return to_string(subval); - else - return to_string (resize (value, value'high, -1)); - end if; - else - sindx := 1; - for i in value'high downto value'low loop - if i = -1 then - s(sindx) := '.'; - sindx := sindx + 1; - end if; - s(sindx) := MVL9_to_char(STD_ULOGIC(value(i))); - sindx := sindx + 1; - end loop; - return s; - end if; - end if; - end function to_string; - - function to_string (value : UNRESOLVED_sfixed) return STRING is - variable s : STRING(1 to value'length + 1) := (others => ' '); - variable subval : UNRESOLVED_sfixed (value'high downto -1); - variable sindx : INTEGER; - begin - if value'length < 1 then - return NUS; - else - if value'high < 0 then - return to_string (resize (value, 0, value'low)); - elsif value'low >= 0 then - if Is_X (value(value'low)) then - subval := (others => value(value'low)); - subval (value'range) := value; - return to_string(subval); - else - return to_string (resize (value, value'high, -1)); - end if; - else - sindx := 1; - for i in value'high downto value'low loop - if i = -1 then - s(sindx) := '.'; - sindx := sindx + 1; - end if; - s(sindx) := MVL9_to_char(STD_ULOGIC(value(i))); - sindx := sindx + 1; - end loop; - return s; - end if; - end if; - end function to_string; - - function to_ostring (value : UNRESOLVED_ufixed) return STRING is - constant lne : INTEGER := (-VALUE'low+2)/3; - variable subval : UNRESOLVED_ufixed (value'high downto -3); - variable lpad : STD_ULOGIC_VECTOR (0 to (lne*3 + VALUE'low) -1); - variable slv : STD_ULOGIC_VECTOR (value'length-1 downto 0); - begin - if value'length < 1 then - return NUS; - else - if value'high < 0 then - if value(value'high) = 'Z' then - return to_ostring (resize (sfixed(value), 2, value'low)); - else - return to_ostring (resize (value, 2, value'low)); - end if; - elsif value'low >= 0 then - if Is_X (value(value'low)) then - subval := (others => value(value'low)); - subval (value'range) := value; - return to_ostring(subval); - else - return to_ostring (resize (value, value'high, -3)); - end if; - else - slv := to_sulv (value); - if Is_X (value (value'low)) then - lpad := (others => value (value'low)); - else - lpad := (others => '0'); - end if; - return to_ostring(slv(slv'high downto slv'high-VALUE'high)) - & "." - & to_ostring(slv(slv'high-VALUE'high-1 downto 0) & lpad); - end if; - end if; - end function to_ostring; - - function to_hstring (value : UNRESOLVED_ufixed) return STRING is - constant lne : INTEGER := (-VALUE'low+3)/4; - variable subval : UNRESOLVED_ufixed (value'high downto -4); - variable lpad : STD_ULOGIC_VECTOR (0 to (lne*4 + VALUE'low) -1); - variable slv : STD_ULOGIC_VECTOR (value'length-1 downto 0); - begin - if value'length < 1 then - return NUS; - else - if value'high < 0 then - if value(value'high) = 'Z' then - return to_hstring (resize (sfixed(value), 3, value'low)); - else - return to_hstring (resize (value, 3, value'low)); - end if; - elsif value'low >= 0 then - if Is_X (value(value'low)) then - subval := (others => value(value'low)); - subval (value'range) := value; - return to_hstring(subval); - else - return to_hstring (resize (value, value'high, -4)); - end if; - else - slv := to_sulv (value); - if Is_X (value (value'low)) then - lpad := (others => value(value'low)); - else - lpad := (others => '0'); - end if; - return to_hstring(slv(slv'high downto slv'high-VALUE'high)) - & "." - & to_hstring(slv(slv'high-VALUE'high-1 downto 0)&lpad); - end if; - end if; - end function to_hstring; - - function to_ostring (value : UNRESOLVED_sfixed) return STRING is - constant ne : INTEGER := ((value'high+1)+2)/3; - variable pad : STD_ULOGIC_VECTOR(0 to (ne*3 - (value'high+1)) - 1); - constant lne : INTEGER := (-VALUE'low+2)/3; - variable subval : UNRESOLVED_sfixed (value'high downto -3); - variable lpad : STD_ULOGIC_VECTOR (0 to (lne*3 + VALUE'low) -1); - variable slv : STD_ULOGIC_VECTOR (VALUE'high - VALUE'low downto 0); - begin - if value'length < 1 then - return NUS; - else - if value'high < 0 then - return to_ostring (resize (value, 2, value'low)); - elsif value'low >= 0 then - if Is_X (value(value'low)) then - subval := (others => value(value'low)); - subval (value'range) := value; - return to_ostring(subval); - else - return to_ostring (resize (value, value'high, -3)); - end if; - else - pad := (others => value(value'high)); - slv := to_sulv (value); - if Is_X (value (value'low)) then - lpad := (others => value(value'low)); - else - lpad := (others => '0'); - end if; - return to_ostring(pad & slv(slv'high downto slv'high-VALUE'high)) - & "." - & to_ostring(slv(slv'high-VALUE'high-1 downto 0) & lpad); - end if; - end if; - end function to_ostring; - - function to_hstring (value : UNRESOLVED_sfixed) return STRING is - constant ne : INTEGER := ((value'high+1)+3)/4; - variable pad : STD_ULOGIC_VECTOR(0 to (ne*4 - (value'high+1)) - 1); - constant lne : INTEGER := (-VALUE'low+3)/4; - variable subval : UNRESOLVED_sfixed (value'high downto -4); - variable lpad : STD_ULOGIC_VECTOR (0 to (lne*4 + VALUE'low) -1); - variable slv : STD_ULOGIC_VECTOR (value'length-1 downto 0); - begin - if value'length < 1 then - return NUS; - else - if value'high < 0 then - return to_hstring (resize (value, 3, value'low)); - elsif value'low >= 0 then - if Is_X (value(value'low)) then - subval := (others => value(value'low)); - subval (value'range) := value; - return to_hstring(subval); - else - return to_hstring (resize (value, value'high, -4)); - end if; - else - slv := to_sulv (value); - pad := (others => value(value'high)); - if Is_X (value (value'low)) then - lpad := (others => value(value'low)); - else - lpad := (others => '0'); - end if; - return to_hstring(pad & slv(slv'high downto slv'high-VALUE'high)) - & "." - & to_hstring(slv(slv'high-VALUE'high-1 downto 0) & lpad); - end if; - end if; - end function to_hstring; - - -- From string functions allow you to convert a string into a fixed - -- point number. Example: - -- signal uf1 : ufixed (3 downto -3); - -- uf1 <= from_string ("0110.100", uf1'high, uf1'low); -- 6.5 - -- The "." is optional in this syntax, however it exist and is - -- in the wrong location an error is produced. Overflow will - -- result in saturation. - - function from_string ( - bstring : STRING; -- binary string - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (left_index downto right_index); - variable L : LINE; - variable good : BOOLEAN; - begin - L := new STRING'(bstring); - read (L, result, good); - deallocate (L); - assert (good) - report "fixed_pkg:" - & "from_string: Bad string "& bstring severity error; - return result; - end function from_string; - - -- Octal and hex conversions work as follows: - -- uf1 <= from_hstring ("6.8", 3, -3); -- 6.5 (bottom zeros dropped) - -- uf1 <= from_ostring ("06.4", 3, -3); -- 6.5 (top zeros dropped) - function from_ostring ( - ostring : STRING; -- Octal string - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (left_index downto right_index); - variable L : LINE; - variable good : BOOLEAN; - begin - L := new STRING'(ostring); - oread (L, result, good); - deallocate (L); - assert (good) - report "fixed_pkg:" - & "from_ostring: Bad string "& ostring severity error; - return result; - end function from_ostring; - - function from_hstring ( - hstring : STRING; -- hex string - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_ufixed is - variable result : UNRESOLVED_ufixed (left_index downto right_index); - variable L : LINE; - variable good : BOOLEAN; - begin - L := new STRING'(hstring); - hread (L, result, good); - deallocate (L); - assert (good) - report "fixed_pkg:" - & "from_hstring: Bad string "& hstring severity error; - return result; - end function from_hstring; - - function from_string ( - bstring : STRING; -- binary string - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (left_index downto right_index); - variable L : LINE; - variable good : BOOLEAN; - begin - L := new STRING'(bstring); - read (L, result, good); - deallocate (L); - assert (good) - report "fixed_pkg:" - & "from_string: Bad string "& bstring severity error; - return result; - end function from_string; - - function from_ostring ( - ostring : STRING; -- Octal string - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (left_index downto right_index); - variable L : LINE; - variable good : BOOLEAN; - begin - L := new STRING'(ostring); - oread (L, result, good); - deallocate (L); - assert (good) - report "fixed_pkg:" - & "from_ostring: Bad string "& ostring severity error; - return result; - end function from_ostring; - - function from_hstring ( - hstring : STRING; -- hex string - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_sfixed is - variable result : UNRESOLVED_sfixed (left_index downto right_index); - variable L : LINE; - variable good : BOOLEAN; - begin - L := new STRING'(hstring); - hread (L, result, good); - deallocate (L); - assert (good) - report "fixed_pkg:" - & "from_hstring: Bad string "& hstring severity error; - return result; - end function from_hstring; - - -- Same as above, "size_res" is used for it's range only. - function from_string ( - bstring : STRING; -- binary string - size_res : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed is - begin - return from_string (bstring, size_res'high, size_res'low); - end function from_string; - - function from_ostring ( - ostring : STRING; -- Octal string - size_res : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed is - begin - return from_ostring (ostring, size_res'high, size_res'low); - end function from_ostring; - - function from_hstring ( - hstring : STRING; -- hex string - size_res : UNRESOLVED_ufixed) - return UNRESOLVED_ufixed is - begin - return from_hstring(hstring, size_res'high, size_res'low); - end function from_hstring; - - function from_string ( - bstring : STRING; -- binary string - size_res : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed is - begin - return from_string (bstring, size_res'high, size_res'low); - end function from_string; - - function from_ostring ( - ostring : STRING; -- Octal string - size_res : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed is - begin - return from_ostring (ostring, size_res'high, size_res'low); - end function from_ostring; - - function from_hstring ( - hstring : STRING; -- hex string - size_res : UNRESOLVED_sfixed) - return UNRESOLVED_sfixed is - begin - return from_hstring (hstring, size_res'high, size_res'low); - end function from_hstring; - - -- purpose: Calculate the string boundaries - procedure calculate_string_boundry ( - arg : in STRING; -- input string - left_index : out INTEGER; -- left - right_index : out INTEGER) is -- right - -- examples "10001.111" would return +4, -3 - -- "07X.44" would return +2, -2 (then the octal routine would multiply) - -- "A_B_._C" would return +1, -1 (then the hex routine would multiply) - alias xarg : STRING (arg'length downto 1) is arg; -- make it downto range - variable l, r : INTEGER; -- internal indexes - variable founddot : BOOLEAN := false; - begin - if arg'length > 0 then - l := xarg'high - 1; - r := 0; - for i in xarg'range loop - if xarg(i) = '_' then - if r = 0 then - l := l - 1; - else - r := r + 1; - end if; - elsif xarg(i) = ' ' or xarg(i) = NBSP or xarg(i) = HT then - report "fixed_pkg:" - & "Found a space in the input STRING " & xarg - severity error; - elsif xarg(i) = '.' then - if founddot then - report "fixed_pkg:" - & "Found two binary points in input string " & xarg - severity error; - else - l := l - i; - r := -i + 1; - founddot := true; - end if; - end if; - end loop; - left_index := l; - right_index := r; - else - left_index := 0; - right_index := 0; - end if; - end procedure calculate_string_boundry; - - -- Direct conversion functions. Example: - -- signal uf1 : ufixed (3 downto -3); - -- uf1 <= from_string ("0110.100"); -- 6.5 - -- In this case the "." is not optional, and the size of - -- the output must match exactly. - function from_string ( - bstring : STRING) -- binary string - return UNRESOLVED_ufixed is - variable left_index, right_index : INTEGER; - begin - calculate_string_boundry (bstring, left_index, right_index); - return from_string (bstring, left_index, right_index); - end function from_string; - - -- Direct octal and hex conversion functions. In this case - -- the string lengths must match. Example: - -- signal sf1 := sfixed (5 downto -3); - -- sf1 <= from_ostring ("71.4") -- -6.5 - function from_ostring ( - ostring : STRING) -- Octal string - return UNRESOLVED_ufixed is - variable left_index, right_index : INTEGER; - begin - calculate_string_boundry (ostring, left_index, right_index); - return from_ostring (ostring, ((left_index+1)*3)-1, right_index*3); - end function from_ostring; - - function from_hstring ( - hstring : STRING) -- hex string - return UNRESOLVED_ufixed is - variable left_index, right_index : INTEGER; - begin - calculate_string_boundry (hstring, left_index, right_index); - return from_hstring (hstring, ((left_index+1)*4)-1, right_index*4); - end function from_hstring; - - function from_string ( - bstring : STRING) -- binary string - return UNRESOLVED_sfixed is - variable left_index, right_index : INTEGER; - begin - calculate_string_boundry (bstring, left_index, right_index); - return from_string (bstring, left_index, right_index); - end function from_string; - - function from_ostring ( - ostring : STRING) -- Octal string - return UNRESOLVED_sfixed is - variable left_index, right_index : INTEGER; - begin - calculate_string_boundry (ostring, left_index, right_index); - return from_ostring (ostring, ((left_index+1)*3)-1, right_index*3); - end function from_ostring; - - function from_hstring ( - hstring : STRING) -- hex string - return UNRESOLVED_sfixed is - variable left_index, right_index : INTEGER; - begin - calculate_string_boundry (hstring, left_index, right_index); - return from_hstring (hstring, ((left_index+1)*4)-1, right_index*4); - end function from_hstring; --- pragma synthesis_on --- rtl_synthesis on - -- IN VHDL-2006 std_logic_vector is a subtype of std_ulogic_vector, so these - -- extra functions are needed for compatability. - function to_ufixed ( - arg : STD_LOGIC_VECTOR; -- shifted vector - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_ufixed is - begin - return to_ufixed ( - arg => std_ulogic_vector (arg), - left_index => left_index, - right_index => right_index); - end function to_ufixed; - - function to_ufixed ( - arg : STD_LOGIC_VECTOR; -- shifted vector - size_res : UNRESOLVED_ufixed) -- for size only - return UNRESOLVED_ufixed is - begin - return to_ufixed ( - arg => std_ulogic_vector (arg), - size_res => size_res); - end function to_ufixed; - - function to_sfixed ( - arg : STD_LOGIC_VECTOR; -- shifted vector - constant left_index : INTEGER; - constant right_index : INTEGER) - return UNRESOLVED_sfixed is - begin - return to_sfixed ( - arg => std_ulogic_vector (arg), - left_index => left_index, - right_index => right_index); - end function to_sfixed; - - function to_sfixed ( - arg : STD_LOGIC_VECTOR; -- shifted vector - size_res : UNRESOLVED_sfixed) -- for size only - return UNRESOLVED_sfixed is - begin - return to_sfixed ( - arg => std_ulogic_vector (arg), - size_res => size_res); - end function to_sfixed; - - -- unsigned fixed point - function to_UFix ( - arg : STD_LOGIC_VECTOR; - width : NATURAL; -- width of vector - fraction : NATURAL) -- width of fraction - return UNRESOLVED_ufixed is - begin - return to_UFix ( - arg => std_ulogic_vector (arg), - width => width, - fraction => fraction); - end function to_UFix; - - -- signed fixed point - function to_SFix ( - arg : STD_LOGIC_VECTOR; - width : NATURAL; -- width of vector - fraction : NATURAL) -- width of fraction - return UNRESOLVED_sfixed is - begin - return to_SFix ( - arg => std_ulogic_vector (arg), - width => width, - fraction => fraction); - end function to_SFix; - -end package body fixed_pkg; diff --git a/ieee_proposed/rtl/float_pkg_c.vhd b/ieee_proposed/rtl/float_pkg_c.vhd deleted file mode 100644 index 8abbff6..0000000 --- a/ieee_proposed/rtl/float_pkg_c.vhd +++ /dev/null @@ -1,7190 +0,0 @@ --- -------------------------------------------------------------------- --- "float_pkg" package contains functions for floating point math. --- Please see the documentation for the floating point package. --- This package should be compiled into "ieee_proposed" and used as follows: --- use ieee.std_logic_1164.all; --- use ieee.numeric_std.all; --- use ieee_proposed.fixed_float_types.all; --- use ieee_proposed.fixed_pkg.all; --- use ieee_proposed.float_pkg.all; --- --- This verison is designed to work with the VHDL-93 compilers. Please --- note the "%%%" comments. These are where we diverge from the --- VHDL-200X LRM. --- --- -------------------------------------------------------------------- --- Version : $Revision: 2.0 $ --- Date : $Date: 2009/01/27 20:45:30 $ --- -------------------------------------------------------------------- - -use STD.TEXTIO.all; -library IEEE; -use IEEE.STD_LOGIC_1164.all; -use IEEE.NUMERIC_STD.all; -library ieee_proposed; -use ieee_proposed.fixed_float_types.all; -use ieee_proposed.fixed_pkg.all; - -package float_pkg is --- generic ( - -- Defaults for sizing routines, when you do a "to_float" this will be - -- the default size. Example float32 would be 8 and 23 (8 downto -23) - constant float_exponent_width : NATURAL := 8; - constant float_fraction_width : NATURAL := 23; - -- Rounding algorithm, "round_nearest" is default, other valid values - -- are "round_zero" (truncation), "round_inf" (round up), and - -- "round_neginf" (round down) - constant float_round_style : round_type := round_nearest; - -- Denormal numbers (very small numbers near zero) true or false - constant float_denormalize : BOOLEAN := true; - -- Turns on NAN processing (invalid numbers and overflow) true of false - constant float_check_error : BOOLEAN := true; - -- Guard bits are added to the bottom of every operation for rounding. - -- any natural number (including 0) are valid. - constant float_guard_bits : NATURAL := 3; - -- If TRUE, then turn off warnings on "X" propagation - constant no_warning : BOOLEAN := (false - ); - - -- Author David Bishop (dbishop@vhdl.org) - - -- Note that the size of the vector is not defined here, but in - -- the package which calls this one. - type UNRESOLVED_float is array (INTEGER range <>) of STD_ULOGIC; -- main type - subtype U_float is UNRESOLVED_float; - - subtype float is UNRESOLVED_float; - ----------------------------------------------------------------------------- - -- Use the float type to define your own floating point numbers. - -- There must be a negative index or the packages will error out. - -- Minimum supported is "subtype float7 is float (3 downto -3);" - -- "subtype float16 is float (6 downto -9);" is probably the smallest - -- practical one to use. - ----------------------------------------------------------------------------- - - -- IEEE 754 single precision - subtype UNRESOLVED_float32 is UNRESOLVED_float (8 downto -23); --- alias U_float32 is UNRESOLVED_float32; - subtype float32 is float (8 downto -23); - ----------------------------------------------------------------------------- - -- IEEE-754 single precision floating point. This is a "float" - -- in C, and a FLOAT in Fortran. The exponent is 8 bits wide, and - -- the fraction is 23 bits wide. This format can hold roughly 7 decimal - -- digits. Infinity is 2**127 = 1.7E38 in this number system. - -- The bit representation is as follows: - -- 1 09876543 21098765432109876543210 - -- 8 76543210 12345678901234567890123 - -- 0 00000000 00000000000000000000000 - -- 8 7 0 -1 -23 - -- +/- exp. fraction - ----------------------------------------------------------------------------- - - -- IEEE 754 double precision - subtype UNRESOLVED_float64 is UNRESOLVED_float (11 downto -52); --- alias U_float64 is UNRESOLVED_float64; - subtype float64 is float (11 downto -52); - ----------------------------------------------------------------------------- - -- IEEE-754 double precision floating point. This is a "double float" - -- in C, and a FLOAT*8 in Fortran. The exponent is 11 bits wide, and - -- the fraction is 52 bits wide. This format can hold roughly 15 decimal - -- digits. Infinity is 2**2047 in this number system. - -- The bit representation is as follows: - -- 3 21098765432 1098765432109876543210987654321098765432109876543210 - -- 1 09876543210 1234567890123456789012345678901234567890123456789012 - -- S EEEEEEEEEEE FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF - -- 11 10 0 -1 -52 - -- +/- exponent fraction - ----------------------------------------------------------------------------- - - -- IEEE 854 & C extended precision - subtype UNRESOLVED_float128 is UNRESOLVED_float (15 downto -112); --- alias U_float128 is UNRESOLVED_float128; - subtype float128 is float (15 downto -112); - ----------------------------------------------------------------------------- - -- The 128 bit floating point number is "long double" in C (on - -- some systems this is a 70 bit floating point number) and FLOAT*32 - -- in Fortran. The exponent is 15 bits wide and the fraction is 112 - -- bits wide. This number can handle approximately 33 decimal digits. - -- Infinity is 2**32,767 in this number system. - ----------------------------------------------------------------------------- - - -- purpose: Checks for a valid floating point number - type valid_fpstate is (nan, -- Signaling NaN (C FP_NAN) - quiet_nan, -- Quiet NaN (C FP_NAN) - neg_inf, -- Negative infinity (C FP_INFINITE) - neg_normal, -- negative normalized nonzero - neg_denormal, -- negative denormalized (FP_SUBNORMAL) - neg_zero, -- -0 (C FP_ZERO) - pos_zero, -- +0 (C FP_ZERO) - pos_denormal, -- Positive denormalized (FP_SUBNORMAL) - pos_normal, -- positive normalized nonzero - pos_inf, -- positive infinity - isx); -- at least one input is unknown - - -- This deferred constant will tell you if the package body is synthesizable - -- or implemented as real numbers. - constant fphdlsynth_or_real : BOOLEAN; -- deferred constant - - -- Returns the class which X falls into - function Classfp ( - x : UNRESOLVED_float; -- floating point input - check_error : BOOLEAN := float_check_error) -- check for errors - return valid_fpstate; - - -- Arithmetic functions, these operators do not require parameters. - function "abs" (arg : UNRESOLVED_float) return UNRESOLVED_float; - function "-" (arg : UNRESOLVED_float) return UNRESOLVED_float; - - -- These allows the base math functions to use the default values - -- of their parameters. Thus they do full IEEE floating point. - - function "+" (l, r : UNRESOLVED_float) return UNRESOLVED_float; - function "-" (l, r : UNRESOLVED_float) return UNRESOLVED_float; - function "*" (l, r : UNRESOLVED_float) return UNRESOLVED_float; - function "/" (l, r : UNRESOLVED_float) return UNRESOLVED_float; --- function "rem" (l, r : UNRESOLVED_float) return UNRESOLVED_float; --- function "mod" (l, r : UNRESOLVED_float) return UNRESOLVED_float; - - -- Basic parameter list - -- round_style - Selects the rounding algorithm to use - -- guard - extra bits added to the end if the operation to add precision - -- check_error - When "false" turns off NAN and overflow checks - -- denormalize - When "false" turns off denormal number processing - - function add ( - l, r : UNRESOLVED_float; -- floating point input - constant round_style : round_type := float_round_style; -- rounding option - constant guard : NATURAL := float_guard_bits; -- number of guard bits - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float; - - function subtract ( - l, r : UNRESOLVED_float; -- floating point input - constant round_style : round_type := float_round_style; -- rounding option - constant guard : NATURAL := float_guard_bits; -- number of guard bits - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float; - - function multiply ( - l, r : UNRESOLVED_float; -- floating point input - constant round_style : round_type := float_round_style; -- rounding option - constant guard : NATURAL := float_guard_bits; -- number of guard bits - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float; - - function divide ( - l, r : UNRESOLVED_float; -- floating point input - constant round_style : round_type := float_round_style; -- rounding option - constant guard : NATURAL := float_guard_bits; -- number of guard bits - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float; - --- function remainder ( --- l, r : UNRESOLVED_float; -- floating point input --- constant round_style : round_type := float_round_style; -- rounding option --- constant guard : NATURAL := float_guard_bits; -- number of guard bits --- constant check_error : BOOLEAN := float_check_error; -- check for errors --- constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP --- return UNRESOLVED_float; - --- function modulo ( --- l, r : UNRESOLVED_float; -- floating point input --- constant round_style : round_type := float_round_style; -- rounding option --- constant guard : NATURAL := float_guard_bits; -- number of guard bits --- constant check_error : BOOLEAN := float_check_error; -- check for errors --- constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP --- return UNRESOLVED_float; - - -- reciprocal - function reciprocal ( - arg : UNRESOLVED_float; -- floating point input - constant round_style : round_type := float_round_style; -- rounding option - constant guard : NATURAL := float_guard_bits; -- number of guard bits - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float; - - function dividebyp2 ( - l, r : UNRESOLVED_float; -- floating point input - constant round_style : round_type := float_round_style; -- rounding option - constant guard : NATURAL := float_guard_bits; -- number of guard bits - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float; - - -- Multiply accumulate result = l*r + c - function mac ( - l, r, c : UNRESOLVED_float; -- floating point input - constant round_style : round_type := float_round_style; -- rounding option - constant guard : NATURAL := float_guard_bits; -- number of guard bits - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float; - - -- Square root (all 754 based implementations need this) --- function sqrt ( --- arg : UNRESOLVED_float; -- floating point input --- constant round_style : round_type := float_round_style; --- constant guard : NATURAL := float_guard_bits; --- constant check_error : BOOLEAN := float_check_error; --- constant denormalize : BOOLEAN := float_denormalize) --- return UNRESOLVED_float; - - function Is_Negative (arg : UNRESOLVED_float) return BOOLEAN; - - ----------------------------------------------------------------------------- - -- compare functions - -- =, /=, >=, <=, <, >, maximum, minimum - - function eq ( -- equal = - l, r : UNRESOLVED_float; -- floating point input - constant check_error : BOOLEAN := float_check_error; - constant denormalize : BOOLEAN := float_denormalize) - return BOOLEAN; - - function ne ( -- not equal /= - l, r : UNRESOLVED_float; -- floating point input - constant check_error : BOOLEAN := float_check_error; - constant denormalize : BOOLEAN := float_denormalize) - return BOOLEAN; - - function lt ( -- less than < - l, r : UNRESOLVED_float; -- floating point input - constant check_error : BOOLEAN := float_check_error; - constant denormalize : BOOLEAN := float_denormalize) - return BOOLEAN; - - function gt ( -- greater than > - l, r : UNRESOLVED_float; -- floating point input - constant check_error : BOOLEAN := float_check_error; - constant denormalize : BOOLEAN := float_denormalize) - return BOOLEAN; - - function le ( -- less than or equal to <= - l, r : UNRESOLVED_float; -- floating point input - constant check_error : BOOLEAN := float_check_error; - constant denormalize : BOOLEAN := float_denormalize) - return BOOLEAN; - - function ge ( -- greater than or equal to >= - l, r : UNRESOLVED_float; -- floating point input - constant check_error : BOOLEAN := float_check_error; - constant denormalize : BOOLEAN := float_denormalize) - return BOOLEAN; - - -- Need to overload the default versions of these - function "=" (l, r : UNRESOLVED_float) return BOOLEAN; - function "/=" (l, r : UNRESOLVED_float) return BOOLEAN; - function ">=" (l, r : UNRESOLVED_float) return BOOLEAN; - function "<=" (l, r : UNRESOLVED_float) return BOOLEAN; - function ">" (l, r : UNRESOLVED_float) return BOOLEAN; - function "<" (l, r : UNRESOLVED_float) return BOOLEAN; - - function \?=\ (l, r : UNRESOLVED_float) return STD_ULOGIC; - function \?/=\ (l, r : UNRESOLVED_float) return STD_ULOGIC; - function \?>\ (l, r : UNRESOLVED_float) return STD_ULOGIC; - function \?>=\ (l, r : UNRESOLVED_float) return STD_ULOGIC; - function \?<\ (l, r : UNRESOLVED_float) return STD_ULOGIC; - function \?<=\ (l, r : UNRESOLVED_float) return STD_ULOGIC; - - function std_match (l, r : UNRESOLVED_float) return BOOLEAN; - function find_rightmost (arg : UNRESOLVED_float; y : STD_ULOGIC) - return INTEGER; - function find_leftmost (arg : UNRESOLVED_float; y : STD_ULOGIC) - return INTEGER; - function maximum (l, r : UNRESOLVED_float) return UNRESOLVED_float; - function minimum (l, r : UNRESOLVED_float) return UNRESOLVED_float; - - -- conversion functions - -- Converts one floating point number into another. - - function resize ( - arg : UNRESOLVED_float; -- Floating point input - constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent - constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction - constant round_style : round_type := float_round_style; -- rounding option - constant check_error : BOOLEAN := float_check_error; - constant denormalize_in : BOOLEAN := float_denormalize; -- Use IEEE extended FP - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float; - - function resize ( - arg : UNRESOLVED_float; -- Floating point input - size_res : UNRESOLVED_float; - constant round_style : round_type := float_round_style; -- rounding option - constant check_error : BOOLEAN := float_check_error; - constant denormalize_in : BOOLEAN := float_denormalize; -- Use IEEE extended FP - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float; - - function to_float32 ( - arg : UNRESOLVED_float; - constant round_style : round_type := float_round_style; -- rounding option - constant check_error : BOOLEAN := float_check_error; - constant denormalize_in : BOOLEAN := float_denormalize; -- Use IEEE extended FP - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float32; - - function to_float64 ( - arg : UNRESOLVED_float; - constant round_style : round_type := float_round_style; -- rounding option - constant check_error : BOOLEAN := float_check_error; - constant denormalize_in : BOOLEAN := float_denormalize; -- Use IEEE extended FP - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float64; - - function to_float128 ( - arg : UNRESOLVED_float; - constant round_style : round_type := float_round_style; -- rounding option - constant check_error : BOOLEAN := float_check_error; - constant denormalize_in : BOOLEAN := float_denormalize; -- Use IEEE extended FP - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float128; - - -- Converts an fp into an SLV (needed for synthesis) - function to_slv (arg : UNRESOLVED_float) return STD_LOGIC_VECTOR; --- alias to_StdLogicVector is to_slv [UNRESOLVED_float return STD_LOGIC_VECTOR]; --- alias to_Std_Logic_Vector is to_slv [UNRESOLVED_float return STD_LOGIC_VECTOR]; - - -- Converts an fp into an std_ulogic_vector (sulv) - function to_sulv (arg : UNRESOLVED_float) return STD_ULOGIC_VECTOR; --- alias to_StdULogicVector is to_sulv [UNRESOLVED_float return STD_ULOGIC_VECTOR]; --- alias to_Std_ULogic_Vector is to_sulv [UNRESOLVED_float return STD_ULOGIC_VECTOR]; - - -- std_ulogic_vector to float - function to_float ( - arg : STD_ULOGIC_VECTOR; - constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent - constant fraction_width : NATURAL := float_fraction_width) -- length of FP output fraction - return UNRESOLVED_float; - - -- Integer to float - function to_float ( - arg : INTEGER; - constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent - constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction - constant round_style : round_type := float_round_style) -- rounding option - return UNRESOLVED_float; - - -- real to float - function to_float ( - arg : REAL; - constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent - constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction - constant round_style : round_type := float_round_style; -- rounding option - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float; - - -- unsigned to float - function to_float ( - arg : UNSIGNED; - constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent - constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction - constant round_style : round_type := float_round_style) -- rounding option - return UNRESOLVED_float; - - -- signed to float - function to_float ( - arg : SIGNED; - constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent - constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction - constant round_style : round_type := float_round_style) -- rounding option - return UNRESOLVED_float; - - -- unsigned fixed point to float - function to_float ( - arg : UNRESOLVED_ufixed; -- unsigned fixed point input - constant exponent_width : NATURAL := float_exponent_width; -- width of exponent - constant fraction_width : NATURAL := float_fraction_width; -- width of fraction - constant round_style : round_type := float_round_style; -- rounding - constant denormalize : BOOLEAN := float_denormalize) -- use ieee extensions - return UNRESOLVED_float; - - -- signed fixed point to float - function to_float ( - arg : UNRESOLVED_sfixed; - constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent - constant fraction_width : NATURAL := float_fraction_width; -- length of FP output fraction - constant round_style : round_type := float_round_style; -- rounding - constant denormalize : BOOLEAN := float_denormalize) -- rounding option - return UNRESOLVED_float; - - -- size_res functions - -- Integer to float - function to_float ( - arg : INTEGER; - size_res : UNRESOLVED_float; - constant round_style : round_type := float_round_style) -- rounding option - return UNRESOLVED_float; - - -- real to float - function to_float ( - arg : REAL; - size_res : UNRESOLVED_float; - constant round_style : round_type := float_round_style; -- rounding option - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float; - - -- unsigned to float - function to_float ( - arg : UNSIGNED; - size_res : UNRESOLVED_float; - constant round_style : round_type := float_round_style) -- rounding option - return UNRESOLVED_float; - - -- signed to float - function to_float ( - arg : SIGNED; - size_res : UNRESOLVED_float; - constant round_style : round_type := float_round_style) -- rounding option - return UNRESOLVED_float; - - -- sulv to float - function to_float ( - arg : STD_ULOGIC_VECTOR; - size_res : UNRESOLVED_float) - return UNRESOLVED_float; - - -- unsigned fixed point to float - function to_float ( - arg : UNRESOLVED_ufixed; -- unsigned fixed point input - size_res : UNRESOLVED_float; - constant round_style : round_type := float_round_style; -- rounding - constant denormalize : BOOLEAN := float_denormalize) -- use ieee extensions - return UNRESOLVED_float; - - -- signed fixed point to float - function to_float ( - arg : UNRESOLVED_sfixed; - size_res : UNRESOLVED_float; - constant round_style : round_type := float_round_style; -- rounding - constant denormalize : BOOLEAN := float_denormalize) -- rounding option - return UNRESOLVED_float; - - -- float to unsigned - function to_unsigned ( - arg : UNRESOLVED_float; -- floating point input - constant size : NATURAL; -- length of output - constant round_style : round_type := float_round_style; -- rounding option - constant check_error : BOOLEAN := float_check_error) -- check for errors - return UNSIGNED; - - -- float to signed - function to_signed ( - arg : UNRESOLVED_float; -- floating point input - constant size : NATURAL; -- length of output - constant round_style : round_type := float_round_style; -- rounding option - constant check_error : BOOLEAN := float_check_error) -- check for errors - return SIGNED; - - -- purpose: Converts a float to unsigned fixed point - function to_ufixed ( - arg : UNRESOLVED_float; -- fp input - constant left_index : INTEGER; -- integer part - constant right_index : INTEGER; -- fraction part - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; -- saturate - constant round_style : fixed_round_style_type := fixed_round_style; -- rounding - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) - return UNRESOLVED_ufixed; - - -- float to signed fixed point - function to_sfixed ( - arg : UNRESOLVED_float; -- fp input - constant left_index : INTEGER; -- integer part - constant right_index : INTEGER; -- fraction part - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; -- saturate - constant round_style : fixed_round_style_type := fixed_round_style; -- rounding - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) - return UNRESOLVED_sfixed; - - -- size_res versions - -- float to unsigned - function to_unsigned ( - arg : UNRESOLVED_float; -- floating point input - size_res : UNSIGNED; - constant round_style : round_type := float_round_style; -- rounding option - constant check_error : BOOLEAN := float_check_error) -- check for errors - return UNSIGNED; - - -- float to signed - function to_signed ( - arg : UNRESOLVED_float; -- floating point input - size_res : SIGNED; - constant round_style : round_type := float_round_style; -- rounding option - constant check_error : BOOLEAN := float_check_error) -- check for errors - return SIGNED; - - -- purpose: Converts a float to unsigned fixed point - function to_ufixed ( - arg : UNRESOLVED_float; -- fp input - size_res : UNRESOLVED_ufixed; - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; -- saturate - constant round_style : fixed_round_style_type := fixed_round_style; -- rounding - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) - return UNRESOLVED_ufixed; - - -- float to signed fixed point - function to_sfixed ( - arg : UNRESOLVED_float; -- fp input - size_res : UNRESOLVED_sfixed; - constant overflow_style : fixed_overflow_style_type := fixed_overflow_style; -- saturate - constant round_style : fixed_round_style_type := fixed_round_style; -- rounding - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) - return UNRESOLVED_sfixed; - - -- float to real - function to_real ( - arg : UNRESOLVED_float; -- floating point input - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return REAL; - - -- float to integer - function to_integer ( - arg : UNRESOLVED_float; -- floating point input - constant round_style : round_type := float_round_style; -- rounding option - constant check_error : BOOLEAN := float_check_error) -- check for errors - return INTEGER; - - -- For Verilog compatability - function realtobits (arg : REAL) return STD_ULOGIC_VECTOR; - function bitstoreal (arg : STD_ULOGIC_VECTOR) return REAL; - - -- Maps metalogical values - function to_01 ( - arg : UNRESOLVED_float; -- floating point input - XMAP : STD_LOGIC := '0') - return UNRESOLVED_float; - - function Is_X (arg : UNRESOLVED_float) return BOOLEAN; - function to_X01 (arg : UNRESOLVED_float) return UNRESOLVED_float; - function to_X01Z (arg : UNRESOLVED_float) return UNRESOLVED_float; - function to_UX01 (arg : UNRESOLVED_float) return UNRESOLVED_float; - - -- These two procedures were copied out of the body because they proved - -- very useful for vendor specific algorithm development - -- Break_number converts a floating point number into it's parts - -- Exponent is biased by -1 - - procedure break_number ( - arg : in UNRESOLVED_float; - denormalize : in BOOLEAN := float_denormalize; - check_error : in BOOLEAN := float_check_error; - fract : out UNSIGNED; - expon : out SIGNED; -- NOTE: Add 1 to get the real exponent! - sign : out STD_ULOGIC); - - procedure break_number ( - arg : in UNRESOLVED_float; - denormalize : in BOOLEAN := float_denormalize; - check_error : in BOOLEAN := float_check_error; - fract : out ufixed; -- a number between 1.0 and 2.0 - expon : out SIGNED; -- NOTE: Add 1 to get the real exponent! - sign : out STD_ULOGIC); - - -- Normalize takes a fraction and and exponent and converts them into - -- a floating point number. Does the shifting and the rounding. - -- Exponent is assumed to be biased by -1 - - function normalize ( - fract : UNSIGNED; -- fraction, unnormalized - expon : SIGNED; -- exponent - 1, normalized - sign : STD_ULOGIC; -- sign bit - sticky : STD_ULOGIC := '0'; -- Sticky bit (rounding) - constant exponent_width : NATURAL := float_exponent_width; -- size of output exponent - constant fraction_width : NATURAL := float_fraction_width; -- size of output fraction - constant round_style : round_type := float_round_style; -- rounding option - constant denormalize : BOOLEAN := float_denormalize; -- Use IEEE extended FP - constant nguard : NATURAL := float_guard_bits) -- guard bits - return UNRESOLVED_float; - - -- Exponent is assumed to be biased by -1 - function normalize ( - fract : ufixed; -- unsigned fixed point - expon : SIGNED; -- exponent - 1, normalized - sign : STD_ULOGIC; -- sign bit - sticky : STD_ULOGIC := '0'; -- Sticky bit (rounding) - constant exponent_width : NATURAL := float_exponent_width; -- size of output exponent - constant fraction_width : NATURAL := float_fraction_width; -- size of output fraction - constant round_style : round_type := float_round_style; -- rounding option - constant denormalize : BOOLEAN := float_denormalize; -- Use IEEE extended FP - constant nguard : NATURAL := float_guard_bits) -- guard bits - return UNRESOLVED_float; - - function normalize ( - fract : UNSIGNED; -- unsigned - expon : SIGNED; -- exponent - 1, normalized - sign : STD_ULOGIC; -- sign bit - sticky : STD_ULOGIC := '0'; -- Sticky bit (rounding) - size_res : UNRESOLVED_float; -- used for sizing only - constant round_style : round_type := float_round_style; -- rounding option - constant denormalize : BOOLEAN := float_denormalize; -- Use IEEE extended FP - constant nguard : NATURAL := float_guard_bits) -- guard bits - return UNRESOLVED_float; - - -- Exponent is assumed to be biased by -1 - function normalize ( - fract : ufixed; -- unsigned fixed point - expon : SIGNED; -- exponent - 1, normalized - sign : STD_ULOGIC; -- sign bit - sticky : STD_ULOGIC := '0'; -- Sticky bit (rounding) - size_res : UNRESOLVED_float; -- used for sizing only - constant round_style : round_type := float_round_style; -- rounding option - constant denormalize : BOOLEAN := float_denormalize; -- Use IEEE extended FP - constant nguard : NATURAL := float_guard_bits) -- guard bits - return UNRESOLVED_float; - - -- overloaded versions - function "+" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float; - function "+" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float; - function "+" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float; - function "+" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float; - function "-" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float; - function "-" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float; - function "-" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float; - function "-" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float; - function "*" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float; - function "*" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float; - function "*" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float; - function "*" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float; - function "/" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float; - function "/" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float; - function "/" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float; - function "/" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float; --- function "rem" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float; --- function "rem" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float; --- function "rem" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float; --- function "rem" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float; --- function "mod" (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float; --- function "mod" (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float; --- function "mod" (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float; --- function "mod" (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float; - - -- overloaded compare functions - function "=" (l : UNRESOLVED_float; r : REAL) return BOOLEAN; - function "/=" (l : UNRESOLVED_float; r : REAL) return BOOLEAN; - function ">=" (l : UNRESOLVED_float; r : REAL) return BOOLEAN; - function "<=" (l : UNRESOLVED_float; r : REAL) return BOOLEAN; - function ">" (l : UNRESOLVED_float; r : REAL) return BOOLEAN; - function "<" (l : UNRESOLVED_float; r : REAL) return BOOLEAN; - function "=" (l : REAL; r : UNRESOLVED_float) return BOOLEAN; - function "/=" (l : REAL; r : UNRESOLVED_float) return BOOLEAN; - function ">=" (l : REAL; r : UNRESOLVED_float) return BOOLEAN; - function "<=" (l : REAL; r : UNRESOLVED_float) return BOOLEAN; - function ">" (l : REAL; r : UNRESOLVED_float) return BOOLEAN; - function "<" (l : REAL; r : UNRESOLVED_float) return BOOLEAN; - function "=" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN; - function "/=" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN; - function ">=" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN; - function "<=" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN; - function ">" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN; - function "<" (l : UNRESOLVED_float; r : INTEGER) return BOOLEAN; - function "=" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN; - function "/=" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN; - function ">=" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN; - function "<=" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN; - function ">" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN; - function "<" (l : INTEGER; r : UNRESOLVED_float) return BOOLEAN; - function \?=\ (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC; - function \?/=\ (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC; - function \?>\ (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC; - function \?>=\ (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC; - function \?<\ (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC; - function \?<=\ (l : UNRESOLVED_float; r : REAL) return STD_ULOGIC; - function \?=\ (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC; - function \?/=\ (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC; - function \?>\ (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC; - function \?>=\ (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC; - function \?<\ (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC; - function \?<=\ (l : REAL; r : UNRESOLVED_float) return STD_ULOGIC; - function \?=\ (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC; - function \?/=\ (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC; - function \?>\ (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC; - function \?>=\ (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC; - function \?<\ (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC; - function \?<=\ (l : UNRESOLVED_float; r : INTEGER) return STD_ULOGIC; - function \?=\ (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC; - function \?/=\ (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC; - function \?>\ (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC; - function \?>=\ (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC; - function \?<\ (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC; - function \?<=\ (l : INTEGER; r : UNRESOLVED_float) return STD_ULOGIC; - -- minimum and maximum overloads - function maximum (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float; - function minimum (l : UNRESOLVED_float; r : REAL) return UNRESOLVED_float; - function maximum (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float; - function minimum (l : REAL; r : UNRESOLVED_float) return UNRESOLVED_float; - function maximum (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float; - function minimum (l : UNRESOLVED_float; r : INTEGER) return UNRESOLVED_float; - function maximum (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float; - function minimum (l : INTEGER; r : UNRESOLVED_float) return UNRESOLVED_float; ----------------------------------------------------------------------------- - -- logical functions - ---------------------------------------------------------------------------- - - function "not" (l : UNRESOLVED_float) return UNRESOLVED_float; - function "and" (l, r : UNRESOLVED_float) return UNRESOLVED_float; - function "or" (l, r : UNRESOLVED_float) return UNRESOLVED_float; - function "nand" (l, r : UNRESOLVED_float) return UNRESOLVED_float; - function "nor" (l, r : UNRESOLVED_float) return UNRESOLVED_float; - function "xor" (l, r : UNRESOLVED_float) return UNRESOLVED_float; - function "xnor" (l, r : UNRESOLVED_float) return UNRESOLVED_float; - -- Vector and std_ulogic functions, same as functions in numeric_std - function "and" (l : STD_ULOGIC; r : UNRESOLVED_float) - return UNRESOLVED_float; - function "and" (l : UNRESOLVED_float; r : STD_ULOGIC) - return UNRESOLVED_float; - function "or" (l : STD_ULOGIC; r : UNRESOLVED_float) - return UNRESOLVED_float; - function "or" (l : UNRESOLVED_float; r : STD_ULOGIC) - return UNRESOLVED_float; - function "nand" (l : STD_ULOGIC; r : UNRESOLVED_float) - return UNRESOLVED_float; - function "nand" (l : UNRESOLVED_float; r : STD_ULOGIC) - return UNRESOLVED_float; - function "nor" (l : STD_ULOGIC; r : UNRESOLVED_float) - return UNRESOLVED_float; - function "nor" (l : UNRESOLVED_float; r : STD_ULOGIC) - return UNRESOLVED_float; - function "xor" (l : STD_ULOGIC; r : UNRESOLVED_float) - return UNRESOLVED_float; - function "xor" (l : UNRESOLVED_float; r : STD_ULOGIC) - return UNRESOLVED_float; - function "xnor" (l : STD_ULOGIC; r : UNRESOLVED_float) - return UNRESOLVED_float; - function "xnor" (l : UNRESOLVED_float; r : STD_ULOGIC) - return UNRESOLVED_float; - -- Reduction operators, same as numeric_std functions - function and_reduce (l : UNRESOLVED_float) return STD_ULOGIC; - function nand_reduce (l : UNRESOLVED_float) return STD_ULOGIC; - function or_reduce (l : UNRESOLVED_float) return STD_ULOGIC; - function nor_reduce (l : UNRESOLVED_float) return STD_ULOGIC; - function xor_reduce (l : UNRESOLVED_float) return STD_ULOGIC; - function xnor_reduce (l : UNRESOLVED_float) return STD_ULOGIC; - - -- Note: "sla", "sra", "sll", "slr", "rol" and "ror" not implemented. - - ----------------------------------------------------------------------------- - -- Recommended Functions from the IEEE 754 Appendix - ----------------------------------------------------------------------------- - - -- returns x with the sign of y. - function Copysign (x, y : UNRESOLVED_float) return UNRESOLVED_float; - - -- Returns y * 2**n for integral values of N without computing 2**n - function Scalb ( - y : UNRESOLVED_float; -- floating point input - N : INTEGER; -- exponent to add - constant round_style : round_type := float_round_style; -- rounding option - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float; - - -- Returns y * 2**n for integral values of N without computing 2**n - function Scalb ( - y : UNRESOLVED_float; -- floating point input - N : SIGNED; -- exponent to add - constant round_style : round_type := float_round_style; -- rounding option - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float; - - -- returns the unbiased exponent of x - function Logb (x : UNRESOLVED_float) return INTEGER; - function Logb (x : UNRESOLVED_float) return SIGNED; - - -- returns the next representable neighbor of x in the direction toward y --- function Nextafter ( --- x, y : UNRESOLVED_float; -- floating point input --- constant check_error : BOOLEAN := float_check_error; -- check for errors --- constant denormalize : BOOLEAN := float_denormalize) --- return UNRESOLVED_float; - - -- Returns TRUE if X is unordered with Y. - function Unordered (x, y : UNRESOLVED_float) return BOOLEAN; - function Finite (x : UNRESOLVED_float) return BOOLEAN; - function Isnan (x : UNRESOLVED_float) return BOOLEAN; - - -- Function to return constants. - function zerofp ( - constant exponent_width : NATURAL := float_exponent_width; -- exponent - constant fraction_width : NATURAL := float_fraction_width) -- fraction - return UNRESOLVED_float; - function nanfp ( - constant exponent_width : NATURAL := float_exponent_width; -- exponent - constant fraction_width : NATURAL := float_fraction_width) -- fraction - return UNRESOLVED_float; - function qnanfp ( - constant exponent_width : NATURAL := float_exponent_width; -- exponent - constant fraction_width : NATURAL := float_fraction_width) -- fraction - return UNRESOLVED_float; - function pos_inffp ( - constant exponent_width : NATURAL := float_exponent_width; -- exponent - constant fraction_width : NATURAL := float_fraction_width) -- fraction - return UNRESOLVED_float; - function neg_inffp ( - constant exponent_width : NATURAL := float_exponent_width; -- exponent - constant fraction_width : NATURAL := float_fraction_width) -- fraction - return UNRESOLVED_float; - function neg_zerofp ( - constant exponent_width : NATURAL := float_exponent_width; -- exponent - constant fraction_width : NATURAL := float_fraction_width) -- fraction - return UNRESOLVED_float; - -- size_res versions - function zerofp ( - size_res : UNRESOLVED_float) -- variable is only use for sizing - return UNRESOLVED_float; - function nanfp ( - size_res : UNRESOLVED_float) -- variable is only use for sizing - return UNRESOLVED_float; - function qnanfp ( - size_res : UNRESOLVED_float) -- variable is only use for sizing - return UNRESOLVED_float; - function pos_inffp ( - size_res : UNRESOLVED_float) -- variable is only use for sizing - return UNRESOLVED_float; - function neg_inffp ( - size_res : UNRESOLVED_float) -- variable is only use for sizing - return UNRESOLVED_float; - function neg_zerofp ( - size_res : UNRESOLVED_float) -- variable is only use for sizing - return UNRESOLVED_float; - - -- =========================================================================== - -- string and textio Functions - -- =========================================================================== --- rtl_synthesis off --- pragma synthesis_off - -- writes S:EEEE:FFFFFFFF - procedure WRITE ( - L : inout LINE; -- access type (pointer) - VALUE : in UNRESOLVED_float; -- value to write - JUSTIFIED : in SIDE := right; -- which side to justify text - FIELD : in WIDTH := 0); -- width of field - - -- Reads SEEEEFFFFFFFF, "." and ":" are ignored - procedure READ (L : inout LINE; VALUE : out UNRESOLVED_float); - procedure READ (L : inout LINE; VALUE : out UNRESOLVED_float; - GOOD : out BOOLEAN); - - alias BREAD is READ [LINE, UNRESOLVED_float, BOOLEAN]; - alias BREAD is READ [LINE, UNRESOLVED_float]; - alias BWRITE is WRITE [LINE, UNRESOLVED_float, SIDE, WIDTH]; - alias BINARY_READ is READ [LINE, UNRESOLVED_FLOAT, BOOLEAN]; - alias BINARY_READ is READ [LINE, UNRESOLVED_FLOAT]; - alias BINARY_WRITE is WRITE [LINE, UNRESOLVED_float, SIDE, WIDTH]; - - procedure OWRITE ( - L : inout LINE; -- access type (pointer) - VALUE : in UNRESOLVED_float; -- value to write - JUSTIFIED : in SIDE := right; -- which side to justify text - FIELD : in WIDTH := 0); -- width of field - - -- Octal read with padding, no separators used - procedure OREAD (L : inout LINE; VALUE : out UNRESOLVED_float); - procedure OREAD (L : inout LINE; VALUE : out UNRESOLVED_float; - GOOD : out BOOLEAN); - alias OCTAL_READ is OREAD [LINE, UNRESOLVED_FLOAT, BOOLEAN]; - alias OCTAL_READ is OREAD [LINE, UNRESOLVED_FLOAT]; - alias OCTAL_WRITE is OWRITE [LINE, UNRESOLVED_FLOAT, SIDE, WIDTH]; - - -- Hex write with padding, no separators - procedure HWRITE ( - L : inout LINE; -- access type (pointer) - VALUE : in UNRESOLVED_float; -- value to write - JUSTIFIED : in SIDE := right; -- which side to justify text - FIELD : in WIDTH := 0); -- width of field - - -- Hex read with padding, no separators used - procedure HREAD (L : inout LINE; VALUE : out UNRESOLVED_float); - procedure HREAD (L : inout LINE; VALUE : out UNRESOLVED_float; - GOOD : out BOOLEAN); - alias HEX_READ is HREAD [LINE, UNRESOLVED_FLOAT, BOOLEAN]; - alias HEX_READ is HREAD [LINE, UNRESOLVED_FLOAT]; - alias HEX_WRITE is HWRITE [LINE, UNRESOLVED_FLOAT, SIDE, WIDTH]; - - -- returns "S:EEEE:FFFFFFFF" - function to_string (value : UNRESOLVED_float) return STRING; - alias TO_BSTRING is TO_STRING [UNRESOLVED_FLOAT return STRING]; - alias TO_BINARY_STRING is TO_STRING [UNRESOLVED_FLOAT return STRING]; - - -- Returns a HEX string, with padding - function to_hstring (value : UNRESOLVED_float) return STRING; - alias TO_HEX_STRING is TO_HSTRING [UNRESOLVED_FLOAT return STRING]; - - -- Returns and octal string, with padding - function to_ostring (value : UNRESOLVED_float) return STRING; - alias TO_OCTAL_STRING is TO_OSTRING [UNRESOLVED_FLOAT return STRING]; - - function from_string ( - bstring : STRING; -- binary string - constant exponent_width : NATURAL := float_exponent_width; - constant fraction_width : NATURAL := float_fraction_width) - return UNRESOLVED_float; - alias from_bstring is from_string [STRING, NATURAL, NATURAL - return UNRESOLVED_float]; - alias from_binary_string is from_string [STRING, NATURAL, NATURAL - return UNRESOLVED_float]; - function from_ostring ( - ostring : STRING; -- Octal string - constant exponent_width : NATURAL := float_exponent_width; - constant fraction_width : NATURAL := float_fraction_width) - return UNRESOLVED_float; - alias from_octal_string is from_ostring [STRING, NATURAL, NATURAL - return UNRESOLVED_float]; - - function from_hstring ( - hstring : STRING; -- hex string - constant exponent_width : NATURAL := float_exponent_width; - constant fraction_width : NATURAL := float_fraction_width) - return UNRESOLVED_float; - alias from_hex_string is from_hstring [STRING, NATURAL, NATURAL - return UNRESOLVED_float]; - - function from_string ( - bstring : STRING; -- binary string - size_res : UNRESOLVED_float) -- used for sizing only - return UNRESOLVED_float; - alias from_bstring is from_string [STRING, UNRESOLVED_float - return UNRESOLVED_float]; - alias from_binary_string is from_string [STRING, UNRESOLVED_float - return UNRESOLVED_float]; - - function from_ostring ( - ostring : STRING; -- Octal string - size_res : UNRESOLVED_float) -- used for sizing only - return UNRESOLVED_float; - alias from_octal_string is from_ostring [STRING, UNRESOLVED_float - return UNRESOLVED_float]; - - function from_hstring ( - hstring : STRING; -- hex string - size_res : UNRESOLVED_float) -- used for sizing only - return UNRESOLVED_float; - alias from_hex_string is from_hstring [STRING, UNRESOLVED_float - return UNRESOLVED_float]; --- rtl_synthesis on --- pragma synthesis_on - -- IN VHDL-2006 std_logic_vector is a subtype of std_ulogic_vector, so these - -- extra functions are needed for compatability. - function to_float ( - arg : STD_LOGIC_VECTOR; - constant exponent_width : NATURAL := float_exponent_width; -- length of FP output exponent - constant fraction_width : NATURAL := float_fraction_width) -- length of FP output fraction - return UNRESOLVED_float; - - function to_float ( - arg : STD_LOGIC_VECTOR; - size_res : UNRESOLVED_float) - return UNRESOLVED_float; - - -- For Verilog compatability - function realtobits (arg : REAL) return STD_LOGIC_VECTOR; - function bitstoreal (arg : STD_LOGIC_VECTOR) return REAL; - -end package float_pkg; -------------------------------------------------------------------------------- --- Proposed package body for the VHDL-200x-FT float_pkg package --- This version is optimized for Synthesis, and not for simulation. --- Note that there are functional differences between the synthesis and --- simulation packages bodies. The Synthesis version is preferred. --- This package body supplies a recommended implementation of these functions --- Version : $Revision: 2.0 $ --- Date : $Date: 2009/01/27 20:45:30 $ --- --- Created for VHDL-200X par, David Bishop (dbishop@vhdl.org) -------------------------------------------------------------------------------- - -package body float_pkg is - - -- Author David Bishop (dbishop@vhdl.org) - ----------------------------------------------------------------------------- - -- type declarations - ----------------------------------------------------------------------------- - - -- This deferred constant will tell you if the package body is synthesizable - -- or implemented as real numbers, set to "true" if synthesizable. - constant fphdlsynth_or_real : BOOLEAN := true; -- deferred constant - - -- types of boundary conditions - type boundary_type is (normal, infinity, zero, denormal); - - -- null range array constant - constant NAFP : UNRESOLVED_float (0 downto 1) := (others => '0'); - constant NSLV : STD_ULOGIC_VECTOR (0 downto 1) := (others => '0'); - - -- %%% Replicated functions - -- These functions are replicated so that we don't need to reference the new - -- 2006 package std.standard, std_logic_1164 and numeric_std. - function maximum ( - l, r : INTEGER) -- inputs - return INTEGER is - begin -- function max - if l > r then return l; - else return r; - end if; - end function maximum; - - function minimum ( - l, r : INTEGER) -- inputs - return INTEGER is - begin -- function min - if l > r then return r; - else return l; - end if; - end function minimum; - - function or_reduce (arg : STD_ULOGIC_VECTOR) - return STD_LOGIC is - variable Upper, Lower : STD_ULOGIC; - variable Half : INTEGER; - variable BUS_int : STD_ULOGIC_VECTOR (arg'length - 1 downto 0); - variable Result : STD_ULOGIC; - begin - if (arg'length < 1) then -- In the case of a NULL range - Result := '0'; - else - BUS_int := to_ux01 (arg); - if (BUS_int'length = 1) then - Result := BUS_int (BUS_int'left); - elsif (BUS_int'length = 2) then - Result := BUS_int (BUS_int'right) or BUS_int (BUS_int'left); - else - Half := (BUS_int'length + 1) / 2 + BUS_int'right; - Upper := or_reduce (BUS_int (BUS_int'left downto Half)); - Lower := or_reduce (BUS_int (Half - 1 downto BUS_int'right)); - Result := Upper or Lower; - end if; - end if; - return Result; - end function or_reduce; - - function or_reduce (arg : UNSIGNED) - return STD_ULOGIC is - begin - return or_reduce (STD_ULOGIC_VECTOR (arg)); - end function or_reduce; - - function or_reduce (arg : SIGNED) - return STD_ULOGIC is - begin - return or_reduce (STD_ULOGIC_VECTOR (arg)); - end function or_reduce; - - function or_reduce (arg : STD_LOGIC_VECTOR) - return STD_ULOGIC is - begin - return or_reduce (STD_ULOGIC_VECTOR (arg)); - end function or_reduce; - - -- purpose: AND all of the bits in a vector together - -- This is a copy of the proposed "and_reduce" from 1076.3 - function and_reduce (arg : STD_ULOGIC_VECTOR) - return STD_LOGIC is - variable Upper, Lower : STD_ULOGIC; - variable Half : INTEGER; - variable BUS_int : STD_ULOGIC_VECTOR (arg'length - 1 downto 0); - variable Result : STD_ULOGIC; - begin - if (arg'length < 1) then -- In the case of a NULL range - Result := '1'; - else - BUS_int := to_ux01 (arg); - if (BUS_int'length = 1) then - Result := BUS_int (BUS_int'left); - elsif (BUS_int'length = 2) then - Result := BUS_int (BUS_int'right) and BUS_int (BUS_int'left); - else - Half := (BUS_int'length + 1) / 2 + BUS_int'right; - Upper := and_reduce (BUS_int (BUS_int'left downto Half)); - Lower := and_reduce (BUS_int (Half - 1 downto BUS_int'right)); - Result := Upper and Lower; - end if; - end if; - return Result; - end function and_reduce; - - function and_reduce (arg : UNSIGNED) - return STD_ULOGIC is - begin - return and_reduce (STD_ULOGIC_VECTOR (arg)); - end function and_reduce; - - function and_reduce (arg : SIGNED) - return STD_ULOGIC is - begin - return and_reduce (STD_ULOGIC_VECTOR (arg)); - end function and_reduce; - - function xor_reduce (arg : STD_ULOGIC_VECTOR) return STD_ULOGIC is - variable Upper, Lower : STD_ULOGIC; - variable Half : INTEGER; - variable BUS_int : STD_ULOGIC_VECTOR (arg'length - 1 downto 0); - variable Result : STD_ULOGIC := '0'; -- In the case of a NULL range - begin - if (arg'length >= 1) then - BUS_int := to_ux01 (arg); - if (BUS_int'length = 1) then - Result := BUS_int (BUS_int'left); - elsif (BUS_int'length = 2) then - Result := BUS_int(BUS_int'right) xor BUS_int(BUS_int'left); - else - Half := (BUS_int'length + 1) / 2 + BUS_int'right; - Upper := xor_reduce (BUS_int (BUS_int'left downto Half)); - Lower := xor_reduce (BUS_int (Half - 1 downto BUS_int'right)); - Result := Upper xor Lower; - end if; - end if; - return Result; - end function xor_reduce; - - function nand_reduce(arg : STD_ULOGIC_VECTOR) return STD_ULOGIC is - begin - return not and_reduce (arg); - end function nand_reduce; - - function nor_reduce(arg : STD_ULOGIC_VECTOR) return STD_ULOGIC is - begin - return not or_reduce (arg); - end function nor_reduce; - - function xnor_reduce(arg : STD_ULOGIC_VECTOR) return STD_ULOGIC is - begin - return not xor_reduce (arg); - end function xnor_reduce; - - function find_leftmost (ARG : UNSIGNED; Y : STD_ULOGIC) - return INTEGER is - begin - for INDEX in ARG'range loop - if ARG(INDEX) = Y then - return INDEX; - end if; - end loop; - return -1; - end function find_leftmost; - - -- Match table, copied form new std_logic_1164 --- type stdlogic_table is array(STD_ULOGIC, STD_ULOGIC) of STD_ULOGIC; --- constant match_logic_table : stdlogic_table := ( --- ----------------------------------------------------- --- -- U X 0 1 Z W L H - | | --- ----------------------------------------------------- --- ('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', '1'), -- | U | --- ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', '1'), -- | X | --- ('U', 'X', '1', '0', 'X', 'X', '1', '0', '1'), -- | 0 | --- ('U', 'X', '0', '1', 'X', 'X', '0', '1', '1'), -- | 1 | --- ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', '1'), -- | Z | --- ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', '1'), -- | W | --- ('U', 'X', '1', '0', 'X', 'X', '1', '0', '1'), -- | L | --- ('U', 'X', '0', '1', 'X', 'X', '0', '1', '1'), -- | H | --- ('1', '1', '1', '1', '1', '1', '1', '1', '1') -- | - | --- ); - --- constant no_match_logic_table : stdlogic_table := ( --- ----------------------------------------------------- --- -- U X 0 1 Z W L H - | | --- ----------------------------------------------------- --- ('U', 'U', 'U', 'U', 'U', 'U', 'U', 'U', '0'), -- | U | --- ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', '0'), -- | X | --- ('U', 'X', '0', '1', 'X', 'X', '0', '1', '0'), -- | 0 | --- ('U', 'X', '1', '0', 'X', 'X', '1', '0', '0'), -- | 1 | --- ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', '0'), -- | Z | --- ('U', 'X', 'X', 'X', 'X', 'X', 'X', 'X', '0'), -- | W | --- ('U', 'X', '0', '1', 'X', 'X', '0', '1', '0'), -- | L | --- ('U', 'X', '1', '0', 'X', 'X', '1', '0', '0'), -- | H | --- ('0', '0', '0', '0', '0', '0', '0', '0', '0') -- | - | --- ); - - ------------------------------------------------------------------- - -- ?= functions, Similar to "std_match", but returns "std_ulogic". - ------------------------------------------------------------------- - -- %%% FUNCTION "?=" ( l, r : std_ulogic ) RETURN std_ulogic IS - function \?=\ (l, r : STD_ULOGIC) return STD_ULOGIC is - variable lx, rx : STD_ULOGIC; - begin --- return match_logic_table (l, r); - lx := to_x01(l); - rx := to_x01(r); - if lx = 'X' or rx = 'X' then - return 'X'; - elsif lx = rx then - return '1'; - else - return '0'; - end if; - end function \?=\; - function \?/=\ (l, r : STD_ULOGIC) return STD_ULOGIC is - begin --- return no_match_logic_table (l, r); - return not \?=\ (l, r); - end function \?/=\; - --- -- %%% FUNCTION "?=" ( l, r : std_logic_vector ) RETURN std_ulogic IS --- function \?=\ (l, r : STD_LOGIC_VECTOR) return STD_ULOGIC is --- alias lv : STD_LOGIC_VECTOR(1 to l'length) is l; --- alias rv : STD_LOGIC_VECTOR(1 to r'length) is r; --- variable result, result1 : STD_ULOGIC; -- result --- begin --- -- Logically identical to an "=" operator. --- if ((l'length < 1) or (r'length < 1)) then --- report "STD_LOGIC_1164.""?="": null detected, returning X" --- severity warning; --- return 'X'; --- end if; --- if lv'length /= rv'length then --- report "STD_LOGIC_1164.""?="": L'LENGTH /= R'LENGTH, returning X" --- severity warning; --- return 'X'; --- else --- result := '1'; --- for i in lv'low to lv'high loop --- result1 := match_logic_table(lv(i), rv(i)); --- if result1 = 'U' then --- return 'U'; --- elsif result1 = 'X' or result = 'X' then --- result := 'X'; --- else --- result := result and result1; --- end if; --- end loop; --- return result; --- end if; --- end function \?=\; --- -- %%% END FUNCTION "?="; --- ------------------------------------------------------------------- --- -- %%% FUNCTION "?=" ( l, r : std_ulogic_vector ) RETURN std_ulogic IS - function \?=\ (l, r : STD_ULOGIC_VECTOR) return STD_ULOGIC is - alias lv : STD_ULOGIC_VECTOR(1 to l'length) is l; - alias rv : STD_ULOGIC_VECTOR(1 to r'length) is r; - variable result, result1 : STD_ULOGIC; - begin - if ((l'length < 1) or (r'length < 1)) then - report "STD_LOGIC_1164.""?="": null detected, returning X" - severity warning; - return 'X'; - end if; - if lv'length /= rv'length then - report "STD_LOGIC_1164.""?="": L'LENGTH /= R'LENGTH, returning X" - severity warning; - return 'X'; - else - result := '1'; - for i in lv'low to lv'high loop - result1 := \?=\ (lv(i), rv(i)); - if result1 = 'U' then - return 'U'; - elsif result1 = 'X' or result = 'X' then - result := 'X'; - else - result := result and result1; - end if; - end loop; - return result; - end if; - end function \?=\; - - function Is_X (s : UNSIGNED) return BOOLEAN is - begin - return Is_X (STD_LOGIC_VECTOR (s)); - end function Is_X; - - function Is_X (s : SIGNED) return BOOLEAN is - begin - return Is_X (STD_LOGIC_VECTOR (s)); - end function Is_X; --- %%% END replicated functions - - -- Special version of "minimum" to do some boundary checking - function mine (L, R : INTEGER) - return INTEGER is - begin -- function minimum - if (L = INTEGER'low or R = INTEGER'low) then - report "float_pkg:" - & " Unbounded number passed, was a literal used?" - severity error; - return 0; - end if; - return minimum (L, R); - end function mine; - - -- Generates the base number for the exponent normalization offset. - function gen_expon_base ( - constant exponent_width : NATURAL) - return SIGNED is - variable result : SIGNED (exponent_width-1 downto 0); - begin - result := (others => '1'); - result (exponent_width-1) := '0'; - return result; - end function gen_expon_base; - - -- Integer version of the "log2" command (contributed by Peter Ashenden) - function log2 (A : NATURAL) return NATURAL is - variable quotient : NATURAL; - variable result : NATURAL := 0; - begin - quotient := A / 2; - while quotient > 0 loop - quotient := quotient / 2; - result := result + 1; - end loop; - return result; - end function log2; - - -- Function similar to the ILOGB function in MATH_REAL - function log2 (A : REAL) return INTEGER is - variable Y : REAL; - variable N : INTEGER := 0; - begin - if (A = 1.0 or A = 0.0) then - return 0; - end if; - Y := A; - if(A > 1.0) then - while Y >= 2.0 loop - Y := Y / 2.0; - N := N + 1; - end loop; - return N; - end if; - -- O < Y < 1 - while Y < 1.0 loop - Y := Y * 2.0; - N := N - 1; - end loop; - return N; - end function log2; - - -- purpose: Test the boundary conditions of a Real number - procedure test_boundary ( - arg : in REAL; -- Input, converted to real - constant fraction_width : in NATURAL; -- length of FP output fraction - constant exponent_width : in NATURAL; -- length of FP exponent - constant denormalize : in BOOLEAN := true; -- Use IEEE extended FP - variable btype : out boundary_type; - variable log2i : out INTEGER - ) is - constant expon_base : SIGNED (exponent_width-1 downto 0) := - gen_expon_base(exponent_width); -- exponent offset - constant exp_min : SIGNED (12 downto 0) := - -(resize(expon_base, 13)) + 1; -- Minimum normal exponent - constant exp_ext_min : SIGNED (12 downto 0) := - exp_min - fraction_width; -- Minimum for denormal exponent - variable log2arg : INTEGER; -- log2 of argument - begin -- function test_boundary - -- Check to see if the exponent is big enough - -- Note that the argument is always an absolute value at this point. - log2arg := log2(arg); - if arg = 0.0 then - btype := zero; - elsif exponent_width > 11 then -- Exponent for Real is 11 (64 bit) - btype := normal; - else - if log2arg < to_integer(exp_min) then - if denormalize then - if log2arg < to_integer(exp_ext_min) then - btype := zero; - else - btype := denormal; - end if; - else - if log2arg < to_integer(exp_min)-1 then - btype := zero; - else - btype := normal; -- Can still represent this number - end if; - end if; - elsif exponent_width < 11 then - if log2arg > to_integer(expon_base)+1 then - btype := infinity; - else - btype := normal; - end if; - else - btype := normal; - end if; - end if; - log2i := log2arg; - end procedure test_boundary; - - -- purpose: Rounds depending on the state of the "round_style" - -- Logic taken from - -- "What Every Computer Scientist Should Know About Floating Point Arithmetic" - -- by David Goldberg (1991) - function check_round ( - fract_in : STD_ULOGIC; -- input fraction - sign : STD_ULOGIC; -- sign bit - remainder : UNSIGNED; -- remainder to round from - sticky : STD_ULOGIC := '0'; -- Sticky bit - constant round_style : round_type) -- rounding type - return BOOLEAN is - variable result : BOOLEAN; - variable or_reduced : STD_ULOGIC; - begin -- function check_round - result := false; - if (remainder'length > 0) then -- if remainder in a null array - or_reduced := or_reduce (remainder & sticky); - rounding_case : case round_style is - when round_nearest => -- Round Nearest, default mode - if remainder(remainder'high) = '1' then -- round - if (remainder'length > 1) then - if ((or_reduce (remainder(remainder'high-1 - downto remainder'low)) = '1' - or sticky = '1') - or fract_in = '1') then - -- Make the bottom bit zero if possible if we are at 1/2 - result := true; - end if; - else - result := (fract_in = '1' or sticky = '1'); - end if; - end if; - when round_inf => -- round up if positive, else truncate. - if or_reduced = '1' and sign = '0' then - result := true; - end if; - when round_neginf => -- round down if negative, else truncate. - if or_reduced = '1' and sign = '1' then - result := true; - end if; - when round_zero => -- round toward 0 Truncate - null; - end case rounding_case; - end if; - return result; - end function check_round; - - -- purpose: Rounds depending on the state of the "round_style" - -- unsigned version - procedure fp_round ( - fract_in : in UNSIGNED; -- input fraction - expon_in : in SIGNED; -- input exponent - fract_out : out UNSIGNED; -- output fraction - expon_out : out SIGNED) is -- output exponent - begin -- procedure fp_round - if and_reduce (fract_in) = '1' then -- Fraction is all "1" - expon_out := expon_in + 1; - fract_out := to_unsigned(0, fract_out'high+1); - else - expon_out := expon_in; - fract_out := fract_in + 1; - end if; - end procedure fp_round; - - -- This version of break_number doesn't call "classfp" - procedure break_number ( -- internal version - arg : in UNRESOLVED_float; - fptyp : in valid_fpstate; - denormalize : in BOOLEAN := true; - fract : out UNSIGNED; - expon : out SIGNED) is - constant fraction_width : NATURAL := -arg'low; -- length of FP output fraction - constant exponent_width : NATURAL := arg'high; -- length of FP output exponent - constant expon_base : SIGNED (exponent_width-1 downto 0) := - gen_expon_base(exponent_width); -- exponent offset - variable exp : SIGNED (expon'range); - begin - fract (fraction_width-1 downto 0) := - UNSIGNED (to_slv(arg(-1 downto -fraction_width))); - breakcase : case fptyp is - when pos_zero | neg_zero => - fract (fraction_width) := '0'; - exp := -expon_base; - when pos_denormal | neg_denormal => - if denormalize then - exp := -expon_base; - fract (fraction_width) := '0'; - else - exp := -expon_base - 1; - fract (fraction_width) := '1'; - end if; - when pos_normal | neg_normal | pos_inf | neg_inf => - fract (fraction_width) := '1'; - exp := SIGNED(arg(exponent_width-1 downto 0)); - exp (exponent_width-1) := not exp(exponent_width-1); - when others => - assert NO_WARNING - report "float_pkg:" - & "BREAK_NUMBER: " & - "Meta state detected in fp_break_number process" - severity warning; - -- complete the case, if a NAN goes in, a NAN comes out. - exp := (others => '1'); - fract (fraction_width) := '1'; - end case breakcase; - expon := exp; - end procedure break_number; - - -- purpose: floating point to UNSIGNED - -- Used by to_integer, to_unsigned, and to_signed functions - procedure float_to_unsigned ( - arg : in UNRESOLVED_float; -- floating point input - variable sign : out STD_ULOGIC; -- sign of output - variable frac : out UNSIGNED; -- unsigned biased output - constant denormalize : in BOOLEAN; -- turn on denormalization - constant bias : in NATURAL; -- bias for fixed point - constant round_style : in round_type) is -- rounding method - constant fraction_width : INTEGER := -mine(arg'low, arg'low); -- length of FP output fraction - constant exponent_width : INTEGER := arg'high; -- length of FP output exponent - variable fract : UNSIGNED (frac'range); -- internal version of frac - variable isign : STD_ULOGIC; -- internal version of sign - variable exp : INTEGER; -- Exponent - variable expon : SIGNED (exponent_width-1 downto 0); -- Vectorized exp - -- Base to divide fraction by - variable frac_shift : UNSIGNED (frac'high+3 downto 0); -- Fraction shifted - variable shift : INTEGER; - variable remainder : UNSIGNED (2 downto 0); - variable round : STD_ULOGIC; -- round BIT - begin - isign := to_x01(arg(arg'high)); - -- exponent /= '0', normal floating point - expon := to_01(SIGNED(arg (exponent_width-1 downto 0)), 'X'); - expon(exponent_width-1) := not expon(exponent_width-1); - exp := to_integer (expon); - -- Figure out the fraction - fract := (others => '0'); -- fill with zero - fract (fract'high) := '1'; -- Add the "1.0". - shift := (fract'high-1) - exp; - if fraction_width > fract'high then -- Can only use size-2 bits - fract (fract'high-1 downto 0) := UNSIGNED (to_slv (arg(-1 downto - -fract'high))); - else -- can use all bits - fract (fract'high-1 downto fract'high-fraction_width) := - UNSIGNED (to_slv (arg(-1 downto -fraction_width))); - end if; - frac_shift := fract & "000"; - if shift < 0 then -- Overflow - fract := (others => '1'); - else - frac_shift := shift_right (frac_shift, shift); - fract := frac_shift (frac_shift'high downto 3); - remainder := frac_shift (2 downto 0); - -- round (round_zero will bypass this and truncate) - case round_style is - when round_nearest => - round := remainder(2) and - (fract (0) or (or_reduce (remainder (1 downto 0)))); - when round_inf => - round := remainder(2) and not isign; - when round_neginf => - round := remainder(2) and isign; - when others => - round := '0'; - end case; - if round = '1' then - fract := fract + 1; - end if; - end if; - frac := fract; - sign := isign; - end procedure float_to_unsigned; - - -- purpose: returns a part of a vector, this function is here because - -- or (fractr (to_integer(shiftx) downto 0)); - -- can't be synthesized in some synthesis tools. - function smallfract ( - arg : UNSIGNED; - shift : NATURAL) - return STD_ULOGIC is - variable orx : STD_ULOGIC; - begin - orx := arg(shift); - for i in arg'range loop - if i < shift then - orx := arg(i) or orx; - end if; - end loop; - return orx; - end function smallfract; - --------------------------------------------------------------------------- - -- Visible functions - --------------------------------------------------------------------------- - - -- purpose: converts the negative index to a positive one - -- negative indices are illegal in 1164 and 1076.3 - function to_sulv ( - arg : UNRESOLVED_float) -- fp vector - return STD_ULOGIC_VECTOR is - variable result : STD_ULOGIC_VECTOR (arg'length-1 downto 0); - begin -- function to_std_ulogic_vector - if arg'length < 1 then - return NSLV; - end if; - result := STD_ULOGIC_VECTOR (arg); - return result; - end function to_sulv; - - -- Converts an fp into an SLV - function to_slv (arg : UNRESOLVED_float) return STD_LOGIC_VECTOR is - begin - return std_logic_vector (to_sulv (arg)); - end function to_slv; - - -- purpose: normalizes a floating point number - -- This version assumes an "unsigned" input with - function normalize ( - fract : UNSIGNED; -- fraction, unnormalized - expon : SIGNED; -- exponent, normalized by -1 - sign : STD_ULOGIC; -- sign BIT - sticky : STD_ULOGIC := '0'; -- Sticky bit (rounding) - constant exponent_width : NATURAL := float_exponent_width; -- size of output exponent - constant fraction_width : NATURAL := float_fraction_width; -- size of output fraction - constant round_style : round_type := float_round_style; -- rounding option - constant denormalize : BOOLEAN := float_denormalize; -- Use IEEE extended FP - constant nguard : NATURAL := float_guard_bits) -- guard bits - return UNRESOLVED_float is - variable sfract : UNSIGNED (fract'high downto 0); -- shifted fraction - variable rfract : UNSIGNED (fraction_width-1 downto 0); -- fraction - variable exp : SIGNED (exponent_width+1 downto 0); -- exponent - variable rexp : SIGNED (exponent_width+1 downto 0); -- result exponent - variable rexpon : UNSIGNED (exponent_width-1 downto 0); -- exponent - variable result : UNRESOLVED_float (exponent_width downto -fraction_width); -- result - variable shiftr : INTEGER; -- shift amount - variable stickyx : STD_ULOGIC; -- version of sticky - constant expon_base : SIGNED (exponent_width-1 downto 0) := - gen_expon_base(exponent_width); -- exponent offset - variable round, zerores, infres : BOOLEAN; - begin -- function normalize - zerores := false; - infres := false; - round := false; - shiftr := find_leftmost (to_01(fract), '1') -- Find the first "1" - - fraction_width - nguard; -- subtract the length we want - exp := resize (expon, exp'length) + shiftr; - if (or_reduce (fract) = '0') then -- Zero - zerores := true; - elsif ((exp <= -resize(expon_base, exp'length)-1) and denormalize) - or ((exp < -resize(expon_base, exp'length)-1) and not denormalize) then - if (exp >= -resize(expon_base, exp'length)-fraction_width-1) - and denormalize then - exp := -resize(expon_base, exp'length)-1; - shiftr := -to_integer (expon + expon_base); -- new shift - else -- return zero - zerores := true; - end if; - elsif (exp > expon_base-1) then -- infinity - infres := true; - end if; - if zerores then - result := zerofp (fraction_width => fraction_width, - exponent_width => exponent_width); - elsif infres then - result := pos_inffp (fraction_width => fraction_width, - exponent_width => exponent_width); - else - sfract := fract srl shiftr; -- shift - if shiftr > 0 then --- stickyx := sticky or (or_reduce(fract (shiftr-1 downto 0))); - stickyx := sticky or smallfract (fract, shiftr-1); - else - stickyx := sticky; - end if; - if nguard > 0 then - round := check_round ( - fract_in => sfract (nguard), - sign => sign, - remainder => sfract(nguard-1 downto 0), - sticky => stickyx, - round_style => round_style); - end if; - if round then - fp_round(fract_in => sfract (fraction_width-1+nguard downto nguard), - expon_in => exp(rexp'range), - fract_out => rfract, - expon_out => rexp); - else - rfract := sfract (fraction_width-1+nguard downto nguard); - rexp := exp(rexp'range); - end if; - -- result - rexpon := UNSIGNED (rexp(exponent_width-1 downto 0)); - rexpon (exponent_width-1) := not rexpon(exponent_width-1); - result (rexpon'range) := UNRESOLVED_float(rexpon); - result (-1 downto -fraction_width) := UNRESOLVED_float(rfract); - end if; - result (exponent_width) := sign; -- sign BIT - return result; - end function normalize; - - -- purpose: normalizes a floating point number - -- This version assumes a "ufixed" input - function normalize ( - fract : ufixed; -- unsigned fixed point - expon : SIGNED; -- exponent, normalized by -1 - sign : STD_ULOGIC; -- sign bit - sticky : STD_ULOGIC := '0'; -- Sticky bit (rounding) - constant exponent_width : NATURAL := float_exponent_width; -- size of output exponent - constant fraction_width : NATURAL := float_fraction_width; -- size of output fraction - constant round_style : round_type := float_round_style; -- rounding option - constant denormalize : BOOLEAN := float_denormalize; -- Use IEEE extended FP - constant nguard : NATURAL := float_guard_bits) -- guard bits - return UNRESOLVED_float is - variable result : UNRESOLVED_float (exponent_width downto -fraction_width); - variable arguns : UNSIGNED (fract'high + fraction_width + nguard - downto 0) := (others => '0'); - begin -- function normalize - arguns (arguns'high downto maximum (arguns'high-fract'length+1, 0)) := - UNSIGNED (to_slv (fract)); - result := normalize (fract => arguns, - expon => expon, - sign => sign, - sticky => sticky, - fraction_width => fraction_width, - exponent_width => exponent_width, - round_style => round_style, - denormalize => denormalize, - nguard => nguard); - return result; - end function normalize; - - -- purpose: normalizes a floating point number - -- This version assumes a "ufixed" input with a "size_res" input - function normalize ( - fract : ufixed; -- unsigned fixed point - expon : SIGNED; -- exponent, normalized by -1 - sign : STD_ULOGIC; -- sign bit - sticky : STD_ULOGIC := '0'; -- Sticky bit (rounding) - size_res : UNRESOLVED_float; -- used for sizing only - constant round_style : round_type := float_round_style; -- rounding option - constant denormalize : BOOLEAN := float_denormalize; -- Use IEEE extended FP - constant nguard : NATURAL := float_guard_bits) -- guard bits - return UNRESOLVED_float is - constant fraction_width : NATURAL := -size_res'low; - constant exponent_width : NATURAL := size_res'high; - variable result : UNRESOLVED_float (exponent_width downto -fraction_width); - variable arguns : UNSIGNED (fract'high + fraction_width + nguard - downto 0) := (others => '0'); - begin -- function normalize - arguns (arguns'high downto maximum (arguns'high-fract'length+1, 0)) := - UNSIGNED (to_slv (fract)); - result := normalize (fract => arguns, - expon => expon, - sign => sign, - sticky => sticky, - fraction_width => fraction_width, - exponent_width => exponent_width, - round_style => round_style, - denormalize => denormalize, - nguard => nguard); - return result; - end function normalize; - - -- Regular "normalize" function with a "size_res" input. - function normalize ( - fract : UNSIGNED; -- unsigned - expon : SIGNED; -- exponent - 1, normalized - sign : STD_ULOGIC; -- sign bit - sticky : STD_ULOGIC := '0'; -- Sticky bit (rounding) - size_res : UNRESOLVED_float; -- used for sizing only - constant round_style : round_type := float_round_style; -- rounding option - constant denormalize : BOOLEAN := float_denormalize; -- Use IEEE extended FP - constant nguard : NATURAL := float_guard_bits) -- guard bits - return UNRESOLVED_float is - begin - return normalize (fract => fract, - expon => expon, - sign => sign, - sticky => sticky, - fraction_width => -size_res'low, - exponent_width => size_res'high, - round_style => round_style, - denormalize => denormalize, - nguard => nguard); - end function normalize; - - -- Returns the class which X falls into - function Classfp ( - x : UNRESOLVED_float; -- floating point input - check_error : BOOLEAN := float_check_error) -- check for errors - return valid_fpstate is - constant fraction_width : INTEGER := -mine(x'low, x'low); -- length of FP output fraction - constant exponent_width : INTEGER := x'high; -- length of FP output exponent - variable arg : UNRESOLVED_float (exponent_width downto -fraction_width); - begin -- classfp - if (arg'length < 1 or fraction_width < 3 or exponent_width < 3 - or x'left < x'right) then - report "float_pkg:" - & "CLASSFP: " & - "Floating point number detected with a bad range" - severity error; - return isx; - end if; - -- Check for "X". - arg := to_01 (x, 'X'); - if (arg(0) = 'X') then - return isx; -- If there is an X in the number - -- Special cases, check for illegal number - elsif check_error and - (and_reduce (STD_ULOGIC_VECTOR (arg (exponent_width-1 downto 0))) - = '1') then -- Exponent is all "1". - if or_reduce (to_slv (arg (-1 downto -fraction_width))) - /= '0' then -- Fraction must be all "0" or this is not a number. - if (arg(-1) = '1') then -- From "W. Khan - IEEE standard - return nan; -- 754 binary FP Signaling nan (Not a number) - else - return quiet_nan; - end if; - -- Check for infinity - elsif arg(exponent_width) = '0' then - return pos_inf; -- Positive infinity - else - return neg_inf; -- Negative infinity - end if; - -- check for "0" - elsif or_reduce (STD_LOGIC_VECTOR (arg (exponent_width-1 downto 0))) - = '0' then -- Exponent is all "0" - if or_reduce (to_slv (arg (-1 downto -fraction_width))) - = '0' then -- Fraction is all "0" - if arg(exponent_width) = '0' then - return pos_zero; -- Zero - else - return neg_zero; - end if; - else - if arg(exponent_width) = '0' then - return pos_denormal; -- Denormal number (ieee extended fp) - else - return neg_denormal; - end if; - end if; - else - if arg(exponent_width) = '0' then - return pos_normal; -- Normal FP number - else - return neg_normal; - end if; - end if; - end function Classfp; - - procedure break_number ( - arg : in UNRESOLVED_float; - denormalize : in BOOLEAN := float_denormalize; - check_error : in BOOLEAN := float_check_error; - fract : out UNSIGNED; - expon : out SIGNED; - sign : out STD_ULOGIC) is - constant fraction_width : NATURAL := -mine(arg'low, arg'low); -- length of FP output fraction - variable fptyp : valid_fpstate; - begin - fptyp := Classfp (arg, check_error); - sign := to_x01(arg(arg'high)); - break_number ( - arg => arg, - fptyp => fptyp, - denormalize => denormalize, - fract => fract, - expon => expon); - end procedure break_number; - - procedure break_number ( - arg : in UNRESOLVED_float; - denormalize : in BOOLEAN := float_denormalize; - check_error : in BOOLEAN := float_check_error; - fract : out ufixed; -- 1 downto -fraction_width - expon : out SIGNED; -- exponent_width-1 downto 0 - sign : out STD_ULOGIC) is - constant fraction_width : NATURAL := -mine(arg'low, arg'low); -- length of FP output fraction - variable fptyp : valid_fpstate; - variable ufract : UNSIGNED (fraction_width downto 0); -- unsigned fraction - begin - fptyp := Classfp (arg, check_error); - sign := to_x01(arg(arg'high)); - break_number ( - arg => arg, - fptyp => fptyp, - denormalize => denormalize, - fract => ufract, - expon => expon); - fract (0 downto -fraction_width) := ufixed (ufract); - end procedure break_number; - - -- Arithmetic functions - function "abs" ( - arg : UNRESOLVED_float) -- floating point input - return UNRESOLVED_float is - variable result : UNRESOLVED_float (arg'range); -- result - begin - if (arg'length > 0) then - result := to_01 (arg, 'X'); - result (arg'high) := '0'; -- set the sign bit to positive - return result; - else - return NAFP; - end if; - end function "abs"; - - -- IEEE 754 "negative" function - function "-" ( - arg : UNRESOLVED_float) -- floating point input - return UNRESOLVED_float is - variable result : UNRESOLVED_float (arg'range); -- result - begin - if (arg'length > 0) then - result := to_01 (arg, 'X'); - result (arg'high) := not result (arg'high); -- invert sign bit - return result; - else - return NAFP; - end if; - end function "-"; - - -- Addition, adds two floating point numbers - function add ( - l, r : UNRESOLVED_float; -- floating point input - constant round_style : round_type := float_round_style; -- rounding option - constant guard : NATURAL := float_guard_bits; -- number of guard bits - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float is - constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction - constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent - constant addguard : NATURAL := guard; -- add one guard bit - variable lfptype, rfptype : valid_fpstate; - variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width); - variable fractl, fractr : UNSIGNED (fraction_width+1+addguard downto 0); -- fractions - variable fractc, fracts : UNSIGNED (fractl'range); -- constant and shifted variables - variable urfract, ulfract : UNSIGNED (fraction_width downto 0); - variable ufract : UNSIGNED (fraction_width+1+addguard downto 0); - variable exponl, exponr : SIGNED (exponent_width-1 downto 0); -- exponents - variable rexpon : SIGNED (exponent_width downto 0); -- result exponent - variable shiftx : SIGNED (exponent_width downto 0); -- shift fractions - variable sign : STD_ULOGIC; -- sign of the output - variable leftright : BOOLEAN; -- left or right used - variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); - variable sticky : STD_ULOGIC; -- Holds precision for rounding - begin -- addition - if (fraction_width = 0 or l'length < 7 or r'length < 7) then - lfptype := isx; - else - lfptype := classfp (l, check_error); - rfptype := classfp (r, check_error); - end if; - if (lfptype = isx or rfptype = isx) then - fpresult := (others => 'X'); - elsif (lfptype = nan or lfptype = quiet_nan or - rfptype = nan or rfptype = quiet_nan) - -- Return quiet NAN, IEEE754-1985-7.1,1 - or (lfptype = pos_inf and rfptype = neg_inf) - or (lfptype = neg_inf and rfptype = pos_inf) then - -- Return quiet NAN, IEEE754-1985-7.1,2 - fpresult := qnanfp (fraction_width => fraction_width, - exponent_width => exponent_width); - elsif (lfptype = pos_inf or rfptype = pos_inf) then -- x + inf = inf - fpresult := pos_inffp (fraction_width => fraction_width, - exponent_width => exponent_width); - elsif (lfptype = neg_inf or rfptype = neg_inf) then -- x - inf = -inf - fpresult := neg_inffp (fraction_width => fraction_width, - exponent_width => exponent_width); - elsif (lfptype = neg_zero and rfptype = neg_zero) then -- -0 + -0 = -0 - fpresult := neg_zerofp (fraction_width => fraction_width, - exponent_width => exponent_width); - else - lresize := resize (arg => to_x01(l), - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => denormalize, - denormalize => denormalize); - lfptype := classfp (lresize, false); -- errors already checked - rresize := resize (arg => to_x01(r), - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => denormalize, - denormalize => denormalize); - rfptype := classfp (rresize, false); -- errors already checked - break_number ( - arg => lresize, - fptyp => lfptype, - denormalize => denormalize, - fract => ulfract, - expon => exponl); - fractl := (others => '0'); - fractl (fraction_width+addguard downto addguard) := ulfract; - break_number ( - arg => rresize, - fptyp => rfptype, - denormalize => denormalize, - fract => urfract, - expon => exponr); - fractr := (others => '0'); - fractr (fraction_width+addguard downto addguard) := urfract; - shiftx := (exponl(exponent_width-1) & exponl) - exponr; - if shiftx < -fractl'high then - rexpon := exponr(exponent_width-1) & exponr; - fractc := fractr; - fracts := (others => '0'); -- add zero - leftright := false; - sticky := or_reduce (fractl); - elsif shiftx < 0 then - shiftx := - shiftx; - fracts := shift_right (fractl, to_integer(shiftx)); - fractc := fractr; - rexpon := exponr(exponent_width-1) & exponr; - leftright := false; --- sticky := or_reduce (fractl (to_integer(shiftx) downto 0)); - sticky := smallfract (fractl, to_integer(shiftx)); - elsif shiftx = 0 then - rexpon := exponl(exponent_width-1) & exponl; - sticky := '0'; - if fractr > fractl then - fractc := fractr; - fracts := fractl; - leftright := false; - else - fractc := fractl; - fracts := fractr; - leftright := true; - end if; - elsif shiftx > fractr'high then - rexpon := exponl(exponent_width-1) & exponl; - fracts := (others => '0'); -- add zero - fractc := fractl; - leftright := true; - sticky := or_reduce (fractr); - elsif shiftx > 0 then - fracts := shift_right (fractr, to_integer(shiftx)); - fractc := fractl; - rexpon := exponl(exponent_width-1) & exponl; - leftright := true; --- sticky := or_reduce (fractr (to_integer(shiftx) downto 0)); - sticky := smallfract (fractr, to_integer(shiftx)); - end if; - -- add - fracts (0) := fracts (0) or sticky; -- Or the sticky bit into the LSB - if l(l'high) = r(r'high) then - ufract := fractc + fracts; - sign := l(l'high); - else -- signs are different - ufract := fractc - fracts; -- always positive result - if leftright then -- Figure out which sign to use - sign := l(l'high); - else - sign := r(r'high); - end if; - end if; - if or_reduce (ufract) = '0' then - sign := '0'; -- IEEE 854, 6.3, paragraph 2. - end if; - -- normalize - fpresult := normalize (fract => ufract, - expon => rexpon, - sign => sign, - sticky => sticky, - fraction_width => fraction_width, - exponent_width => exponent_width, - round_style => round_style, - denormalize => denormalize, - nguard => addguard); - end if; - return fpresult; - end function add; - - -- Subtraction, Calls "add". - function subtract ( - l, r : UNRESOLVED_float; -- floating point input - constant round_style : round_type := float_round_style; -- rounding option - constant guard : NATURAL := float_guard_bits; -- number of guard bits - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float is - variable negr : UNRESOLVED_float (r'range); -- negative version of r - begin - negr := -r; - return add (l => l, - r => negr, - round_style => round_style, - guard => guard, - check_error => check_error, - denormalize => denormalize); - end function subtract; - - -- Floating point multiply - function multiply ( - l, r : UNRESOLVED_float; -- floating point input - constant round_style : round_type := float_round_style; -- rounding option - constant guard : NATURAL := float_guard_bits; -- number of guard bits - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float is - constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction - constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent - constant multguard : NATURAL := guard; -- guard bits - variable lfptype, rfptype : valid_fpstate; - variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width); - variable fractl, fractr : UNSIGNED (fraction_width downto 0); -- fractions - variable rfract : UNSIGNED ((2*(fraction_width))+1 downto 0); -- result fraction - variable sfract : UNSIGNED (fraction_width+1+multguard downto 0); -- result fraction - variable shifty : INTEGER; -- denormal shift - variable exponl, exponr : SIGNED (exponent_width-1 downto 0); -- exponents - variable rexpon : SIGNED (exponent_width+1 downto 0); -- result exponent - variable fp_sign : STD_ULOGIC; -- sign of result - variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); - variable sticky : STD_ULOGIC; -- Holds precision for rounding - begin -- multiply - if (fraction_width = 0 or l'length < 7 or r'length < 7) then - lfptype := isx; - else - lfptype := classfp (l, check_error); - rfptype := classfp (r, check_error); - end if; - if (lfptype = isx or rfptype = isx) then - fpresult := (others => 'X'); - elsif ((lfptype = nan or lfptype = quiet_nan or - rfptype = nan or rfptype = quiet_nan)) then - -- Return quiet NAN, IEEE754-1985-7.1,1 - fpresult := qnanfp (fraction_width => fraction_width, - exponent_width => exponent_width); - elsif (((lfptype = pos_inf or lfptype = neg_inf) and - (rfptype = pos_zero or rfptype = neg_zero)) or - ((rfptype = pos_inf or rfptype = neg_inf) and - (lfptype = pos_zero or lfptype = neg_zero))) then -- 0 * inf - -- Return quiet NAN, IEEE754-1985-7.1,3 - fpresult := qnanfp (fraction_width => fraction_width, - exponent_width => exponent_width); - elsif (lfptype = pos_inf or rfptype = pos_inf - or lfptype = neg_inf or rfptype = neg_inf) then -- x * inf = inf - fpresult := pos_inffp (fraction_width => fraction_width, - exponent_width => exponent_width); - -- figure out the sign - fp_sign := l(l'high) xor r(r'high); -- figure out the sign - fpresult (exponent_width) := fp_sign; - else - fp_sign := l(l'high) xor r(r'high); -- figure out the sign - lresize := resize (arg => to_x01(l), - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => denormalize, - denormalize => denormalize); - lfptype := classfp (lresize, false); -- errors already checked - rresize := resize (arg => to_x01(r), - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => denormalize, - denormalize => denormalize); - rfptype := classfp (rresize, false); -- errors already checked - break_number ( - arg => lresize, - fptyp => lfptype, - denormalize => denormalize, - fract => fractl, - expon => exponl); - break_number ( - arg => rresize, - fptyp => rfptype, - denormalize => denormalize, - fract => fractr, - expon => exponr); - if (rfptype = pos_denormal or rfptype = neg_denormal) then - shifty := fraction_width - find_leftmost(fractr, '1'); - fractr := shift_left (fractr, shifty); - elsif (lfptype = pos_denormal or lfptype = neg_denormal) then - shifty := fraction_width - find_leftmost(fractl, '1'); - fractl := shift_left (fractl, shifty); - else - shifty := 0; - -- Note that a denormal number * a denormal number is always zero. - end if; - -- multiply - -- add the exponents - rexpon := resize (exponl, rexpon'length) + exponr - shifty + 1; - rfract := fractl * fractr; -- Multiply the fraction - sfract := rfract (rfract'high downto - rfract'high - (fraction_width+1+multguard)); - sticky := or_reduce (rfract (rfract'high-(fraction_width+1+multguard) - downto 0)); - -- normalize - fpresult := normalize (fract => sfract, - expon => rexpon, - sign => fp_sign, - sticky => sticky, - fraction_width => fraction_width, - exponent_width => exponent_width, - round_style => round_style, - denormalize => denormalize, - nguard => multguard); - end if; - return fpresult; - end function multiply; - - function short_divide ( - lx, rx : UNSIGNED) - return UNSIGNED is - -- This is a special divider for the floating point routines. - -- For a true unsigned divider, "stages" needs to = lx'high - constant stages : INTEGER := lx'high - rx'high; -- number of stages - variable partial : UNSIGNED (lx'range); - variable q : UNSIGNED (stages downto 0); - variable partial_argl : SIGNED (rx'high + 2 downto 0); - variable partial_arg : SIGNED (rx'high + 2 downto 0); - begin - partial := lx; - for i in stages downto 0 loop - partial_argl := resize ("0" & SIGNED (partial(lx'high downto i)), - partial_argl'length); - partial_arg := partial_argl - SIGNED ("0" & rx); - if (partial_arg (partial_arg'high) = '1') then -- negative - q(i) := '0'; - else - q(i) := '1'; - partial (lx'high+i-stages downto lx'high+i-stages-rx'high) := - UNSIGNED (partial_arg(rx'range)); - end if; - end loop; - -- to make the output look like that of the unsigned IEEE divide. - return resize (q, lx'length); - end function short_divide; - - -- 1/X function. Needed for algorithm development. - function reciprocal ( - arg : UNRESOLVED_float; - constant round_style : round_type := float_round_style; -- rounding option - constant guard : NATURAL := float_guard_bits; -- number of guard bits - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float is - constant fraction_width : NATURAL := -mine(arg'low, arg'low); -- length of FP output fraction - constant exponent_width : NATURAL := arg'high; -- length of FP output exponent - constant divguard : NATURAL := guard; -- guard bits - function onedivy ( - arg : UNSIGNED) - return UNSIGNED is - variable q : UNSIGNED((2*arg'high)+1 downto 0); - variable one : UNSIGNED (q'range); - begin - one := (others => '0'); - one(one'high) := '1'; - q := short_divide (one, arg); -- Unsigned divide - return resize (q, arg'length+1); - end function onedivy; - variable fptype : valid_fpstate; - variable expon : SIGNED (exponent_width-1 downto 0); -- exponents - variable denorm_offset : NATURAL range 0 to 2; - variable fract : UNSIGNED (fraction_width downto 0); - variable fractg : UNSIGNED (fraction_width+divguard downto 0); - variable sfract : UNSIGNED (fraction_width+1+divguard downto 0); -- result fraction - variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width); - begin -- reciprocal - fptype := classfp(arg, check_error); - classcase : case fptype is - when isx => - fpresult := (others => 'X'); - when nan | quiet_nan => - -- Return quiet NAN, IEEE754-1985-7.1,1 - fpresult := qnanfp (fraction_width => fraction_width, - exponent_width => exponent_width); - when pos_inf | neg_inf => -- 1/inf, return 0 - fpresult := zerofp (fraction_width => fraction_width, - exponent_width => exponent_width); - when neg_zero | pos_zero => -- 1/0 - report "float_pkg:" - & "RECIPROCAL: Floating Point divide by zero" - severity error; - fpresult := pos_inffp (fraction_width => fraction_width, - exponent_width => exponent_width); - when others => - if (fptype = pos_denormal or fptype = neg_denormal) - and ((arg (-1) or arg(-2)) /= '1') then - -- 1/denormal = infinity, with the exception of 2**-expon_base - fpresult := pos_inffp (fraction_width => fraction_width, - exponent_width => exponent_width); - fpresult (exponent_width) := to_x01 (arg (exponent_width)); - else - break_number ( - arg => arg, - fptyp => fptype, - denormalize => denormalize, - fract => fract, - expon => expon); - fractg := (others => '0'); - if (fptype = pos_denormal or fptype = neg_denormal) then - -- The reciprocal of a denormal number is typically zero, - -- except for two special cases which are trapped here. - if (to_x01(arg (-1)) = '1') then - fractg (fractg'high downto divguard+1) := - fract (fract'high-1 downto 0); -- Shift to not denormal - denorm_offset := 1; -- add 1 to exponent compensate - else -- arg(-2) = '1' - fractg (fractg'high downto divguard+2) := - fract (fract'high-2 downto 0); -- Shift to not denormal - denorm_offset := 2; -- add 2 to exponent compensate - end if; - else - fractg (fractg'high downto divguard) := fract; - denorm_offset := 0; - end if; - expon := - expon - 3 + denorm_offset; - sfract := onedivy (fractg); - -- normalize - fpresult := normalize (fract => sfract, - expon => expon, - sign => arg(exponent_width), - sticky => '1', - fraction_width => fraction_width, - exponent_width => exponent_width, - round_style => round_style, - denormalize => denormalize, - nguard => divguard); - end if; - end case classcase; - return fpresult; - end function reciprocal; - - -- floating point division - function divide ( - l, r : UNRESOLVED_float; -- floating point input - constant round_style : round_type := float_round_style; -- rounding option - constant guard : NATURAL := float_guard_bits; -- number of guard bits - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float is - constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction - constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent - constant divguard : NATURAL := guard; -- division guard bits - variable lfptype, rfptype : valid_fpstate; - variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width); - variable ulfract, urfract : UNSIGNED (fraction_width downto 0); - variable fractl : UNSIGNED ((2*(fraction_width+divguard)+1) downto 0); -- left - variable fractr : UNSIGNED (fraction_width+divguard downto 0); -- right - variable rfract : UNSIGNED (fractl'range); -- result fraction - variable sfract : UNSIGNED (fraction_width+1+divguard downto 0); -- result fraction - variable exponl, exponr : SIGNED (exponent_width-1 downto 0); -- exponents - variable rexpon : SIGNED (exponent_width+1 downto 0); -- result exponent - variable fp_sign, sticky : STD_ULOGIC; -- sign of result - variable shifty, shiftx : INTEGER; -- denormal number shift - variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); - begin -- divide - if (fraction_width = 0 or l'length < 7 or r'length < 7) then - lfptype := isx; - else - lfptype := classfp (l, check_error); - rfptype := classfp (r, check_error); - end if; - classcase : case rfptype is - when isx => - fpresult := (others => 'X'); - when nan | quiet_nan => - -- Return quiet NAN, IEEE754-1985-7.1,1 - fpresult := qnanfp (fraction_width => fraction_width, - exponent_width => exponent_width); - when pos_inf | neg_inf => - if lfptype = pos_inf or lfptype = neg_inf -- inf / inf - or lfptype = quiet_nan or lfptype = nan then - -- Return quiet NAN, IEEE754-1985-7.1,4 - fpresult := qnanfp (fraction_width => fraction_width, - exponent_width => exponent_width); - else -- x / inf = 0 - fpresult := zerofp (fraction_width => fraction_width, - exponent_width => exponent_width); - fp_sign := l(l'high) xor r(r'high); -- sign - fpresult (fpresult'high) := fp_sign; -- sign - end if; - when pos_zero | neg_zero => - if lfptype = pos_zero or lfptype = neg_zero -- 0 / 0 - or lfptype = quiet_nan or lfptype = nan then - -- Return quiet NAN, IEEE754-1985-7.1,4 - fpresult := qnanfp (fraction_width => fraction_width, - exponent_width => exponent_width); - else - report "float_pkg:" - & "DIVIDE: Floating Point divide by zero" - severity error; - -- Infinity, define in 754-1985-7.2 - fpresult := pos_inffp (fraction_width => fraction_width, - exponent_width => exponent_width); - fp_sign := l(l'high) xor r(r'high); -- sign - fpresult (fpresult'high) := fp_sign; -- sign - end if; - when others => - classcase2 : case lfptype is - when isx => - fpresult := (others => 'X'); - when nan | quiet_nan => - -- Return quiet NAN, IEEE754-1985-7.1,1 - fpresult := qnanfp (fraction_width => fraction_width, - exponent_width => exponent_width); - when pos_inf | neg_inf => -- inf / x = inf - fpresult := pos_inffp (fraction_width => fraction_width, - exponent_width => exponent_width); - fp_sign := l(l'high) xor r(r'high); -- sign - fpresult(exponent_width) := fp_sign; - when pos_zero | neg_zero => -- 0 / X = 0 - fpresult := zerofp (fraction_width => fraction_width, - exponent_width => exponent_width); - fp_sign := l(l'high) xor r(r'high); -- sign - fpresult(exponent_width) := fp_sign; - when others => - fp_sign := l(l'high) xor r(r'high); -- sign - lresize := resize (arg => to_x01(l), - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => denormalize, - denormalize => denormalize); - lfptype := classfp (lresize, false); -- errors already checked - rresize := resize (arg => to_x01(r), - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => denormalize, - denormalize => denormalize); - rfptype := classfp (rresize, false); -- errors already checked - break_number ( - arg => lresize, - fptyp => lfptype, - denormalize => denormalize, - fract => ulfract, - expon => exponl); - -- right side - break_number ( - arg => rresize, - fptyp => rfptype, - denormalize => denormalize, - fract => urfract, - expon => exponr); - -- Compute the exponent - rexpon := resize (exponl, rexpon'length) - exponr - 2; - if (rfptype = pos_denormal or rfptype = neg_denormal) then - -- Do the shifting here not after. That way we have a smaller - -- shifter, and need a smaller divider, because the top - -- bit in the divisor will always be a "1". - shifty := fraction_width - find_leftmost(urfract, '1'); - urfract := shift_left (urfract, shifty); - rexpon := rexpon + shifty; - end if; - fractr := (others => '0'); - fractr (fraction_width+divguard downto divguard) := urfract; - if (lfptype = pos_denormal or lfptype = neg_denormal) then - shiftx := fraction_width - find_leftmost(ulfract, '1'); - ulfract := shift_left (ulfract, shiftx); - rexpon := rexpon - shiftx; - end if; - fractl := (others => '0'); - fractl (fractl'high downto fractl'high-fraction_width) := ulfract; - -- divide - rfract := short_divide (fractl, fractr); -- unsigned divide - sfract := rfract (sfract'range); -- lower bits - sticky := '1'; - -- normalize - fpresult := normalize (fract => sfract, - expon => rexpon, - sign => fp_sign, - sticky => sticky, - fraction_width => fraction_width, - exponent_width => exponent_width, - round_style => round_style, - denormalize => denormalize, - nguard => divguard); - end case classcase2; - end case classcase; - return fpresult; - end function divide; - - -- division by a power of 2 - function dividebyp2 ( - l, r : UNRESOLVED_float; -- floating point input - constant round_style : round_type := float_round_style; -- rounding option - constant guard : NATURAL := float_guard_bits; -- number of guard bits - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float is - constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction - constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent - variable lfptype, rfptype : valid_fpstate; - variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width); - variable ulfract, urfract : UNSIGNED (fraction_width downto 0); - variable exponl, exponr : SIGNED(exponent_width-1 downto 0); -- exponents - variable rexpon : SIGNED(exponent_width downto 0); -- result exponent - variable fp_sign : STD_ULOGIC; -- sign of result - variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); - begin -- divisionbyp2 - if (fraction_width = 0 or l'length < 7 or r'length < 7) then - lfptype := isx; - else - lfptype := classfp (l, check_error); - rfptype := classfp (r, check_error); - end if; - classcase : case rfptype is - when isx => - fpresult := (others => 'X'); - when nan | quiet_nan => - -- Return quiet NAN, IEEE754-1985-7.1,1 - fpresult := qnanfp (fraction_width => fraction_width, - exponent_width => exponent_width); - when pos_inf | neg_inf => - if lfptype = pos_inf or lfptype = neg_inf then -- inf / inf - -- Return quiet NAN, IEEE754-1985-7.1,4 - fpresult := qnanfp (fraction_width => fraction_width, - exponent_width => exponent_width); - else -- x / inf = 0 - fpresult := zerofp (fraction_width => fraction_width, - exponent_width => exponent_width); - fp_sign := l(l'high) xor r(r'high); -- sign - fpresult (fpresult'high) := fp_sign; -- sign - end if; - when pos_zero | neg_zero => - if lfptype = pos_zero or lfptype = neg_zero then -- 0 / 0 - -- Return quiet NAN, IEEE754-1985-7.1,4 - fpresult := qnanfp (fraction_width => fraction_width, - exponent_width => exponent_width); - else - report "float_pkg:" - & "DIVIDEBYP2: Floating Point divide by zero" - severity error; - -- Infinity, define in 754-1985-7.2 - fpresult := pos_inffp (fraction_width => fraction_width, - exponent_width => exponent_width); - fp_sign := l(l'high) xor r(r'high); -- sign - fpresult (fpresult'high) := fp_sign; -- sign - end if; - when others => - classcase2 : case lfptype is - when isx => - fpresult := (others => 'X'); - when nan | quiet_nan => - -- Return quiet NAN, IEEE754-1985-7.1,1 - fpresult := qnanfp (fraction_width => fraction_width, - exponent_width => exponent_width); - when pos_inf | neg_inf => -- inf / x = inf - fpresult := pos_inffp (fraction_width => fraction_width, - exponent_width => exponent_width); - fp_sign := l(l'high) xor r(r'high); -- sign - fpresult (exponent_width) := fp_sign; -- sign - when pos_zero | neg_zero => -- 0 / X = 0 - fpresult := zerofp (fraction_width => fraction_width, - exponent_width => exponent_width); - fp_sign := l(l'high) xor r(r'high); -- sign - fpresult (exponent_width) := fp_sign; -- sign - when others => - fp_sign := l(l'high) xor r(r'high); -- sign - lresize := resize (arg => to_x01(l), - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => denormalize, - denormalize => denormalize); - lfptype := classfp (lresize, false); -- errors already checked - rresize := resize (arg => to_x01(r), - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => denormalize, - denormalize => denormalize); - rfptype := classfp (rresize, false); -- errors already checked - break_number ( - arg => lresize, - fptyp => lfptype, - denormalize => denormalize, - fract => ulfract, - expon => exponl); - -- right side - break_number ( - arg => rresize, - fptyp => rfptype, - denormalize => denormalize, - fract => urfract, - expon => exponr); - assert (or_reduce (urfract (fraction_width-1 downto 0)) = '0') - report "float_pkg:" - & "DIVIDEBYP2: " - & "Dividebyp2 called with a non power of two divisor" - severity error; - rexpon := (exponl(exponl'high)&exponl) - - (exponr(exponr'high)&exponr) - 1; - -- normalize - fpresult := normalize (fract => ulfract, - expon => rexpon, - sign => fp_sign, - sticky => '1', - fraction_width => fraction_width, - exponent_width => exponent_width, - round_style => round_style, - denormalize => denormalize, - nguard => 0); - end case classcase2; - end case classcase; - return fpresult; - end function dividebyp2; - - -- Multiply accumulate result = l*r + c - function mac ( - l, r, c : UNRESOLVED_float; -- floating point input - constant round_style : round_type := float_round_style; -- rounding option - constant guard : NATURAL := float_guard_bits; -- number of guard bits - constant check_error : BOOLEAN := float_check_error; -- check for errors - constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP - return UNRESOLVED_float is - constant fraction_width : NATURAL := - -mine (mine(l'low, r'low), c'low); -- length of FP output fraction - constant exponent_width : NATURAL := - maximum (maximum(l'high, r'high), c'high); -- length of FP output exponent - variable lfptype, rfptype, cfptype : valid_fpstate; - variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width); - variable fractl, fractr : UNSIGNED (fraction_width downto 0); -- fractions - variable fractx : UNSIGNED (fraction_width+guard downto 0); - variable fractc, fracts : UNSIGNED (fraction_width+1+guard downto 0); - variable rfract : UNSIGNED ((2*(fraction_width))+1 downto 0); -- result fraction - variable sfract, ufract : UNSIGNED (fraction_width+1+guard downto 0); -- result fraction - variable exponl, exponr, exponc : SIGNED (exponent_width-1 downto 0); -- exponents - variable rexpon, rexpon2 : SIGNED (exponent_width+1 downto 0); -- result exponent - variable shifty : INTEGER; -- denormal shift - variable shiftx : SIGNED (rexpon'range); -- shift fractions - variable fp_sign : STD_ULOGIC; -- sign of result - variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); - variable cresize : UNRESOLVED_float (exponent_width downto -fraction_width - guard); - variable leftright : BOOLEAN; -- left or right used - variable sticky : STD_ULOGIC; -- Holds precision for rounding - begin -- multiply - if (fraction_width = 0 or l'length < 7 or r'length < 7 or c'length < 7) then - lfptype := isx; - else - lfptype := classfp (l, check_error); - rfptype := classfp (r, check_error); - cfptype := classfp (c, check_error); - end if; - if (lfptype = isx or rfptype = isx or cfptype = isx) then - fpresult := (others => 'X'); - elsif (lfptype = nan or lfptype = quiet_nan or - rfptype = nan or rfptype = quiet_nan or - cfptype = nan or cfptype = quiet_nan) then - -- Return quiet NAN, IEEE754-1985-7.1,1 - fpresult := qnanfp (fraction_width => fraction_width, - exponent_width => exponent_width); - elsif (((lfptype = pos_inf or lfptype = neg_inf) and - (rfptype = pos_zero or rfptype = neg_zero)) or - ((rfptype = pos_inf or rfptype = neg_inf) and - (lfptype = pos_zero or lfptype = neg_zero))) then -- 0 * inf - -- Return quiet NAN, IEEE754-1985-7.1,3 - fpresult := qnanfp (fraction_width => fraction_width, - exponent_width => exponent_width); - elsif (lfptype = pos_inf or rfptype = pos_inf - or lfptype = neg_inf or rfptype = neg_inf -- x * inf = inf - or cfptype = neg_inf or cfptype = pos_inf) then -- x + inf = inf - fpresult := pos_inffp (fraction_width => fraction_width, - exponent_width => exponent_width); - -- figure out the sign - fpresult (exponent_width) := l(l'high) xor r(r'high); - else - fp_sign := l(l'high) xor r(r'high); -- figure out the sign - lresize := resize (arg => to_x01(l), - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => denormalize, - denormalize => denormalize); - lfptype := classfp (lresize, false); -- errors already checked - rresize := resize (arg => to_x01(r), - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => denormalize, - denormalize => denormalize); - rfptype := classfp (rresize, false); -- errors already checked - cresize := resize (arg => to_x01(c), - exponent_width => exponent_width, - fraction_width => -cresize'low, - denormalize_in => denormalize, - denormalize => denormalize); - cfptype := classfp (cresize, false); -- errors already checked - break_number ( - arg => lresize, - fptyp => lfptype, - denormalize => denormalize, - fract => fractl, - expon => exponl); - break_number ( - arg => rresize, - fptyp => rfptype, - denormalize => denormalize, - fract => fractr, - expon => exponr); - break_number ( - arg => cresize, - fptyp => cfptype, - denormalize => denormalize, - fract => fractx, - expon => exponc); - if (rfptype = pos_denormal or rfptype = neg_denormal) then - shifty := fraction_width - find_leftmost(fractr, '1'); - fractr := shift_left (fractr, shifty); - elsif (lfptype = pos_denormal or lfptype = neg_denormal) then - shifty := fraction_width - find_leftmost(fractl, '1'); - fractl := shift_left (fractl, shifty); - else - shifty := 0; - -- Note that a denormal number * a denormal number is always zero. - end if; - -- multiply - rfract := fractl * fractr; -- Multiply the fraction - -- add the exponents - rexpon := resize (exponl, rexpon'length) + exponr - shifty + 1; - shiftx := rexpon - exponc; - if shiftx < -fractl'high then - rexpon2 := resize (exponc, rexpon2'length); - fractc := "0" & fractx; - fracts := (others => '0'); - sticky := or_reduce (rfract); - elsif shiftx < 0 then - shiftx := - shiftx; - fracts := shift_right (rfract (rfract'high downto rfract'high - - fracts'length+1), - to_integer(shiftx)); - fractc := "0" & fractx; - rexpon2 := resize (exponc, rexpon2'length); - leftright := false; - sticky := or_reduce (rfract (to_integer(shiftx)+rfract'high - - fracts'length downto 0)); - elsif shiftx = 0 then - rexpon2 := resize (exponc, rexpon2'length); - sticky := or_reduce (rfract (rfract'high - fractc'length downto 0)); - if rfract (rfract'high downto rfract'high - fractc'length+1) > fractx - then - fractc := "0" & fractx; - fracts := rfract (rfract'high downto rfract'high - - fracts'length+1); - leftright := false; - else - fractc := rfract (rfract'high downto rfract'high - - fractc'length+1); - fracts := "0" & fractx; - leftright := true; - end if; - elsif shiftx > fractx'high then - rexpon2 := rexpon; - fracts := (others => '0'); - fractc := rfract (rfract'high downto rfract'high - fractc'length+1); - leftright := true; - sticky := or_reduce (fractx & rfract (rfract'high - fractc'length - downto 0)); - else -- fractx'high > shiftx > 0 - rexpon2 := rexpon; - fracts := "0" & shift_right (fractx, to_integer (shiftx)); - fractc := rfract (rfract'high downto rfract'high - fractc'length+1); - leftright := true; - sticky := or_reduce (fractx (to_integer (shiftx) downto 0) - & rfract (rfract'high - fractc'length downto 0)); - end if; - fracts (0) := fracts (0) or sticky; -- Or the sticky bit into the LSB - if fp_sign = to_X01(c(c'high)) then - ufract := fractc + fracts; - fp_sign := fp_sign; - else -- signs are different - ufract := fractc - fracts; -- always positive result - if leftright then -- Figure out which sign to use - fp_sign := fp_sign; - else - fp_sign := c(c'high); - end if; - end if; - -- normalize - fpresult := normalize (fract => ufract, - expon => rexpon2, - sign => fp_sign, - sticky => sticky, - fraction_width => fraction_width, - exponent_width => exponent_width, - round_style => round_style, - denormalize => denormalize, - nguard => guard); - end if; - return fpresult; - end function mac; - - -- "rem" function --- function remainder ( --- l, r : UNRESOLVED_float; -- floating point input --- constant round_style : round_type := float_round_style; -- rounding option --- constant guard : NATURAL := float_guard_bits; -- number of guard bits --- constant check_error : BOOLEAN := float_check_error; -- check for errors --- constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP --- return UNRESOLVED_float is --- constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction --- constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent --- constant divguard : NATURAL := guard; -- division guard bits --- variable lfptype, rfptype : valid_fpstate; --- variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width); --- variable ulfract, urfract : UNSIGNED (fraction_width downto 0); --- variable fractr, fractl : UNSIGNED (fraction_width+divguard downto 0); -- right --- variable rfract : UNSIGNED (fractr'range); -- result fraction --- variable sfract : UNSIGNED (fraction_width+divguard downto 0); -- result fraction --- variable exponl, exponr : SIGNED (exponent_width-1 downto 0); -- exponents --- variable rexpon : SIGNED (exponent_width downto 0); -- result exponent --- variable fp_sign : STD_ULOGIC; -- sign of result --- variable shifty : INTEGER; -- denormal number shift --- variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); --- begin -- remainder --- if (fraction_width = 0 or l'length < 7 or r'length < 7) then --- lfptype := isx; --- else --- lfptype := classfp (l, check_error); --- rfptype := classfp (r, check_error); --- end if; --- if (lfptype = isx or rfptype = isx) then --- fpresult := (others => 'X'); --- elsif (lfptype = nan or lfptype = quiet_nan) --- or (rfptype = nan or rfptype = quiet_nan) --- -- Return quiet NAN, IEEE754-1985-7.1,1 --- or (lfptype = pos_inf or lfptype = neg_inf) -- inf rem x --- -- Return quiet NAN, IEEE754-1985-7.1,5 --- or (rfptype = pos_zero or rfptype = neg_zero) then -- x rem 0 --- -- Return quiet NAN, IEEE754-1985-7.1,5 --- fpresult := qnanfp (fraction_width => fraction_width, --- exponent_width => exponent_width); --- elsif (rfptype = pos_inf or rfptype = neg_inf) then -- x rem inf = 0 --- fpresult := zerofp (fraction_width => fraction_width, --- exponent_width => exponent_width); --- elsif (abs(l) < abs(r)) then --- fpresult := l; --- else --- fp_sign := to_X01(l(l'high)); -- sign --- lresize := resize (arg => to_x01(l), --- exponent_width => exponent_width, --- fraction_width => fraction_width, --- denormalize_in => denormalize, --- denormalize => denormalize); --- lfptype := classfp (lresize, false); -- errors already checked --- rresize := resize (arg => to_x01(r), --- exponent_width => exponent_width, --- fraction_width => fraction_width, --- denormalize_in => denormalize, --- denormalize => denormalize); --- rfptype := classfp (rresize, false); -- errors already checked --- fractl := (others => '0'); --- break_number ( --- arg => lresize, --- fptyp => lfptype, --- denormalize => denormalize, --- fract => ulfract, --- expon => exponl); --- fractl (fraction_width+divguard downto divguard) := ulfract; --- -- right side --- fractr := (others => '0'); --- break_number ( --- arg => rresize, --- fptyp => rfptype, --- denormalize => denormalize, --- fract => urfract, --- expon => exponr); --- fractr (fraction_width+divguard downto divguard) := urfract; --- rexpon := (exponr(exponr'high)&exponr); --- shifty := to_integer(exponl - rexpon); --- if (shifty > 0) then --- fractr := shift_right (fractr, shifty); --- rexpon := rexpon + shifty; --- end if; --- if (fractr /= 0) then --- -- rem --- rfract := fractl rem fractr; -- unsigned rem --- sfract := rfract (sfract'range); -- lower bits --- -- normalize --- fpresult := normalize (fract => sfract, --- expon => rexpon, --- sign => fp_sign, --- fraction_width => fraction_width, --- exponent_width => exponent_width, --- round_style => round_style, --- denormalize => denormalize, --- nguard => divguard); --- else --- -- If we shift "fractr" so far that it becomes zero, return zero. --- fpresult := zerofp (fraction_width => fraction_width, --- exponent_width => exponent_width); --- end if; --- end if; --- return fpresult; --- end function remainder; - --- -- "mod" function --- function modulo ( --- l, r : UNRESOLVED_float; -- floating point input --- constant round_style : round_type := float_round_style; -- rounding option --- constant guard : NATURAL := float_guard_bits; -- number of guard bits --- constant check_error : BOOLEAN := float_check_error; -- check for errors --- constant denormalize : BOOLEAN := float_denormalize) -- Use IEEE extended FP --- return UNRESOLVED_float is --- constant fraction_width : NATURAL := - mine(l'low, r'low); -- length of FP output fraction --- constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent --- variable lfptype, rfptype : valid_fpstate; --- variable fpresult : UNRESOLVED_float (exponent_width downto -fraction_width); --- variable remres : UNRESOLVED_float (exponent_width downto -fraction_width); --- begin -- remainder --- if (fraction_width = 0 or l'length < 7 or r'length < 7) then --- lfptype := isx; --- else --- lfptype := classfp (l, check_error); --- rfptype := classfp (r, check_error); --- end if; --- if (lfptype = isx or rfptype = isx) then --- fpresult := (others => 'X'); --- elsif (lfptype = nan or lfptype = quiet_nan) --- or (rfptype = nan or rfptype = quiet_nan) --- -- Return quiet NAN, IEEE754-1985-7.1,1 --- or (lfptype = pos_inf or lfptype = neg_inf) -- inf rem x --- -- Return quiet NAN, IEEE754-1985-7.1,5 --- or (rfptype = pos_zero or rfptype = neg_zero) then -- x rem 0 --- -- Return quiet NAN, IEEE754-1985-7.1,5 --- fpresult := qnanfp (fraction_width => fraction_width, --- exponent_width => exponent_width); --- elsif (rfptype = pos_inf or rfptype = neg_inf) then -- x rem inf = 0 --- fpresult := zerofp (fraction_width => fraction_width, --- exponent_width => exponent_width); --- else --- remres := remainder (l => abs(l), --- r => abs(r), --- round_style => round_style, --- guard => guard, --- check_error => false, --- denormalize => denormalize); --- -- MOD is the same as REM, but you do something different with --- -- negative values --- if (is_negative (l)) then --- remres := - remres; --- end if; --- if (is_negative (l) = is_negative (r) or remres = 0) then --- fpresult := remres; --- else --- fpresult := add (l => remres, --- r => r, --- round_style => round_style, --- guard => guard, --- check_error => false, --- denormalize => denormalize); --- end if; --- end if; --- return fpresult; --- end function modulo; - - -- Square root of a floating point number. Done using Newton's Iteration. --- function sqrt ( --- arg : UNRESOLVED_float; -- floating point input --- constant round_style : round_type := float_round_style; --- constant guard : NATURAL := float_guard_bits; --- constant check_error : BOOLEAN := float_check_error; --- constant denormalize : BOOLEAN := float_denormalize) --- return UNRESOLVED_float is --- constant fraction_width : NATURAL := guard-arg'low; -- length of FP output fraction --- constant exponent_width : NATURAL := arg'high; -- length of FP output exponent --- variable sign : STD_ULOGIC; --- variable fpresult : float (arg'range); --- variable fptype : valid_fpstate; --- variable iexpon : SIGNED(exponent_width-1 downto 0); -- exponents --- variable expon : SIGNED(exponent_width downto 0); -- exponents --- variable ufact : ufixed (0 downto arg'low); --- variable fact : ufixed (2 downto -fraction_width); -- fraction --- variable resb : ufixed (fact'high+1 downto fact'low); --- begin -- square root --- fptype := Classfp (arg, check_error); --- classcase : case fptype is --- when isx => --- fpresult := (others => 'X'); --- when nan | quiet_nan | --- -- Return quiet NAN, IEEE754-1985-7.1,1 --- neg_normal | neg_denormal | neg_inf => -- sqrt (neg) --- -- Return quiet NAN, IEEE754-1985-7.1.6 --- fpresult := qnanfp (fraction_width => fraction_width-guard, --- exponent_width => exponent_width); --- when pos_inf => -- Sqrt (inf), return infinity --- fpresult := pos_inffp (fraction_width => fraction_width-guard, --- exponent_width => exponent_width); --- when pos_zero => -- return 0 --- fpresult := zerofp (fraction_width => fraction_width-guard, --- exponent_width => exponent_width); --- when neg_zero => -- IEEE754-1985-6.3 return -0 --- fpresult := neg_zerofp (fraction_width => fraction_width-guard, --- exponent_width => exponent_width); --- when others => --- break_number (arg => arg, --- denormalize => denormalize, --- check_error => false, --- fract => ufact, --- expon => iexpon, --- sign => sign); --- expon := resize (iexpon+1, expon'length); -- get exponent --- fact := resize (ufact, fact'high, fact'low); --- if (expon(0) = '1') then --- fact := fact sla 1; -- * 2.0 --- end if; --- expon := shift_right (expon, 1); -- exponent/2 --- -- Newton's iteration - root := (1 + arg) / 2 --- resb := (fact + 1) sra 1; --- for j in 0 to fraction_width/4 loop --- -- root := (root + (arg/root))/2 --- resb := resize (arg => (resb + (fact/resb)) sra 1, --- left_index => resb'high, --- right_index => resb'low, --- round_style => fixed_truncate, --- overflow_style => fixed_wrap); --- end loop; --- fpresult := normalize (fract => resb, --- expon => expon-1, --- sign => '0', --- exponent_width => arg'high, --- fraction_width => -arg'low, --- round_style => round_style, --- denormalize => denormalize, --- nguard => guard); --- end case classcase; --- return fpresult; --- end function sqrt; - - function Is_Negative (arg : UNRESOLVED_float) return BOOLEAN is - -- Technically -0 should return "false", but I'm leaving that case out. - begin - return (to_x01(arg(arg'high)) = '1'); - end function Is_Negative; - - -- compare functions - -- =, /=, >=, <=, <, > - - function eq ( -- equal = - l, r : UNRESOLVED_float; -- floating point input - constant check_error : BOOLEAN := float_check_error; - constant denormalize : BOOLEAN := float_denormalize) - return BOOLEAN is - variable lfptype, rfptype : valid_fpstate; - variable is_equal, is_unordered : BOOLEAN; - constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction - constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent - variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); - begin -- equal - if (fraction_width = 0 or l'length < 7 or r'length < 7) then - return false; - else - lfptype := classfp (l, check_error); - rfptype := classfp (r, check_error); - end if; - if (lfptype = neg_zero or lfptype = pos_zero) and - (rfptype = neg_zero or rfptype = pos_zero) then - is_equal := true; - else - lresize := resize (arg => to_x01(l), - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => denormalize, - denormalize => denormalize); - rresize := resize (arg => to_x01(r), - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => denormalize, - denormalize => denormalize); - is_equal := (to_slv(lresize) = to_slv(rresize)); - end if; - if (check_error) then - is_unordered := Unordered (x => l, - y => r); - else - is_unordered := false; - end if; - return is_equal and not is_unordered; - end function eq; - - function lt ( -- less than < - l, r : UNRESOLVED_float; -- floating point input - constant check_error : BOOLEAN := float_check_error; - constant denormalize : BOOLEAN := float_denormalize) - return BOOLEAN is - constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction - constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent - variable lfptype, rfptype : valid_fpstate; - variable expl, expr : UNSIGNED (exponent_width-1 downto 0); - variable fractl, fractr : UNSIGNED (fraction_width-1 downto 0); - variable is_less_than, is_unordered : BOOLEAN; - variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); - begin - if (fraction_width = 0 or l'length < 7 or r'length < 7) then - is_less_than := false; - else - lresize := resize (arg => to_x01(l), - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => denormalize, - denormalize => denormalize); - rresize := resize (arg => to_x01(r), - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => denormalize, - denormalize => denormalize); - if to_x01(l(l'high)) = to_x01(r(r'high)) then -- sign bits - expl := UNSIGNED(lresize(exponent_width-1 downto 0)); - expr := UNSIGNED(rresize(exponent_width-1 downto 0)); - if expl = expr then - fractl := UNSIGNED (to_slv(lresize(-1 downto -fraction_width))); - fractr := UNSIGNED (to_slv(rresize(-1 downto -fraction_width))); - if to_x01(l(l'high)) = '0' then -- positive number - is_less_than := (fractl < fractr); - else - is_less_than := (fractl > fractr); -- negative - end if; - else - if to_x01(l(l'high)) = '0' then -- positive number - is_less_than := (expl < expr); - else - is_less_than := (expl > expr); -- negative - end if; - end if; - else - lfptype := classfp (l, check_error); - rfptype := classfp (r, check_error); - if (lfptype = neg_zero and rfptype = pos_zero) then - is_less_than := false; -- -0 < 0 returns false. - else - is_less_than := (to_x01(l(l'high)) > to_x01(r(r'high))); - end if; - end if; - end if; - if check_error then - is_unordered := Unordered (x => l, - y => r); - else - is_unordered := false; - end if; - return is_less_than and not is_unordered; - end function lt; - - function gt ( -- greater than > - l, r : UNRESOLVED_float; -- floating point input - constant check_error : BOOLEAN := float_check_error; - constant denormalize : BOOLEAN := float_denormalize) - return BOOLEAN is - constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction - constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent - variable lfptype, rfptype : valid_fpstate; - variable expl, expr : UNSIGNED (exponent_width-1 downto 0); - variable fractl, fractr : UNSIGNED (fraction_width-1 downto 0); - variable is_greater_than : BOOLEAN; - variable is_unordered : BOOLEAN; - variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); - begin -- greater_than - if (fraction_width = 0 or l'length < 7 or r'length < 7) then - is_greater_than := false; - else - lresize := resize (arg => to_x01(l), - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => denormalize, - denormalize => denormalize); - rresize := resize (arg => to_x01(r), - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => denormalize, - denormalize => denormalize); - if to_x01(l(l'high)) = to_x01(r(r'high)) then -- sign bits - expl := UNSIGNED(lresize(exponent_width-1 downto 0)); - expr := UNSIGNED(rresize(exponent_width-1 downto 0)); - if expl = expr then - fractl := UNSIGNED (to_slv(lresize(-1 downto -fraction_width))); - fractr := UNSIGNED (to_slv(rresize(-1 downto -fraction_width))); - if to_x01(l(l'high)) = '0' then -- positive number - is_greater_than := fractl > fractr; - else - is_greater_than := fractl < fractr; -- negative - end if; - else - if to_x01(l(l'high)) = '0' then -- positive number - is_greater_than := expl > expr; - else - is_greater_than := expl < expr; -- negative - end if; - end if; - else - lfptype := classfp (l, check_error); - rfptype := classfp (r, check_error); - if (lfptype = pos_zero and rfptype = neg_zero) then - is_greater_than := false; -- 0 > -0 returns false. - else - is_greater_than := to_x01(l(l'high)) < to_x01(r(r'high)); - end if; - end if; - end if; - if check_error then - is_unordered := Unordered (x => l, - y => r); - else - is_unordered := false; - end if; - return is_greater_than and not is_unordered; - end function gt; - - -- purpose: /= function - function ne ( -- not equal /= - l, r : UNRESOLVED_float; - constant check_error : BOOLEAN := float_check_error; - constant denormalize : BOOLEAN := float_denormalize) - return BOOLEAN is - variable is_equal, is_unordered : BOOLEAN; - begin - is_equal := eq (l => l, - r => r, - check_error => false, - denormalize => denormalize); - if check_error then - is_unordered := Unordered (x => l, - y => r); - else - is_unordered := false; - end if; - return not (is_equal and not is_unordered); - end function ne; - - function le ( -- less than or equal to <= - l, r : UNRESOLVED_float; -- floating point input - constant check_error : BOOLEAN := float_check_error; - constant denormalize : BOOLEAN := float_denormalize) - return BOOLEAN is - variable is_greater_than, is_unordered : BOOLEAN; - begin - is_greater_than := gt (l => l, - r => r, - check_error => false, - denormalize => denormalize); - if check_error then - is_unordered := Unordered (x => l, - y => r); - else - is_unordered := false; - end if; - return not is_greater_than and not is_unordered; - end function le; - - function ge ( -- greater than or equal to >= - l, r : UNRESOLVED_float; -- floating point input - constant check_error : BOOLEAN := float_check_error; - constant denormalize : BOOLEAN := float_denormalize) - return BOOLEAN is - variable is_less_than, is_unordered : BOOLEAN; - begin - is_less_than := lt (l => l, - r => r, - check_error => false, - denormalize => denormalize); - if check_error then - is_unordered := Unordered (x => l, - y => r); - else - is_unordered := false; - end if; - return not is_less_than and not is_unordered; - end function ge; - - function \?=\ (L, R : UNRESOLVED_float) return STD_ULOGIC is - constant fraction_width : NATURAL := -mine(l'low, r'low); -- length of FP output fraction - constant exponent_width : NATURAL := maximum(l'high, r'high); -- length of FP output exponent - variable lfptype, rfptype : valid_fpstate; - variable is_equal, is_unordered : STD_ULOGIC; - variable lresize, rresize : UNRESOLVED_float (exponent_width downto -fraction_width); - begin -- ?= - if (fraction_width = 0 or l'length < 7 or r'length < 7) then - return 'X'; - else - lfptype := classfp (l, float_check_error); - rfptype := classfp (r, float_check_error); - end if; - if (lfptype = neg_zero or lfptype = pos_zero) and - (rfptype = neg_zero or rfptype = pos_zero) then - is_equal := '1'; - else - lresize := resize (arg => l, - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => float_denormalize, - denormalize => float_denormalize); - rresize := resize (arg => r, - exponent_width => exponent_width, - fraction_width => fraction_width, - denormalize_in => float_denormalize, - denormalize |