summaryrefslogtreecommitdiffstats
path: root/xmrstak/backend/cpu/crypto/c_keccak.c
blob: 63c16147df9efc952c8a169c13f8059c662dd36d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
// keccak.c
// 19-Nov-11  Markku-Juhani O. Saarinen <mjos@iki.fi>
// A baseline Keccak (3rd round) implementation.

#include <stdint.h>
#include <memory.h>

#define HASH_DATA_AREA 136
#define KECCAK_ROUNDS 24

#ifndef ROTL64
#define ROTL64(x, y) (((x) << (y)) | ((x) >> (64 - (y))))
#endif

const uint64_t keccakf_rndc[24] =
{
	0x0000000000000001, 0x0000000000008082, 0x800000000000808a,
	0x8000000080008000, 0x000000000000808b, 0x0000000080000001,
	0x8000000080008081, 0x8000000000008009, 0x000000000000008a,
	0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
	0x000000008000808b, 0x800000000000008b, 0x8000000000008089,
	0x8000000000008003, 0x8000000000008002, 0x8000000000000080,
	0x000000000000800a, 0x800000008000000a, 0x8000000080008081,
	0x8000000000008080, 0x0000000080000001, 0x8000000080008008
};

// update the state with given number of rounds

void keccakf(uint64_t st[25], int rounds)
{
	int i, j, round;
	uint64_t t, bc[5];

	for (round = 0; round < rounds; ++round) {

		// Theta
		bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
		bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
		bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
		bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
		bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];

		for (i = 0; i < 5; ++i) {
			t = bc[(i + 4) % 5] ^ ROTL64(bc[(i + 1) % 5], 1);
			st[i     ] ^= t;
			st[i +  5] ^= t;
			st[i + 10] ^= t;
			st[i + 15] ^= t;
			st[i + 20] ^= t;
		}

		// Rho Pi
		t = st[1];
		st[ 1] = ROTL64(st[ 6], 44);
		st[ 6] = ROTL64(st[ 9], 20);
		st[ 9] = ROTL64(st[22], 61);
		st[22] = ROTL64(st[14], 39);
		st[14] = ROTL64(st[20], 18);
		st[20] = ROTL64(st[ 2], 62);
		st[ 2] = ROTL64(st[12], 43);
		st[12] = ROTL64(st[13], 25);
		st[13] = ROTL64(st[19],  8);
		st[19] = ROTL64(st[23], 56);
		st[23] = ROTL64(st[15], 41);
		st[15] = ROTL64(st[ 4], 27);
		st[ 4] = ROTL64(st[24], 14);
		st[24] = ROTL64(st[21],  2);
		st[21] = ROTL64(st[ 8], 55);
		st[ 8] = ROTL64(st[16], 45);
		st[16] = ROTL64(st[ 5], 36);
		st[ 5] = ROTL64(st[ 3], 28);
		st[ 3] = ROTL64(st[18], 21);
		st[18] = ROTL64(st[17], 15);
		st[17] = ROTL64(st[11], 10);
		st[11] = ROTL64(st[ 7],  6);
		st[ 7] = ROTL64(st[10],  3);
		st[10] = ROTL64(t, 1);

		//  Chi
		// unrolled loop, where only last iteration is different
		j = 0;
		bc[0] = st[j    ];
		bc[1] = st[j + 1];

		st[j    ] ^= (~st[j + 1]) & st[j + 2];
		st[j + 1] ^= (~st[j + 2]) & st[j + 3];
		st[j + 2] ^= (~st[j + 3]) & st[j + 4];
		st[j + 3] ^= (~st[j + 4]) & bc[0];
		st[j + 4] ^= (~bc[0]) & bc[1];

		j = 5;
		bc[0] = st[j    ];
		bc[1] = st[j + 1];

		st[j    ] ^= (~st[j + 1]) & st[j + 2];
		st[j + 1] ^= (~st[j + 2]) & st[j + 3];
		st[j + 2] ^= (~st[j + 3]) & st[j + 4];
		st[j + 3] ^= (~st[j + 4]) & bc[0];
		st[j + 4] ^= (~bc[0]) & bc[1];

		j = 10;
		bc[0] = st[j    ];
		bc[1] = st[j + 1];

		st[j    ] ^= (~st[j + 1]) & st[j + 2];
		st[j + 1] ^= (~st[j + 2]) & st[j + 3];
		st[j + 2] ^= (~st[j + 3]) & st[j + 4];
		st[j + 3] ^= (~st[j + 4]) & bc[0];
		st[j + 4] ^= (~bc[0]) & bc[1];

		j = 15;
		bc[0] = st[j    ];
		bc[1] = st[j + 1];

		st[j    ] ^= (~st[j + 1]) & st[j + 2];
		st[j + 1] ^= (~st[j + 2]) & st[j + 3];
		st[j + 2] ^= (~st[j + 3]) & st[j + 4];
		st[j + 3] ^= (~st[j + 4]) & bc[0];
		st[j + 4] ^= (~bc[0]) & bc[1];

		j = 20;
		bc[0] = st[j    ];
		bc[1] = st[j + 1];
		bc[2] = st[j + 2];
		bc[3] = st[j + 3];
		bc[4] = st[j + 4];

		st[j    ] ^= (~bc[1]) & bc[2];
		st[j + 1] ^= (~bc[2]) & bc[3];
		st[j + 2] ^= (~bc[3]) & bc[4];
		st[j + 3] ^= (~bc[4]) & bc[0];
		st[j + 4] ^= (~bc[0]) & bc[1];

		//  Iota
		st[0] ^= keccakf_rndc[round];
	}
}

// compute a keccak hash (md) of given byte length from "in"
typedef uint64_t state_t[25];

void keccak(const uint8_t *in, int inlen, uint8_t *md, int mdlen)
{
	state_t st;
	uint8_t temp[144];
	int i, rsiz, rsizw;

	rsiz = sizeof(state_t) == mdlen ? HASH_DATA_AREA : 200 - 2 * mdlen;
	rsizw = rsiz / 8;

	memset(st, 0, sizeof(st));

	for ( ; inlen >= rsiz; inlen -= rsiz, in += rsiz) {
		for (i = 0; i < rsizw; i++)
			st[i] ^= ((uint64_t *) in)[i];
		keccakf(st, KECCAK_ROUNDS);
	}

	// last block and padding
	memcpy(temp, in, inlen);
	temp[inlen++] = 1;
	memset(temp + inlen, 0, rsiz - inlen);
	temp[rsiz - 1] |= 0x80;

	for (i = 0; i < rsizw; i++)
		st[i] ^= ((uint64_t *) temp)[i];

	keccakf(st, KECCAK_ROUNDS);

	memcpy(md, st, mdlen);
}

void keccak1600(const uint8_t *in, int inlen, uint8_t *md)
{
	keccak(in, inlen, md, sizeof(state_t));
}
OpenPOWER on IntegriCloud