summaryrefslogtreecommitdiffstats
path: root/src/northbridge/amd/gx2/raminit.c
blob: fd872b346f894bd5a6bef2bc73c696344dfda2eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
/*
 * This file is part of the coreboot project.
 *
 * Copyright (C) 2007 Advanced Micro Devices, Inc.
 * Copyright (C) 2010 Nils Jacobs
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <cpu/amd/gx2def.h>
#include <spd.h>

static const unsigned char NumColAddr[] = {
	0x00, 0x10, 0x11, 0x00, 0x00, 0x00, 0x00, 0x07,
	0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F,
};

static void __attribute__((noreturn)) hcf(void)
{
	printk(BIOS_EMERG, "DIE\n");
	/* this guarantees we flush the UART fifos (if any) and also
	 * ensures that things, in general, keep going so no debug output
	 * is lost
	 */
	while (1)
		printk(BIOS_EMERG, (0));
}

static void auto_size_dimm(unsigned int dimm)
{
	uint32_t dimm_setting;
	uint16_t dimm_size;
	uint8_t spd_byte;
	msr_t msr;

	dimm_setting = 0;

	printk(BIOS_DEBUG, "Check present\n");
	/* Check that we have a dimm */
	if (spd_read_byte(dimm, SPD_MEMORY_TYPE) == 0xFF) {
		return;
	}

	printk(BIOS_DEBUG, "MODBANKS\n");
	/* Field: Module Banks per DIMM */
	/* EEPROM byte usage: (5) Number of DIMM Banks */
	spd_byte = spd_read_byte(dimm, SPD_NUM_DIMM_BANKS);
	if ((MIN_MOD_BANKS > spd_byte) || (spd_byte > MAX_MOD_BANKS)) {
		printk(BIOS_EMERG, "Number of module banks not compatible\n");
		post_code(ERROR_BANK_SET);
		hcf();
	}
	dimm_setting |= (spd_byte >> 1) << CF07_UPPER_D0_MB_SHIFT;

	printk(BIOS_DEBUG, "FIELDBANKS\n");
	/* Field: Banks per SDRAM device */
	/* EEPROM byte usage: (17) Number of Banks on SDRAM Device */
	spd_byte = spd_read_byte(dimm, SPD_NUM_BANKS_PER_SDRAM);
	if ((MIN_DEV_BANKS > spd_byte) || (spd_byte > MAX_DEV_BANKS)) {
		printk(BIOS_EMERG, "Number of device banks not compatible\n");
		post_code(ERROR_BANK_SET);
		hcf();
	}
	dimm_setting |= (spd_byte >> 2) << CF07_UPPER_D0_CB_SHIFT;

	printk(BIOS_DEBUG, "SPDNUMROWS\n");
	/* Field: DIMM size
	 * EEPROM byte usage:
	 *   (3)  Number of Row Addresses
	 *   (4)  Number of Column Addresses
	 *   (5)  Number of DIMM Banks
	 *   (31) Module Bank Density
	 * Size = Module Density * Module Banks
	 */
	if ((spd_read_byte(dimm, SPD_NUM_ROWS) & 0xF0)
	    || (spd_read_byte(dimm, SPD_NUM_COLUMNS) & 0xF0)) {
		printk(BIOS_EMERG, "Asymmetric DIMM not compatible\n");
		post_code(ERROR_UNSUPPORTED_DIMM);
		hcf();
	}

	printk(BIOS_DEBUG, "SPDBANKDENSITY\n");
	dimm_size = spd_read_byte(dimm, SPD_BANK_DENSITY);
	printk(BIOS_DEBUG, "DIMMSIZE\n");
	dimm_size |= (dimm_size << 8);	/* align so 1GB(bit0) is bit 8, this is a little weird to get gcc to not optimize this out */
	dimm_size &= 0x01FC;	/* and off 2GB DIMM size : not supported and the 1GB size we just moved up to bit 8 as well as all the extra on top */

	/* Module Density * Module Banks */
	dimm_size <<= (dimm_setting >> CF07_UPPER_D0_MB_SHIFT) & 1;	/* shift to multiply by # DIMM banks */
	printk(BIOS_DEBUG, "BEFORT CTZ\n");
	dimm_size = __builtin_ctz(dimm_size);
	printk(BIOS_DEBUG, "TEST DIMM SIZE>7\n");
	if (dimm_size > 7) {	/* 7 is 512MB only support 512MB per DIMM */
		printk(BIOS_EMERG, "Only support up to 512MB per DIMM\n");
		post_code(ERROR_DENSITY_DIMM);
		hcf();
	}
	dimm_setting |= dimm_size << CF07_UPPER_D0_SZ_SHIFT;
	printk(BIOS_DEBUG, "PAGESIZE\n");

/*
 * Field: PAGE size
 * EEPROM byte usage: (4)  Number of Column Addresses
 * PageSize = 2^# Column Addresses * Data width in bytes
 *                                   (should be 8bytes for a normal DIMM)
 *
 * But this really works by magic.
 * If ma[11:0] is the memory address pins, and pa[13:0] is the physical column
 * address that MC generates, here is how the MC assigns the pa onto the
 * ma pins:
 *
 * ma  11 10 09 08 07 06 05 04 03 02 01 00
 * ---------------------------------------
 * pa                 09 08 07 06 05 04 03  (7 col addr bits = 1K page size)
 * pa              10 09 08 07 06 05 04 03  (8 col addr bits = 2K page size)
 * pa           11 10 09 08 07 06 05 04 03  (9 col addr bits = 4K page size)
 * pa        12 11 10 09 08 07 06 05 04 03  (10 col addr bits = 8K page size)
 * pa  13 AP 12 11 10 09 08 07 06 05 04 03  (11 col addr bits = 16K page size)
 *
 * (AP = autoprecharge bit)
 *
 * Remember that pa[2:0] are zeroed out since it's a 64-bit data bus (8 bytes),
 * so lower 3 address bits are dont_cares. So from the table above,
 * it's easier to see what the old code is doing: if for example,
 * #col_addr_bits=7(06h), it adds 3 to get 10, then does 2^10=1K.
 */

	spd_byte = NumColAddr[spd_read_byte(dimm, SPD_NUM_COLUMNS) & 0xF];
	printk(BIOS_DEBUG, "MAXCOLADDR\n");
	if (spd_byte > MAX_COL_ADDR) {
		printk(BIOS_EMERG, "DIMM page size not compatible\n");
		post_code(ERROR_SET_PAGE);
		hcf();
	}
	printk(BIOS_DEBUG, ">11address test\n");
	spd_byte -= 7;
	if (spd_byte > 4) {	/* if the value is above 4 it means >11 col address lines */
		spd_byte = 7;	/* which means >16k so set to disabled */
	}
	dimm_setting |= spd_byte << CF07_UPPER_D0_PSZ_SHIFT;	/* 0=1k,1=2k,2=4k,etc */

	printk(BIOS_DEBUG, "RDMSR CF07\n");
	msr = rdmsr(MC_CF07_DATA);
	printk(BIOS_DEBUG, "WRMSR CF07\n");
	if (dimm == DIMM0) {
		msr.hi &= 0xFFFF0000;
		msr.hi |= dimm_setting;
	} else {
		msr.hi &= 0x0000FFFF;
		msr.hi |= dimm_setting << 16;
	}
	wrmsr(MC_CF07_DATA, msr);
	printk(BIOS_DEBUG, "ALL DONE\n");
}

static void checkDDRMax(void)
{
	uint8_t spd_byte0, spd_byte1;
	uint16_t speed;

	/* PC133 identifier */
	spd_byte0 = spd_read_byte(DIMM0, SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
	if (spd_byte0 == 0xFF) {
		spd_byte0 = 0;
	}
	spd_byte1 = spd_read_byte(DIMM1, SPD_MIN_CYCLE_TIME_AT_CAS_MAX);
	if (spd_byte1 == 0xFF) {
		spd_byte1 = 0;
	}

	/* Use the slowest DIMM */
	if (spd_byte0 < spd_byte1) {
		spd_byte0 = spd_byte1;
	}

	/* Turn SPD ns time into MHZ. Check what the asm does to this math. */
	speed = 20000 / (((spd_byte0 >> 4) * 10) + (spd_byte0 & 0x0F));

	/* current speed > max speed? */
	if (GeodeLinkSpeed() > speed) {
		printk(BIOS_EMERG, "DIMM overclocked. Check GeodeLink Speed\n");
		post_code(POST_PLL_MEM_FAIL);
		hcf();
	}
}

const uint16_t REF_RATE[] = { 15, 3, 7, 31, 62, 125 };	/* ns */

static void set_refresh_rate(void)
{
	uint8_t spd_byte0, spd_byte1;
	uint16_t rate0, rate1;
	msr_t msr;

	spd_byte0 = spd_read_byte(DIMM0, SPD_REFRESH);
	spd_byte0 &= 0xF;
	if (spd_byte0 > 5) {
		spd_byte0 = 5;
	}
	rate0 = REF_RATE[spd_byte0];

	spd_byte1 = spd_read_byte(DIMM1, SPD_REFRESH);
	spd_byte1 &= 0xF;
	if (spd_byte1 > 5) {
		spd_byte1 = 5;
	}
	rate1 = REF_RATE[spd_byte1];

	/* Use the faster rate (lowest number) */
	if (rate0 > rate1) {
		rate0 = rate1;
	}

	msr = rdmsr(MC_CF07_DATA);
	msr.lo |= ((rate0 * (GeodeLinkSpeed() / 2)) / 16)
			<< CF07_LOWER_REF_INT_SHIFT;
	wrmsr(MC_CF07_DATA, msr);
}

const uint8_t CASDDR[] = { 5, 5, 2, 6, 0 };	/* 1(1.5), 1.5, 2, 2.5, 0 */

static u8 getcasmap(u32 dimm, u16 glspeed)
{
	u16 dimm_speed;
	u8 spd_byte, casmap, casmap_shift=0;

	/**************************	 DIMM0	**********************************/
	casmap = spd_read_byte(dimm, SPD_ACCEPTABLE_CAS_LATENCIES);
	if (casmap != 0xFF) {
		/* IF -.5 timing is supported, check -.5 timing > GeodeLink */
		spd_byte = spd_read_byte(dimm, SPD_SDRAM_CYCLE_TIME_2ND);
		if (spd_byte != 0) {
			/* Turn SPD ns time into MHZ. Check what the asm does to this math. */
			dimm_speed = 20000 / (((spd_byte >> 4) * 10) + (spd_byte & 0x0F));
			if (dimm_speed >= glspeed) {
				casmap_shift = 1; /* -.5 is a shift of 1 */
				/* IF -1 timing is supported, check -1 timing > GeodeLink */
				spd_byte = spd_read_byte(dimm, SPD_SDRAM_CYCLE_TIME_3RD);
				if (spd_byte != 0) {
					/* Turn SPD ns time into MHZ. Check what the asm does to this math. */
					dimm_speed = 20000 / (((spd_byte >> 4) * 10) + (spd_byte & 0x0F));
					if (dimm_speed >= glspeed) {
						casmap_shift = 2; /* -1 is a shift of 2 */
					}
				}	/* SPD_SDRAM_CYCLE_TIME_3RD (-1) !=0 */
			} else {
				casmap_shift = 0;
			}
		}	/* SPD_SDRAM_CYCLE_TIME_2ND (-.5) !=0 */
		/* set the casmap based on the shift to limit possible CAS settings */
		spd_byte = 31 - __builtin_clz((uint32_t) casmap);
		/* just want bits in the lower byte since we have to cast to a 32 */
		casmap &= 0xFF << (spd_byte - casmap_shift);
	} else {		/* No DIMM */
		casmap = 0;
	}
	return casmap;
}

static void setCAS(void)
{
/*
 *	setCAS
 *	EEPROM byte usage: (18) SDRAM device attributes - CAS latency
 *	EEPROM byte usage: (23) SDRAM Minimum Clock Cycle Time @ CLX -.5
 *	EEPROM byte usage: (25) SDRAM Minimum Clock Cycle Time @ CLX -1
 *
 *	The CAS setting is based on the information provided in each DIMMs SPD.
 *	 The speed at which a DIMM can run is described relative to the slowest
 *	 CAS the DIMM supports. Each speed for the relative CAS settings is
 *	 checked that it is within the GeodeLink speed. If it isn't within the GeodeLink
 *	 speed, the CAS setting	 is removed from the list of good settings for
 *	 the DIMM. This is done for both DIMMs and the lists are compared to
 *	 find the lowest common CAS latency setting. If there are no CAS settings
 *	 in common we out a ERROR_DIFF_DIMMS (78h) to port 80h and halt.
 *
 *	Entry:
 *	Exit: Set fastest CAS Latency based on GeodeLink speed and SPD information.
 *	Destroys: We really use everything !
 */
	uint16_t glspeed;
	uint8_t spd_byte, casmap0, casmap1;
	msr_t msr;

	glspeed = GeodeLinkSpeed();

	casmap0 = getcasmap(DIMM0, glspeed);
	casmap1 = getcasmap(DIMM1, glspeed);

	/* CAS_LAT MAP COMPARE */
	if (casmap0 == 0) {
		spd_byte = CASDDR[__builtin_ctz(casmap1)];
	} else if (casmap1 == 0) {
		spd_byte = CASDDR[__builtin_ctz(casmap0)];
	} else if ((casmap0 &= casmap1)) {
		spd_byte = CASDDR[__builtin_ctz(casmap0)];
	} else {
		printk(BIOS_EMERG, "DIMM CAS Latencies not compatible\n");
		post_code(ERROR_DIFF_DIMMS);
		hcf();
	}

	msr = rdmsr(MC_CF8F_DATA);
	msr.lo &= ~(7 << CF8F_LOWER_CAS_LAT_SHIFT);
	msr.lo |= spd_byte << CF8F_LOWER_CAS_LAT_SHIFT;
	wrmsr(MC_CF8F_DATA, msr);
}

static void set_latencies(void)
{
	uint32_t memspeed, dimm_setting;
	uint8_t spd_byte0, spd_byte1;
	msr_t msr;

	memspeed = GeodeLinkSpeed() / 2;
	dimm_setting = 0;

	/* MC_CF8F setup */
	/* tRAS */
	spd_byte0 = spd_read_byte(DIMM0, SPD_tRAS);
	if (spd_byte0 == 0xFF) {
		spd_byte0 = 0;
	}
	spd_byte1 = spd_read_byte(DIMM1, SPD_tRAS);
	if (spd_byte1 == 0xFF) {
		spd_byte1 = 0;
	}
	if (spd_byte0 < spd_byte1) {
		spd_byte0 = spd_byte1;
	}
	/* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
	spd_byte1 = (spd_byte0 * memspeed) / 1000;
	if (((spd_byte0 * memspeed) % 1000)) {
		++spd_byte1;
	}
	if (spd_byte1 > 6) {
		--spd_byte1;
	}
	dimm_setting |= spd_byte1 << CF8F_LOWER_ACT2PRE_SHIFT;

	/* tRP */
	spd_byte0 = spd_read_byte(DIMM0, SPD_tRP);
	if (spd_byte0 == 0xFF) {
		spd_byte0 = 0;
	}
	spd_byte1 = spd_read_byte(DIMM1, SPD_tRP);
	if (spd_byte1 == 0xFF) {
		spd_byte1 = 0;
	}
	if (spd_byte0 < spd_byte1) {
		spd_byte0 = spd_byte1;
	}
	/* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
	spd_byte1 = ((spd_byte0 >> 2) * memspeed) / 1000;
	if ((((spd_byte0 >> 2) * memspeed) % 1000)) {
		++spd_byte1;
	}
	dimm_setting |= spd_byte1 << CF8F_LOWER_PRE2ACT_SHIFT;

	/* tRCD */
	spd_byte0 = spd_read_byte(DIMM0, SPD_tRCD);
	if (spd_byte0 == 0xFF) {
		spd_byte0 = 0;
	}
	spd_byte1 = spd_read_byte(DIMM1, SPD_tRCD);
	if (spd_byte1 == 0xFF) {
		spd_byte1 = 0;
	}
	if (spd_byte0 < spd_byte1) {
		spd_byte0 = spd_byte1;
	}
	/* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
	spd_byte1 = ((spd_byte0 >> 2) * memspeed) / 1000;
	if ((((spd_byte0 >> 2) * memspeed) % 1000)) {
		++spd_byte1;
	}
	dimm_setting |= spd_byte1 << CF8F_LOWER_ACT2CMD_SHIFT;

	/* tRRD */
	spd_byte0 = spd_read_byte(DIMM0, SPD_tRRD);
	if (spd_byte0 == 0xFF) {
		spd_byte0 = 0;
	}
	spd_byte1 = spd_read_byte(DIMM1, SPD_tRRD);
	if (spd_byte1 == 0xFF) {
		spd_byte1 = 0;
	}
	if (spd_byte0 < spd_byte1) {
		spd_byte0 = spd_byte1;
	}
	/* (ns/(1/MHz) = (us*MHZ)/1000 = clocks/1000 = clocks) */
	spd_byte1 = ((spd_byte0 >> 2) * memspeed) / 1000;
	if ((((spd_byte0 >> 2) * memspeed) % 1000)) {
		++spd_byte1;
	}
	dimm_setting |= spd_byte1 << CF8F_LOWER_ACT2ACT_SHIFT;

	/* tRC = tRP + tRAS */
	dimm_setting |= (((dimm_setting >> CF8F_LOWER_ACT2PRE_SHIFT) & 0x0F) +
	     		((dimm_setting >> CF8F_LOWER_PRE2ACT_SHIFT) & 0x07))
	    			<< CF8F_LOWER_REF2ACT_SHIFT;

	msr = rdmsr(MC_CF8F_DATA);
	msr.lo &= 0xF00000FF;
	msr.lo |= dimm_setting;
	msr.hi |= CF8F_UPPER_REORDER_DIS_SET;
	wrmsr(MC_CF8F_DATA, msr);
	printk(BIOS_DEBUG, "MSR MC_CF8F_DATA (%08x) value is %08x:%08x\n",
	MC_CF8F_DATA, msr.hi, msr.lo);
}

static void set_extended_mode_registers(void)
{
	uint8_t spd_byte0, spd_byte1;
	msr_t msr;
	spd_byte0 = spd_read_byte(DIMM0, SPD_DEVICE_ATTRIBUTES_GENERAL);
	if (spd_byte0 == 0xFF) {
		spd_byte0 = 0;
	}
	spd_byte1 = spd_read_byte(DIMM1, SPD_DEVICE_ATTRIBUTES_GENERAL);
	if (spd_byte1 == 0xFF) {
		spd_byte1 = 0;
	}
	spd_byte1 &= spd_byte0;

	msr = rdmsr(MC_CF07_DATA);
	if (spd_byte1 & 1) {	/* Drive Strength Control */
		msr.lo |= CF07_LOWER_EMR_DRV_SET;
	}
	if (spd_byte1 & 2) {	/* FET Control */
		msr.lo |= CF07_LOWER_EMR_QFC_SET;
	}
	wrmsr(MC_CF07_DATA, msr);
}

static void sdram_set_registers(const struct mem_controller *ctrl)
{
	msr_t msr;
	uint32_t msrnum;

	/* Set Refresh Staggering */
	msrnum = MC_CF07_DATA;
	msr = rdmsr(msrnum);
	msr.lo &= ~0xC0;
	msr.lo |= 0x0;		/* set refresh to 4SDRAM clocks */
	wrmsr(msrnum, msr);
}

static void sdram_set_spd_registers(const struct mem_controller *ctrl)
{
	uint8_t spd_byte;

	printk(BIOS_DEBUG, "sdram_set_spd_register\n");
	post_code(POST_MEM_SETUP);	/* post_70h */

	spd_byte = spd_read_byte(DIMM0, SPD_MODULE_ATTRIBUTES);
	printk(BIOS_DEBUG, "Check DIMM 0\n");
	/* Check DIMM is not Register and not Buffered DIMMs. */
	if ((spd_byte != 0xFF) && (spd_byte & 3)) {
		printk(BIOS_EMERG, "DIMM0 NOT COMPATIBLE\n");
		post_code(ERROR_UNSUPPORTED_DIMM);
		hcf();
	}
	printk(BIOS_DEBUG, "Check DIMM 1\n");
	spd_byte = spd_read_byte(DIMM1, SPD_MODULE_ATTRIBUTES);
	if ((spd_byte != 0xFF) && (spd_byte & 3)) {
		printk(BIOS_EMERG, "DIMM1 NOT COMPATIBLE\n");
		post_code(ERROR_UNSUPPORTED_DIMM);
		hcf();
	}

	post_code(POST_MEM_SETUP2);	/* post_72h */
	printk(BIOS_DEBUG, "Check DDR MAX\n");

	/* Check that the memory is not overclocked. */
	checkDDRMax();

	/* Size the DIMMS */
	post_code(POST_MEM_SETUP3);	/* post_73h */
	printk(BIOS_DEBUG, "AUTOSIZE DIMM 0\n");
	auto_size_dimm(DIMM0);
	post_code(POST_MEM_SETUP4);	/* post_74h */
	printk(BIOS_DEBUG, "AUTOSIZE DIMM 1\n");
	auto_size_dimm(DIMM1);

	/* Set CAS latency */
	printk(BIOS_DEBUG, "set cas latency\n");
	post_code(POST_MEM_SETUP5);	/* post_75h */
	setCAS();

	/* Set all the other latencies here (tRAS, tRP....) */
	printk(BIOS_DEBUG, "set all latency\n");
	set_latencies();

	/* Set Extended Mode Registers */
	printk(BIOS_DEBUG, "set emrs\n");
	set_extended_mode_registers();

	printk(BIOS_DEBUG, "set ref rate\n");
	/* Set Memory Refresh Rate */
	set_refresh_rate();
}

/* Section 6.1.3, LX processor databooks, BIOS Initialization Sequence
 * Section 4.1.4, GX/CS5535 GeodeROM Porting guide */
static void sdram_enable(int controllers, const struct mem_controller *ctrl)
{
	int i;
	msr_t msr;

	/* 2. clock gating for PMode */
	msr = rdmsr(MC_GLD_MSR_PM);
	msr.lo &= ~0x04;
	msr.lo |=  0x01;
	wrmsr(MC_GLD_MSR_PM, msr);
	/* undocmented bits in GX, in LX there are
	 * 8 bits in PM1_UP_DLY */
	msr = rdmsr(MC_CF1017_DATA);
	msr.lo = 0x0101;
	wrmsr(MC_CF1017_DATA, msr);
	printk(BIOS_DEBUG, "sdram_enable step 2\n");

	/* 3. release CKE mask to enable CKE */
	msr = rdmsr(MC_CFCLK_DBUG);
	msr.lo &= ~(0x03 << 8);
	wrmsr(MC_CFCLK_DBUG, msr);
	printk(BIOS_DEBUG, "sdram_enable step 3\n");

	/* 4. set and clear REF_TST 16 times, more shouldn't hurt
	 * why this is before EMRS and MRS ? */
	for (i = 0; i < 19; i++) {
		msr = rdmsr(MC_CF07_DATA);
		msr.lo |=  (0x01 << 3);
		wrmsr(MC_CF07_DATA, msr);
		msr.lo &= ~(0x01 << 3);
		wrmsr(MC_CF07_DATA, msr);
	}
	printk(BIOS_DEBUG, "sdram_enable step 4\n");

	/* 6. enable DLL, load Extended Mode Register by set and clear PROG_DRAM */
	msr = rdmsr(MC_CF07_DATA);
	msr.lo |=  ((0x01 << 28) | 0x01);
	wrmsr(MC_CF07_DATA, msr);
	msr.lo &= ~((0x01 << 28) | 0x01);
	wrmsr(MC_CF07_DATA, msr);
	printk(BIOS_DEBUG, "sdram_enable step 6\n");

	/* 7. Reset DLL, Bit 27 is undocumented in GX datasheet,
	 * it is documented in LX datasheet */
	/* load Mode Register by set and clear PROG_DRAM */
	msr = rdmsr(MC_CF07_DATA);
	msr.lo |=  ((0x01 << 27) | 0x01);
	wrmsr(MC_CF07_DATA, msr);
	msr.lo &= ~((0x01 << 27) | 0x01);
	wrmsr(MC_CF07_DATA, msr);
	printk(BIOS_DEBUG, "sdram_enable step 7\n");

	/* 8. load Mode Register by set and clear PROG_DRAM */
	msr = rdmsr(MC_CF07_DATA);
	msr.lo |=  0x01;
	wrmsr(MC_CF07_DATA, msr);
	msr.lo &= ~0x01;
	wrmsr(MC_CF07_DATA, msr);
	printk(BIOS_DEBUG, "sdram_enable step 8\n");

	/* wait 200 SDCLKs */
	for (i = 0; i < 200; i++)
		outb(0xaa, 0x80);

	/* load RDSYNC */
	msr = rdmsr(MC_CF_RDSYNC);
	msr.hi = 0x000ff310;
	/* the above setting is supposed to be good for "slow" ram. We have found that for
	 * some dram, at some clock rates, e.g. hynix at 366/244, this will actually
	 * cause errors. The fix is to just set it to 0x310. Tested on 3 boards
	 * with 3 different type of dram -- Hynix, PSC, infineon.
	 * I am leaving this comment here so that at some future time nobody is tempted
	 * to mess with this setting -- RGM, 9/2006
	 */
	msr.hi = 0x00000310;
	msr.lo = 0x00000000;
	wrmsr(MC_CF_RDSYNC, msr);

	/* set delay control */
	msr = rdmsr(GLCP_DELAY_CONTROLS);
	msr.hi = 0x830d415a;
	msr.lo = 0x8ea0ad6a;
	wrmsr(GLCP_DELAY_CONTROLS, msr);

	/* The RAM dll needs a write to lock on so generate a few dummy writes */
	/* Note: The descriptor needs to be enabled to point at memory */
	volatile unsigned long *ptr;
	for (i = 0; i < 5; i++) {
		ptr = (void *)i;
		*ptr = (unsigned long)i;
	}

	printk(BIOS_INFO, "RAM DLL lock\n");

}
OpenPOWER on IntegriCloud