summaryrefslogtreecommitdiffstats
path: root/src/vendorcode/amd/agesa/f15tn/Proc/Mem/Tech/mttoptsrc.c
blob: 1e9776aaf1988f381ffd0bfa4310455840da1215 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
/* $NoKeywords:$ */
/**
 * @file
 *
 * mttoptsrc.c
 *
 * New Technology Software based DQS receiver enable training
 *
 * @xrefitem bom "File Content Label" "Release Content"
 * @e project: AGESA
 * @e sub-project: (Mem/Tech)
 * @e \$Revision: 63425 $ @e \$Date: 2011-12-22 11:24:10 -0600 (Thu, 22 Dec 2011) $
 *
 **/
/*****************************************************************************
*
* Copyright 2008 - 2012 ADVANCED MICRO DEVICES, INC.  All Rights Reserved.
*
* AMD is granting you permission to use this software (the Materials)
* pursuant to the terms and conditions of your Software License Agreement
* with AMD.  This header does *NOT* give you permission to use the Materials
* or any rights under AMD's intellectual property.  Your use of any portion
* of these Materials shall constitute your acceptance of those terms and
* conditions.  If you do not agree to the terms and conditions of the Software
* License Agreement, please do not use any portion of these Materials.
*
* CONFIDENTIALITY:  The Materials and all other information, identified as
* confidential and provided to you by AMD shall be kept confidential in
* accordance with the terms and conditions of the Software License Agreement.
*
* LIMITATION OF LIABILITY: THE MATERIALS AND ANY OTHER RELATED INFORMATION
* PROVIDED TO YOU BY AMD ARE PROVIDED "AS IS" WITHOUT ANY EXPRESS OR IMPLIED
* WARRANTY OF ANY KIND, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
* MERCHANTABILITY, NONINFRINGEMENT, TITLE, FITNESS FOR ANY PARTICULAR PURPOSE,
* OR WARRANTIES ARISING FROM CONDUCT, COURSE OF DEALING, OR USAGE OF TRADE.
* IN NO EVENT SHALL AMD OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES WHATSOEVER
* (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS
* INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF AMD'S NEGLIGENCE,
* GROSS NEGLIGENCE, THE USE OF OR INABILITY TO USE THE MATERIALS OR ANY OTHER
* RELATED INFORMATION PROVIDED TO YOU BY AMD, EVEN IF AMD HAS BEEN ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGES.  BECAUSE SOME JURISDICTIONS PROHIBIT THE
* EXCLUSION OR LIMITATION OF LIABILITY FOR CONSEQUENTIAL OR INCIDENTAL DAMAGES,
* THE ABOVE LIMITATION MAY NOT APPLY TO YOU.
*
* AMD does not assume any responsibility for any errors which may appear in
* the Materials or any other related information provided to you by AMD, or
* result from use of the Materials or any related information.
*
* You agree that you will not reverse engineer or decompile the Materials.
*
* NO SUPPORT OBLIGATION: AMD is not obligated to furnish, support, or make any
* further information, software, technical information, know-how, or show-how
* available to you.  Additionally, AMD retains the right to modify the
* Materials at any time, without notice, and is not obligated to provide such
* modified Materials to you.
*
* U.S. GOVERNMENT RESTRICTED RIGHTS: The Materials are provided with
* "RESTRICTED RIGHTS." Use, duplication, or disclosure by the Government is
* subject to the restrictions as set forth in FAR 52.227-14 and
* DFAR252.227-7013, et seq., or its successor.  Use of the Materials by the
* Government constitutes acknowledgement of AMD's proprietary rights in them.
*
* EXPORT ASSURANCE:  You agree and certify that neither the Materials, nor any
* direct product thereof will be exported directly or indirectly, into any
* country prohibited by the United States Export Administration Act and the
* regulations thereunder, without the required authorization from the U.S.
* government nor will be used for any purpose prohibited by the same.
* ***************************************************************************
*
*/

/*
 *----------------------------------------------------------------------------
 *                                MODULES USED
 *
 *----------------------------------------------------------------------------
 */



#include "AGESA.h"
#include "AdvancedApi.h"
#include "Ids.h"
#include "mm.h"
#include "mn.h"
#include "mu.h"
#include "mt.h"
#include "merrhdl.h"
#include "Filecode.h"
CODE_GROUP (G1_PEICC)
RDATA_GROUP (G1_PEICC)

#define FILECODE PROC_MEM_TECH_MTTOPTSRC_FILECODE
/*----------------------------------------------------------------------------
 *                          DEFINITIONS AND MACROS
 *
 *----------------------------------------------------------------------------
 */

/*----------------------------------------------------------------------------
 *                           TYPEDEFS AND STRUCTURES
 *
 *----------------------------------------------------------------------------
 */

/*----------------------------------------------------------------------------
 *                        PROTOTYPES OF LOCAL FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */

BOOLEAN
STATIC
MemTDqsTrainOptRcvrEnSw (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Pass
  );

BOOLEAN
MemTNewRevTrainingSupport (
  IN OUT   MEM_TECH_BLOCK *TechPtr
  )
{
  return TRUE;
}

/*----------------------------------------------------------------------------
 *                            EXPORTED FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */

/* -----------------------------------------------------------------------------*/
/**
 *
 *      This function executes first pass of receiver enable training for all dies
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *
 *     @return          TRUE -  No fatal error occurs.
 *     @return          FALSE - Fatal error occurs.
 */

BOOLEAN
MemTTrainOptRcvrEnSwPass1 (
  IN OUT   MEM_TECH_BLOCK *TechPtr
  )
{
  return MemTDqsTrainOptRcvrEnSw (TechPtr, 1);
}

/*----------------------------------------------------------------------------
 *                              LOCAL FUNCTIONS
 *
 *----------------------------------------------------------------------------
 */

/* -----------------------------------------------------------------------------*/
/**
 *
 *      This function executes receiver enable training for a specific die
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]  Pass - Pass of the receiver training
 *
 *     @return          TRUE -  No fatal error occurs.
 *     @return          FALSE - Fatal error occurs.
 */
BOOLEAN
STATIC
MemTDqsTrainOptRcvrEnSw (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Pass
  )
{
  _16BYTE_ALIGN  UINT8  PatternBuffer[6 * 64];
  UINT8  TestBuffer[256];
  UINT8  *PatternBufPtr[6];
  UINT8  *TempPtr;
  UINT32 TestAddrRJ16[4];
  UINT32 TempAddrRJ16;
  UINT32 RealAddr;
  UINT16 CurTest[4];
  UINT8 Dct;
  UINT8 Receiver;
  UINT8 i;
  UINT8 TimesFail;
  UINT8 TimesRetrain;
  UINT16 RcvrEnDly;
  UINT16 MaxRcvrEnDly;
  UINT16 RcvrEnDlyLimit;
  UINT16 MaxDelayCha;
  BOOLEAN IsDualRank;
  BOOLEAN S0En;
  BOOLEAN S1En;


  MEM_DATA_STRUCT *MemPtr;
  DIE_STRUCT *MCTPtr;
  DCT_STRUCT *DCTPtr;
  MEM_NB_BLOCK  *NBPtr;

  NBPtr = TechPtr->NBPtr;
  MemPtr = NBPtr->MemPtr;
  MCTPtr = NBPtr->MCTPtr;
  TechPtr->TrainingType = TRN_RCVR_ENABLE;


  TempAddrRJ16 = 0;
  TempPtr = NULL;
  MaxDelayCha = 0;
  TimesRetrain = DEFAULT_TRAINING_TIMES;
  IDS_OPTION_HOOK (IDS_MEM_RETRAIN_TIMES, &TimesRetrain, &MemPtr->StdHeader);

  IDS_HDT_CONSOLE (MEM_STATUS, "\nStart Optimized SW RxEn training\n");
  // Set environment settings before training
  MemTBeginTraining (TechPtr);

  PatternBufPtr[0] = PatternBufPtr[2] = PatternBuffer;
  // These two patterns used for first Test Address
  MemUFillTrainPattern (TestPattern0, PatternBufPtr[0], 64);
  // Second Cacheline used for Dummy Read is the inverse of
  //  the first so that is is not mistaken for the real read
  MemUFillTrainPattern (TestPattern1, PatternBufPtr[0] + 64, 64);
  PatternBufPtr[1] = PatternBufPtr[3] = PatternBufPtr[0] + 128;
  // These two patterns used for second Test Address
  MemUFillTrainPattern (TestPattern1, PatternBufPtr[1], 64);
  // Second Cacheline used for Dummy Read is the inverse of
  //  the first so that is is not mistaken for the real read
  MemUFillTrainPattern (TestPattern0, PatternBufPtr[1] + 64, 64);

  // Fill pattern for flush after every sweep
  PatternBufPtr[4] = PatternBufPtr[0] + 256;
  MemUFillTrainPattern (TestPattern3, PatternBufPtr[4], 64);

  // Fill pattern for initial dummy read
  PatternBufPtr[5] = PatternBufPtr[0] + 320;
  MemUFillTrainPattern (TestPattern4, PatternBufPtr[5], 64);


  // Begin receiver enable training
  AGESA_TESTPOINT (TpProcMemReceiverEnableTraining, &(MemPtr->StdHeader));
  for (Dct = 0; Dct < NBPtr->DctCount; Dct++) {
    IDS_HDT_CONSOLE (MEM_STATUS, "\tDct %d\n", Dct);
    NBPtr->SwitchDCT (NBPtr, Dct);
    DCTPtr = NBPtr->DCTPtr;

    // Set training bit
    NBPtr->SetBitField (NBPtr, BFDqsRcvEnTrain, 1);

    // Relax Max Latency before training
    NBPtr->SetMaxLatency (NBPtr, 0xFFFF);

    if (Pass == FIRST_PASS) {
      TechPtr->InitDQSPos4RcvrEn (TechPtr);
    }

    // there are four receiver pairs, loosely associated with chipselects.
    Receiver = DCTPtr->Timings.CsEnabled ? 0 : 8;
    for (; Receiver < 8; Receiver += 2) {
      S0En = NBPtr->GetSysAddr (NBPtr, Receiver, &TestAddrRJ16[0]);
      S1En = NBPtr->GetSysAddr (NBPtr, Receiver + 1, &TestAddrRJ16[2]);
      if (S0En) {
        TestAddrRJ16[1] = TestAddrRJ16[0] + BIGPAGE_X8_RJ16;
      }
      if (S1En) {
        TestAddrRJ16[3] = TestAddrRJ16[2] + BIGPAGE_X8_RJ16;
      }
      if (S0En && S1En) {
        IsDualRank = TRUE;
      } else {
        IsDualRank = FALSE;
      }
      if (S0En || S1En) {
        IDS_HDT_CONSOLE (MEM_STATUS, "\t\tCS %d\n", Receiver);

        RcvrEnDlyLimit = 0x1FF;      // @attention - limit depends on proc type
        TechPtr->DqsRcvEnSaved = 0;
        RcvrEnDly = RcvrEnDlyLimit;
        RealAddr = 0;

        TechPtr->GetFirstPassVal = FALSE;
        TechPtr->DqsRcvEnFirstPassVal = 0;
        TechPtr->RevertPassVal = FALSE;
        TechPtr->InitializeVariablesOpt (TechPtr);

        // Write the test patterns
        AGESA_TESTPOINT (TpProcMemRcvrWritePattern, &(MemPtr->StdHeader));
        IDS_HDT_CONSOLE (MEM_FLOW, "\t\t\tWrite to addresses: ");
        for (i = (S0En ? 0 : 2); i < (S1En ? 4 : 2); i++) {
          RealAddr = MemUSetUpperFSbase (TestAddrRJ16[i], MemPtr);
          // One cacheline of data to be tested and one of dummy data
          MemUWriteCachelines (RealAddr, PatternBufPtr[i], 2);
          // This is dummy data with a different pattern used for the first dummy read.
          MemUWriteCachelines (RealAddr + 128, PatternBufPtr[5], 1);
          IDS_HDT_CONSOLE (MEM_FLOW, " %04x0000 ", TestAddrRJ16[i]);
        }
        IDS_HDT_CONSOLE (MEM_FLOW, "\n");

        // Sweep receiver enable delays
        AGESA_TESTPOINT (TpProcMemRcvrStartSweep, &(MemPtr->StdHeader));
        TimesFail = 0;
        ERROR_HANDLE_RETRAIN_BEGIN (TimesFail, TimesRetrain)
        {
          TechPtr->LoadInitialRcvrEnDlyOpt (TechPtr, Receiver);
          while (!TechPtr->CheckRcvrEnDlyLimitOpt (TechPtr)) {
            AGESA_TESTPOINT (TpProcMemRcvrSetDelay, &(MemPtr->StdHeader));
            TechPtr->SetRcvrEnDlyOpt (TechPtr, Receiver, RcvrEnDly);
            // Read and compare the first beat of data
            for (i = (S0En ? 0 : 2); i < (S1En ? 4 : 2); i++) {
              AGESA_TESTPOINT (TpProcMemRcvrReadPattern, &(MemPtr->StdHeader));
              RealAddr = MemUSetUpperFSbase (TestAddrRJ16[i], MemPtr);
              //
              // Issue dummy cacheline reads
              //
              MemUReadCachelines (TestBuffer + 128, RealAddr + 128, 1);
              MemUReadCachelines (TestBuffer, RealAddr, 1);
              MemUProcIOClFlush (TestAddrRJ16[i], 2, MemPtr);
              //
              // Perform actual read which will be compared
              //
              MemUReadCachelines (TestBuffer + 64, RealAddr + 64, 1);
              AGESA_TESTPOINT (TpProcMemRcvrTestPattern, &(MemPtr->StdHeader));
              CurTest[i] = TechPtr->Compare1ClPatternOpt (TechPtr, TestBuffer + 64 , PatternBufPtr[i] + 64, i, Receiver, S1En);
              // Due to speculative execution during MemUReadCachelines, we must
              //  flush one more cache line than we read.
              MemUProcIOClFlush (TestAddrRJ16[i], 4, MemPtr);
              TechPtr->ResetDCTWrPtr (TechPtr, Receiver);

              //
              // Swap the test pointers such that even and odd steps alternate.
              //
              if ((i % 2) == 0) {
                TempPtr = PatternBufPtr[i];
                PatternBufPtr[i] = PatternBufPtr[i + 1];

                TempAddrRJ16 = TestAddrRJ16[i];
                TestAddrRJ16[i] = TestAddrRJ16[i + 1];
              } else {
                PatternBufPtr[i] = TempPtr;
                TestAddrRJ16[i] = TempAddrRJ16;
              }
            }
          }   // End of delay sweep
          ERROR_HANDLE_RETRAIN_END (!TechPtr->SetSweepErrorOpt (TechPtr, Receiver, Dct, TRUE), TimesFail)
        }

        if (!TechPtr->SetSweepErrorOpt (TechPtr, Receiver, Dct, FALSE)) {
          return FALSE;
        }

        TechPtr->LoadRcvrEnDlyOpt (TechPtr, Receiver);     // set final delays
        //
        // Flush AA and 55 patterns by reading a dummy pattern to fill in FIFO
        //
        // Aquire a new FSBase, based on the last test address that we stored.
        RealAddr = MemUSetUpperFSbase (TempAddrRJ16, MemPtr);
        ASSERT (RealAddr != 0);
        MemUWriteCachelines (RealAddr, PatternBufPtr[4], 1);
        MemUWriteCachelines (RealAddr + 64, PatternBufPtr[4], 1);
        MemUReadCachelines (TestBuffer, RealAddr, 2);
        // Due to speculative execution during MemUReadCachelines, we must
        //  flush one more cache line than we read.
        MemUProcIOClFlush (TempAddrRJ16, 3, MemPtr);
      }
    }   // End while Receiver < 8

    // Clear training bit when done
    NBPtr->SetBitField (NBPtr, BFDqsRcvEnTrain, 0);

    // Set Max Latency for both channels
    MaxRcvrEnDly = TechPtr->GetMaxValueOpt (TechPtr);
    IDS_HDT_CONSOLE (MEM_FLOW, "\t\tMaxRcvrEnDly: %03x\n", MaxRcvrEnDly);
    if (MCTPtr->GangedMode) {
      if (Dct == 0) {
        MaxDelayCha = MaxRcvrEnDly;
      } else if (MaxRcvrEnDly > MaxDelayCha) {
        NBPtr->SwitchDCT (NBPtr, 0);
        NBPtr->SetMaxLatency (NBPtr, MaxRcvrEnDly);
      }
    } else {
      NBPtr->SetMaxLatency (NBPtr, MaxRcvrEnDly);
    }
    TechPtr->ResetDCTWrPtr (TechPtr, 6);
  }

  // Restore environment settings after training
  MemTEndTraining (TechPtr);
  IDS_HDT_CONSOLE (MEM_FLOW, "End Optimized SW RxEn training\n\n");
  return (BOOLEAN) (MCTPtr->ErrCode < AGESA_FATAL);
}

/*-----------------------------------------------------------------------------
 *
 *  This function saves passing DqsRcvEnDly values to the stack
 *
 *     @param[in,out]   *TechPtr   - Pointer to the MEM_TECH_BLOCK
 *     @param[in]       Receiver  - Current Chip select value
 *     @param[in]       RcvEnDly  - receiver enable delay to be saved
 *     @param[in]       cmpResultRank0 - compare result for Rank 0
 *     @param[in]       cmpResultRank0 - compare result for Rank 1
 *
 *     @retval  TRUE - All bytelanes pass
 *              FALSE - Some bytelanes fail
 * ----------------------------------------------------------------------------
 */

BOOLEAN
MemTSaveRcvrEnDlyByteFilterOpt (
  IN OUT   MEM_TECH_BLOCK *TechPtr,
  IN       UINT8 Receiver,
  IN       UINT16 RcvEnDly,
  IN       UINT16 CmpResultRank0,
  IN       UINT16 CmpResultRank1
  )
{
  UINT8 i;
  UINT8 Passed;
  UINT8 Dimm;
  CH_DEF_STRUCT *ChannelPtr;

  ASSERT (Receiver < MAX_CS_PER_CHANNEL);
  ChannelPtr = TechPtr->NBPtr->ChannelPtr;

  Passed = (UINT8) ((CmpResultRank0 & CmpResultRank1) & 0xFF);

  Dimm = Receiver >> 1;

  if (TechPtr->GetFirstPassVal && (RcvEnDly - TechPtr->DqsRcvEnFirstPassVal) >= 0x30) {
    for (i = 0; i < 8; i++) {
      ChannelPtr->RcvEnDlys[Dimm * TechPtr->DlyTableWidth () + i] = TechPtr->DqsRcvEnFirstPassVal + NEW_RECEIVER_FINAL_OFFSETVALUE;
    }
    TechPtr->DqsRcvEnSaved = 0xFF;
  }

  if (Passed == 0xFF) {
    if (!TechPtr->GetFirstPassVal) {
      TechPtr->DqsRcvEnFirstPassVal = RcvEnDly;
      TechPtr->GetFirstPassVal = TRUE;
    }
    return TRUE;
  } else {
    TechPtr->DqsRcvEnFirstPassVal = 0;

    // We have got first passing value, but later, we meet with glitch
    if (TechPtr->GetFirstPassVal) {
      TechPtr->DqsRcvEnFirstPassVal = 0xFF;
      TechPtr->GetFirstPassVal = FALSE;
    }
    return FALSE;
  }
}
OpenPOWER on IntegriCloud