1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
|
/*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "xmrstak/backend/cryptonight.hpp"
#include "xmrstak/jconf.hpp"
#include "xmrstak/picosha2/picosha2.hpp"
#include "xmrstak/params.hpp"
#include <stdio.h>
#include <string.h>
#include <math.h>
#include <iostream>
#include <vector>
#include <algorithm>
#include <regex>
#include <cassert>
#include <algorithm>
#include <fstream>
#include <sstream>
#include <vector>
#include <string>
#include <iostream>
#if defined _MSC_VER
#include <direct.h>
#elif defined __GNUC__
#include <sys/types.h>
#include <sys/stat.h>
#endif
#ifdef _WIN32
#include <windows.h>
#include <Shlobj.h>
static inline void create_directory(std::string dirname)
{
_mkdir(dirname.data());
}
static inline std::string get_home()
{
char path[MAX_PATH + 1];
// get folder "appdata\local"
if (SHGetSpecialFolderPathA(HWND_DESKTOP, path, CSIDL_LOCAL_APPDATA, FALSE))
{
return path;
}
else
return ".";
}
static inline void port_sleep(size_t sec)
{
Sleep(sec * 1000);
}
#else
#include <unistd.h>
#include <pwd.h>
static inline void create_directory(std::string dirname)
{
mkdir(dirname.data(), 0744);
}
static inline std::string get_home()
{
const char *home = ".";
if ((home = getenv("HOME")) == nullptr)
home = getpwuid(getuid())->pw_dir;
return home;
}
static inline void port_sleep(size_t sec)
{
sleep(sec);
}
#endif // _WIN32
#if 0
static inline long long unsigned int int_port(size_t i)
{
return i;
}
#endif
#include "gpu.hpp"
const char* err_to_str(cl_int ret)
{
switch(ret)
{
case CL_SUCCESS:
return "CL_SUCCESS";
case CL_DEVICE_NOT_FOUND:
return "CL_DEVICE_NOT_FOUND";
case CL_DEVICE_NOT_AVAILABLE:
return "CL_DEVICE_NOT_AVAILABLE";
case CL_COMPILER_NOT_AVAILABLE:
return "CL_COMPILER_NOT_AVAILABLE";
case CL_MEM_OBJECT_ALLOCATION_FAILURE:
return "CL_MEM_OBJECT_ALLOCATION_FAILURE";
case CL_OUT_OF_RESOURCES:
return "CL_OUT_OF_RESOURCES";
case CL_OUT_OF_HOST_MEMORY:
return "CL_OUT_OF_HOST_MEMORY";
case CL_PROFILING_INFO_NOT_AVAILABLE:
return "CL_PROFILING_INFO_NOT_AVAILABLE";
case CL_MEM_COPY_OVERLAP:
return "CL_MEM_COPY_OVERLAP";
case CL_IMAGE_FORMAT_MISMATCH:
return "CL_IMAGE_FORMAT_MISMATCH";
case CL_IMAGE_FORMAT_NOT_SUPPORTED:
return "CL_IMAGE_FORMAT_NOT_SUPPORTED";
case CL_BUILD_PROGRAM_FAILURE:
return "CL_BUILD_PROGRAM_FAILURE";
case CL_MAP_FAILURE:
return "CL_MAP_FAILURE";
case CL_MISALIGNED_SUB_BUFFER_OFFSET:
return "CL_MISALIGNED_SUB_BUFFER_OFFSET";
case CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST:
return "CL_EXEC_STATUS_ERROR_FOR_EVENTS_IN_WAIT_LIST";
#ifdef CL_VERSION_1_2
case CL_COMPILE_PROGRAM_FAILURE:
return "CL_COMPILE_PROGRAM_FAILURE";
case CL_LINKER_NOT_AVAILABLE:
return "CL_LINKER_NOT_AVAILABLE";
case CL_LINK_PROGRAM_FAILURE:
return "CL_LINK_PROGRAM_FAILURE";
case CL_DEVICE_PARTITION_FAILED:
return "CL_DEVICE_PARTITION_FAILED";
case CL_KERNEL_ARG_INFO_NOT_AVAILABLE:
return "CL_KERNEL_ARG_INFO_NOT_AVAILABLE";
#endif
case CL_INVALID_VALUE:
return "CL_INVALID_VALUE";
case CL_INVALID_DEVICE_TYPE:
return "CL_INVALID_DEVICE_TYPE";
case CL_INVALID_PLATFORM:
return "CL_INVALID_PLATFORM";
case CL_INVALID_DEVICE:
return "CL_INVALID_DEVICE";
case CL_INVALID_CONTEXT:
return "CL_INVALID_CONTEXT";
case CL_INVALID_QUEUE_PROPERTIES:
return "CL_INVALID_QUEUE_PROPERTIES";
case CL_INVALID_COMMAND_QUEUE:
return "CL_INVALID_COMMAND_QUEUE";
case CL_INVALID_HOST_PTR:
return "CL_INVALID_HOST_PTR";
case CL_INVALID_MEM_OBJECT:
return "CL_INVALID_MEM_OBJECT";
case CL_INVALID_IMAGE_FORMAT_DESCRIPTOR:
return "CL_INVALID_IMAGE_FORMAT_DESCRIPTOR";
case CL_INVALID_IMAGE_SIZE:
return "CL_INVALID_IMAGE_SIZE";
case CL_INVALID_SAMPLER:
return "CL_INVALID_SAMPLER";
case CL_INVALID_BINARY:
return "CL_INVALID_BINARY";
case CL_INVALID_BUILD_OPTIONS:
return "CL_INVALID_BUILD_OPTIONS";
case CL_INVALID_PROGRAM:
return "CL_INVALID_PROGRAM";
case CL_INVALID_PROGRAM_EXECUTABLE:
return "CL_INVALID_PROGRAM_EXECUTABLE";
case CL_INVALID_KERNEL_NAME:
return "CL_INVALID_KERNEL_NAME";
case CL_INVALID_KERNEL_DEFINITION:
return "CL_INVALID_KERNEL_DEFINITION";
case CL_INVALID_KERNEL:
return "CL_INVALID_KERNEL";
case CL_INVALID_ARG_INDEX:
return "CL_INVALID_ARG_INDEX";
case CL_INVALID_ARG_VALUE:
return "CL_INVALID_ARG_VALUE";
case CL_INVALID_ARG_SIZE:
return "CL_INVALID_ARG_SIZE";
case CL_INVALID_KERNEL_ARGS:
return "CL_INVALID_KERNEL_ARGS";
case CL_INVALID_WORK_DIMENSION:
return "CL_INVALID_WORK_DIMENSION";
case CL_INVALID_WORK_GROUP_SIZE:
return "CL_INVALID_WORK_GROUP_SIZE";
case CL_INVALID_WORK_ITEM_SIZE:
return "CL_INVALID_WORK_ITEM_SIZE";
case CL_INVALID_GLOBAL_OFFSET:
return "CL_INVALID_GLOBAL_OFFSET";
case CL_INVALID_EVENT_WAIT_LIST:
return "CL_INVALID_EVENT_WAIT_LIST";
case CL_INVALID_EVENT:
return "CL_INVALID_EVENT";
case CL_INVALID_OPERATION:
return "CL_INVALID_OPERATION";
case CL_INVALID_GL_OBJECT:
return "CL_INVALID_GL_OBJECT";
case CL_INVALID_BUFFER_SIZE:
return "CL_INVALID_BUFFER_SIZE";
case CL_INVALID_MIP_LEVEL:
return "CL_INVALID_MIP_LEVEL";
case CL_INVALID_GLOBAL_WORK_SIZE:
return "CL_INVALID_GLOBAL_WORK_SIZE";
case CL_INVALID_PROPERTY:
return "CL_INVALID_PROPERTY";
#ifdef CL_VERSION_1_2
case CL_INVALID_IMAGE_DESCRIPTOR:
return "CL_INVALID_IMAGE_DESCRIPTOR";
case CL_INVALID_COMPILER_OPTIONS:
return "CL_INVALID_COMPILER_OPTIONS";
case CL_INVALID_LINKER_OPTIONS:
return "CL_INVALID_LINKER_OPTIONS";
case CL_INVALID_DEVICE_PARTITION_COUNT:
return "CL_INVALID_DEVICE_PARTITION_COUNT";
#endif
#if defined(CL_VERSION_2_0) && !defined(CONF_ENFORCE_OpenCL_1_2)
case CL_INVALID_PIPE_SIZE:
return "CL_INVALID_PIPE_SIZE";
case CL_INVALID_DEVICE_QUEUE:
return "CL_INVALID_DEVICE_QUEUE";
#endif
default:
return "UNKNOWN_ERROR";
}
}
#if 0
void printer::inst()->print_msg(L1,const char* fmt, ...);
void printer::inst()->print_str(const char* str);
#endif
char* LoadTextFile(const char* filename)
{
size_t flen;
char* out;
FILE* kernel = fopen(filename, "rb");
if(kernel == NULL)
return NULL;
fseek(kernel, 0, SEEK_END);
flen = ftell(kernel);
fseek(kernel, 0, SEEK_SET);
out = (char*)malloc(flen+1);
size_t r = fread(out, flen, 1, kernel);
fclose(kernel);
if(r != 1)
{
free(out);
return NULL;
}
out[flen] = '\0';
return out;
}
size_t InitOpenCLGpu(cl_context opencl_ctx, GpuContext* ctx, const char* source_code)
{
size_t MaximumWorkSize;
cl_int ret;
if((ret = clGetDeviceInfo(ctx->DeviceID, CL_DEVICE_MAX_WORK_GROUP_SIZE, sizeof(size_t), &MaximumWorkSize, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when querying a device's max worksize using clGetDeviceInfo.", err_to_str(ret));
return ERR_OCL_API;
}
/* Some kernel spawn 8 times more threads than the user is configuring.
* To give the user the correct maximum work size we divide the hardware specific max by 8.
*/
MaximumWorkSize /= 8;
printer::inst()->print_msg(L1,"Device %lu work size %lu / %lu.", ctx->deviceIdx, ctx->workSize, MaximumWorkSize);
#if defined(CL_VERSION_2_0) && !defined(CONF_ENFORCE_OpenCL_1_2)
const cl_queue_properties CommandQueueProperties[] = { 0, 0, 0 };
ctx->CommandQueues = clCreateCommandQueueWithProperties(opencl_ctx, ctx->DeviceID, CommandQueueProperties, &ret);
#else
const cl_command_queue_properties CommandQueueProperties = { 0 };
ctx->CommandQueues = clCreateCommandQueue(opencl_ctx, ctx->DeviceID, CommandQueueProperties, &ret);
#endif
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateCommandQueueWithProperties.", err_to_str(ret));
return ERR_OCL_API;
}
ctx->InputBuffer = clCreateBuffer(opencl_ctx, CL_MEM_READ_ONLY, 88, NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateBuffer to create input buffer.", err_to_str(ret));
return ERR_OCL_API;
}
size_t scratchPadSize = std::max(
cn_select_memory(::jconf::inst()->GetMiningAlgo()),
cn_select_memory(::jconf::inst()->GetMiningAlgoRoot())
);
size_t g_thd = ctx->rawIntensity;
ctx->ExtraBuffers[0] = clCreateBuffer(opencl_ctx, CL_MEM_READ_WRITE, scratchPadSize * g_thd, NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateBuffer to create hash scratchpads buffer.", err_to_str(ret));
return ERR_OCL_API;
}
ctx->ExtraBuffers[1] = clCreateBuffer(opencl_ctx, CL_MEM_READ_WRITE, 200 * g_thd, NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateBuffer to create hash states buffer.", err_to_str(ret));
return ERR_OCL_API;
}
// Blake-256 branches
ctx->ExtraBuffers[2] = clCreateBuffer(opencl_ctx, CL_MEM_READ_WRITE, sizeof(cl_uint) * (g_thd + 2), NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateBuffer to create Branch 0 buffer.", err_to_str(ret));
return ERR_OCL_API;
}
// Groestl-256 branches
ctx->ExtraBuffers[3] = clCreateBuffer(opencl_ctx, CL_MEM_READ_WRITE, sizeof(cl_uint) * (g_thd + 2), NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateBuffer to create Branch 1 buffer.", err_to_str(ret));
return ERR_OCL_API;
}
// JH-256 branches
ctx->ExtraBuffers[4] = clCreateBuffer(opencl_ctx, CL_MEM_READ_WRITE, sizeof(cl_uint) * (g_thd + 2), NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateBuffer to create Branch 2 buffer.", err_to_str(ret));
return ERR_OCL_API;
}
// Skein-512 branches
ctx->ExtraBuffers[5] = clCreateBuffer(opencl_ctx, CL_MEM_READ_WRITE, sizeof(cl_uint) * (g_thd + 2), NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateBuffer to create Branch 3 buffer.", err_to_str(ret));
return ERR_OCL_API;
}
// Assume we may find up to 0xFF nonces in one run - it's reasonable
ctx->OutputBuffer = clCreateBuffer(opencl_ctx, CL_MEM_READ_WRITE, sizeof(cl_uint) * 0x100, NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateBuffer to create output buffer.", err_to_str(ret));
return ERR_OCL_API;
}
std::vector<char> devNameVec(1024);
if((ret = clGetDeviceInfo(ctx->DeviceID, CL_DEVICE_NAME, devNameVec.size(), devNameVec.data(), NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetDeviceInfo to get CL_DEVICE_NAME for device %u.", err_to_str(ret),ctx->deviceIdx );
return ERR_OCL_API;
}
xmrstak_algo miner_algo[2] = {
::jconf::inst()->GetMiningAlgo(),
::jconf::inst()->GetMiningAlgoRoot()
};
int num_algos = miner_algo[0] == miner_algo[1] ? 1 : 2;
for(int ii = 0; ii < num_algos; ++ii)
{
// scratchpad size for the selected mining algorithm
size_t hashMemSize = cn_select_memory(miner_algo[ii]);
int threadMemMask = cn_select_mask(miner_algo[ii]);
int hashIterations = cn_select_iter(miner_algo[ii]);
char options[512];
snprintf(options, sizeof(options),
"-DITERATIONS=%d -DMASK=%d -DWORKSIZE=%llu -DSTRIDED_INDEX=%d -DMEM_CHUNK_EXPONENT=%d -DCOMP_MODE=%d -DMEMORY=%llu -DALGO=%d",
hashIterations, threadMemMask, int_port(ctx->workSize), ctx->stridedIndex, int(1u<<ctx->memChunk), ctx->compMode ? 1 : 0,
int_port(hashMemSize), int(miner_algo[ii]));
/* create a hash for the compile time cache
* used data:
* - source code
* - device name
* - compile paramater
*/
std::string src_str(source_code);
src_str += options;
src_str += devNameVec.data();
std::string hash_hex_str;
picosha2::hash256_hex_string(src_str, hash_hex_str);
std::string cache_file = get_home() + "/.openclcache/" + hash_hex_str + ".openclbin";
std::ifstream clBinFile(cache_file, std::ofstream::in | std::ofstream::binary);
if(xmrstak::params::inst().AMDCache == false || !clBinFile.good())
{
if(xmrstak::params::inst().AMDCache)
printer::inst()->print_msg(L1,"OpenCL device %u - Precompiled code %s not found. Compiling ...",ctx->deviceIdx, cache_file.c_str());
ctx->Program[ii] = clCreateProgramWithSource(opencl_ctx, 1, (const char**)&source_code, NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateProgramWithSource on the OpenCL miner code", err_to_str(ret));
return ERR_OCL_API;
}
ret = clBuildProgram(ctx->Program[ii], 1, &ctx->DeviceID, options, NULL, NULL);
if(ret != CL_SUCCESS)
{
size_t len;
printer::inst()->print_msg(L1,"Error %s when calling clBuildProgram.", err_to_str(ret));
if((ret = clGetProgramBuildInfo(ctx->Program[ii], ctx->DeviceID, CL_PROGRAM_BUILD_LOG, 0, NULL, &len)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clGetProgramBuildInfo for length of build log output.", err_to_str(ret));
return ERR_OCL_API;
}
char* BuildLog = (char*)malloc(len + 1);
BuildLog[0] = '\0';
if((ret = clGetProgramBuildInfo(ctx->Program[ii], ctx->DeviceID, CL_PROGRAM_BUILD_LOG, len, BuildLog, NULL)) != CL_SUCCESS)
{
free(BuildLog);
printer::inst()->print_msg(L1,"Error %s when calling clGetProgramBuildInfo for build log.", err_to_str(ret));
return ERR_OCL_API;
}
printer::inst()->print_str("Build log:\n");
std::cerr<<BuildLog<<std::endl;
free(BuildLog);
return ERR_OCL_API;
}
cl_uint num_devices;
clGetProgramInfo(ctx->Program[ii], CL_PROGRAM_NUM_DEVICES, sizeof(cl_uint), &num_devices,NULL);
std::vector<cl_device_id> devices_ids(num_devices);
clGetProgramInfo(ctx->Program[ii], CL_PROGRAM_DEVICES, sizeof(cl_device_id)* devices_ids.size(), devices_ids.data(),NULL);
int dev_id = 0;
/* Search for the gpu within the program context.
* The id can be different to ctx->DeviceID.
*/
for(auto & ocl_device : devices_ids)
{
if(ocl_device == ctx->DeviceID)
break;
dev_id++;
}
cl_build_status status;
do
{
if((ret = clGetProgramBuildInfo(ctx->Program[ii], ctx->DeviceID, CL_PROGRAM_BUILD_STATUS, sizeof(cl_build_status), &status, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clGetProgramBuildInfo for status of build.", err_to_str(ret));
return ERR_OCL_API;
}
port_sleep(1);
}
while(status == CL_BUILD_IN_PROGRESS);
std::vector<size_t> binary_sizes(num_devices);
clGetProgramInfo (ctx->Program[ii], CL_PROGRAM_BINARY_SIZES, sizeof(size_t) * binary_sizes.size(), binary_sizes.data(), NULL);
std::vector<char*> all_programs(num_devices);
std::vector<std::vector<char>> program_storage;
if(xmrstak::params::inst().AMDCache)
{
int p_id = 0;
size_t mem_size = 0;
// create memory structure to query all OpenCL program binaries
for(auto & p : all_programs)
{
program_storage.emplace_back(std::vector<char>(binary_sizes[p_id]));
all_programs[p_id] = program_storage[p_id].data();
mem_size += binary_sizes[p_id];
p_id++;
}
if((ret = clGetProgramInfo(ctx->Program[ii], CL_PROGRAM_BINARIES, num_devices * sizeof(char*), all_programs.data(),NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clGetProgramInfo.", err_to_str(ret));
return ERR_OCL_API;
}
std::ofstream file_stream;
file_stream.open(cache_file, std::ofstream::out | std::ofstream::binary);
file_stream.write(all_programs[dev_id], binary_sizes[dev_id]);
file_stream.close();
printer::inst()->print_msg(L1, "OpenCL device %u - Precompiled code stored in file %s",ctx->deviceIdx, cache_file.c_str());
}
}
else
{
printer::inst()->print_msg(L1, "OpenCL device %u - Load precompiled code from file %s",ctx->deviceIdx, cache_file.c_str());
std::ostringstream ss;
ss << clBinFile.rdbuf();
std::string s = ss.str();
size_t bin_size = s.size();
auto data_ptr = s.data();
cl_int clStatus;
ctx->Program[ii] = clCreateProgramWithBinary(
opencl_ctx, 1, &ctx->DeviceID, &bin_size,
(const unsigned char **)&data_ptr, &clStatus, &ret
);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateProgramWithBinary. Try to delete file %s", err_to_str(ret), cache_file.c_str());
return ERR_OCL_API;
}
ret = clBuildProgram(ctx->Program[ii], 1, &ctx->DeviceID, NULL, NULL, NULL);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clBuildProgram. Try to delete file %s", err_to_str(ret), cache_file.c_str());
return ERR_OCL_API;
}
}
std::vector<std::string> KernelNames = { "cn0", "cn1", "cn2", "Blake", "Groestl", "JH", "Skein" };
// append algorithm number to kernel name
for(int k = 0; k < 3; k++)
KernelNames[k] += std::to_string(miner_algo[ii]);
if(ii == 0)
{
for(int i = 0; i < 7; ++i)
{
ctx->Kernels[ii][i] = clCreateKernel(ctx->Program[ii], KernelNames[i].c_str(), &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateKernel for kernel_0 %s.", err_to_str(ret), KernelNames[i].c_str());
return ERR_OCL_API;
}
}
}
else
{
for(int i = 0; i < 3; ++i)
{
ctx->Kernels[ii][i] = clCreateKernel(ctx->Program[ii], KernelNames[i].c_str(), &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateKernel for kernel_1 %s.", err_to_str(ret), KernelNames[i].c_str());
return ERR_OCL_API;
}
}
// move kernel from the main algorithm into the root algorithm kernel space
for(int i = 3; i < 7; ++i)
{
ctx->Kernels[ii][i] = ctx->Kernels[0][i];
}
}
}
ctx->Nonce = 0;
return 0;
}
const cl_platform_info attributeTypes[5] = {
CL_PLATFORM_NAME,
CL_PLATFORM_VENDOR,
CL_PLATFORM_VERSION,
CL_PLATFORM_PROFILE,
CL_PLATFORM_EXTENSIONS
};
const char* const attributeNames[] = {
"CL_PLATFORM_NAME",
"CL_PLATFORM_VENDOR",
"CL_PLATFORM_VERSION",
"CL_PLATFORM_PROFILE",
"CL_PLATFORM_EXTENSIONS"
};
#define NELEMS(x) (sizeof(x) / sizeof((x)[0]))
void PrintDeviceInfo(cl_device_id device)
{
char queryBuffer[1024];
int queryInt;
cl_int clError;
clError = clGetDeviceInfo(device, CL_DEVICE_NAME, sizeof(queryBuffer), &queryBuffer, NULL);
printf(" CL_DEVICE_NAME: %s\n", queryBuffer);
queryBuffer[0] = '\0';
clError = clGetDeviceInfo(device, CL_DEVICE_VENDOR, sizeof(queryBuffer), &queryBuffer, NULL);
printf(" CL_DEVICE_VENDOR: %s\n", queryBuffer);
queryBuffer[0] = '\0';
clError = clGetDeviceInfo(device, CL_DRIVER_VERSION, sizeof(queryBuffer), &queryBuffer, NULL);
printf(" CL_DRIVER_VERSION: %s\n", queryBuffer);
queryBuffer[0] = '\0';
clError = clGetDeviceInfo(device, CL_DEVICE_VERSION, sizeof(queryBuffer), &queryBuffer, NULL);
printf(" CL_DEVICE_VERSION: %s\n", queryBuffer);
queryBuffer[0] = '\0';
clError = clGetDeviceInfo(device, CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(int), &queryInt, NULL);
printf(" CL_DEVICE_MAX_COMPUTE_UNITS: %d\n", queryInt);
}
uint32_t getNumPlatforms()
{
cl_uint num_platforms = 0;
cl_platform_id * platforms = NULL;
cl_int clStatus;
// Get platform and device information
clStatus = clGetPlatformIDs(0, NULL, &num_platforms);
if(clStatus != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetPlatformIDs for number of platforms.", err_to_str(clStatus));
return 0u;
}
return num_platforms;
}
std::vector<GpuContext> getAMDDevices(int index)
{
std::vector<GpuContext> ctxVec;
std::vector<cl_platform_id> platforms;
std::vector<cl_device_id> device_list;
cl_int clStatus;
cl_uint num_devices;
uint32_t numPlatforms = getNumPlatforms();
if(numPlatforms == 0)
return ctxVec;
platforms.resize(numPlatforms);
if((clStatus = clGetPlatformIDs(numPlatforms, platforms.data(), NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetPlatformIDs for platform information.", err_to_str(clStatus));
return ctxVec;
}
if((clStatus = clGetDeviceIDs( platforms[index], CL_DEVICE_TYPE_GPU, 0, NULL, &num_devices)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetDeviceIDs for of devices.", err_to_str(clStatus));
return ctxVec;
}
device_list.resize(num_devices);
if((clStatus = clGetDeviceIDs( platforms[index], CL_DEVICE_TYPE_GPU, num_devices, device_list.data(), NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetDeviceIDs for device information.", err_to_str(clStatus));
return ctxVec;
}
for (size_t k = 0; k < num_devices; k++)
{
std::vector<char> devVendorVec(1024);
if((clStatus = clGetDeviceInfo(device_list[k], CL_DEVICE_VENDOR, devVendorVec.size(), devVendorVec.data(), NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetDeviceInfo to get the device vendor name for device %u.", err_to_str(clStatus), k);
continue;
}
std::string devVendor(devVendorVec.data());
bool isAMDDevice = devVendor.find("Advanced Micro Devices") != std::string::npos || devVendor.find("AMD") != std::string::npos;
bool isNVIDIADevice = devVendor.find("NVIDIA Corporation") != std::string::npos || devVendor.find("NVIDIA") != std::string::npos;
std::string selectedOpenCLVendor = xmrstak::params::inst().openCLVendor;
if((isAMDDevice && selectedOpenCLVendor == "AMD") || (isNVIDIADevice && selectedOpenCLVendor == "NVIDIA"))
{
GpuContext ctx;
std::vector<char> devNameVec(1024);
size_t maxMem;
if( devVendor.find("NVIDIA Corporation") != std::string::npos)
ctx.isNVIDIA = true;
if((clStatus = clGetDeviceInfo(device_list[k], CL_DEVICE_MAX_COMPUTE_UNITS, sizeof(int), &(ctx.computeUnits), NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetDeviceInfo to get CL_DEVICE_MAX_COMPUTE_UNITS for device %u.", err_to_str(clStatus), k);
continue;
}
if((clStatus = clGetDeviceInfo(device_list[k], CL_DEVICE_MAX_MEM_ALLOC_SIZE, sizeof(size_t), &(maxMem), NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetDeviceInfo to get CL_DEVICE_MAX_MEM_ALLOC_SIZE for device %u.", err_to_str(clStatus), k);
continue;
}
if((clStatus = clGetDeviceInfo(device_list[k], CL_DEVICE_GLOBAL_MEM_SIZE, sizeof(size_t), &(ctx.freeMem), NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetDeviceInfo to get CL_DEVICE_GLOBAL_MEM_SIZE for device %u.", err_to_str(clStatus), k);
continue;
}
// the allocation for NVIDIA OpenCL is not limited to 1/4 of the GPU memory per allocation
if(ctx.isNVIDIA)
maxMem = ctx.freeMem;
if((clStatus = clGetDeviceInfo(device_list[k], CL_DEVICE_NAME, devNameVec.size(), devNameVec.data(), NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetDeviceInfo to get CL_DEVICE_NAME for device %u.", err_to_str(clStatus), k);
continue;
}
// if environment variable GPU_SINGLE_ALLOC_PERCENT is not set we can not allocate the full memory
ctx.deviceIdx = k;
ctx.freeMem = std::min(ctx.freeMem, maxMem);
ctx.name = std::string(devNameVec.data());
ctx.DeviceID = device_list[k];
printer::inst()->print_msg(L0,"Found OpenCL GPU %s.",ctx.name.c_str());
ctxVec.push_back(ctx);
}
}
return ctxVec;
}
int getAMDPlatformIdx()
{
uint32_t numPlatforms = getNumPlatforms();
if(numPlatforms == 0)
{
printer::inst()->print_msg(L0,"WARNING: No OpenCL platform found.");
return -1;
}
cl_platform_id * platforms = NULL;
cl_int clStatus;
platforms = (cl_platform_id *) malloc(sizeof(cl_platform_id) * numPlatforms);
clStatus = clGetPlatformIDs(numPlatforms, platforms, NULL);
int platformIndex = -1;
// Mesa OpenCL is the fallback if no AMD or Apple OpenCL is found
int mesaPlatform = -1;
if(clStatus == CL_SUCCESS)
{
for (int i = 0; i < numPlatforms; i++) {
size_t infoSize;
clGetPlatformInfo(platforms[i], CL_PLATFORM_VENDOR, 0, NULL, &infoSize);
std::vector<char> platformNameVec(infoSize);
clGetPlatformInfo(platforms[i], CL_PLATFORM_VENDOR, infoSize, platformNameVec.data(), NULL);
std::string platformName(platformNameVec.data());
bool isAMDOpenCL = platformName.find("Advanced Micro Devices") != std::string::npos ||
platformName.find("Apple") != std::string::npos ||
platformName.find("Mesa") != std::string::npos;
bool isNVIDIADevice = platformName.find("NVIDIA Corporation") != std::string::npos || platformName.find("NVIDIA") != std::string::npos;
std::string selectedOpenCLVendor = xmrstak::params::inst().openCLVendor;
if((isAMDOpenCL && selectedOpenCLVendor == "AMD") || (isNVIDIADevice && selectedOpenCLVendor == "NVIDIA"))
{
printer::inst()->print_msg(L0,"Found %s platform index id = %i, name = %s", selectedOpenCLVendor.c_str(), i , platformName.c_str());
if(platformName.find("Mesa") != std::string::npos)
mesaPlatform = i;
else
{
// exit if AMD or Apple platform is found
platformIndex = i;
break;
}
}
}
// fall back to Mesa OpenCL
if(platformIndex == -1 && mesaPlatform != -1)
{
printer::inst()->print_msg(L0,"No AMD platform found select Mesa as OpenCL platform");
platformIndex = mesaPlatform;
}
}
else
printer::inst()->print_msg(L1,"WARNING: %s when calling clGetPlatformIDs for platform information.", err_to_str(clStatus));
free(platforms);
return platformIndex;
}
// RequestedDeviceIdxs is a list of OpenCL device indexes
// NumDevicesRequested is number of devices in RequestedDeviceIdxs list
// Returns 0 on success, -1 on stupid params, -2 on OpenCL API error
size_t InitOpenCL(GpuContext* ctx, size_t num_gpus, size_t platform_idx)
{
cl_context opencl_ctx;
cl_int ret;
cl_uint entries;
if((ret = clGetPlatformIDs(0, NULL, &entries)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clGetPlatformIDs for number of platforms.", err_to_str(ret));
return ERR_OCL_API;
}
// The number of platforms naturally is the index of the last platform plus one.
if(entries <= platform_idx)
{
printer::inst()->print_msg(L1,"Selected OpenCL platform index %d doesn't exist.", platform_idx);
return ERR_STUPID_PARAMS;
}
/*MSVC skimping on devel costs by shoehorning C99 to be a subset of C++? Noooo... can't be.*/
#ifdef __GNUC__
cl_platform_id PlatformIDList[entries];
#else
cl_platform_id* PlatformIDList = (cl_platform_id*)_alloca(entries * sizeof(cl_platform_id));
#endif
if((ret = clGetPlatformIDs(entries, PlatformIDList, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clGetPlatformIDs for platform ID information.", err_to_str(ret));
return ERR_OCL_API;
}
size_t infoSize;
clGetPlatformInfo(PlatformIDList[platform_idx], CL_PLATFORM_VENDOR, 0, NULL, &infoSize);
std::vector<char> platformNameVec(infoSize);
clGetPlatformInfo(PlatformIDList[platform_idx], CL_PLATFORM_VENDOR, infoSize, platformNameVec.data(), NULL);
std::string platformName(platformNameVec.data());
if(xmrstak::params::inst().openCLVendor == "AMD" && platformName.find("Advanced Micro Devices") == std::string::npos)
{
printer::inst()->print_msg(L1,"WARNING: using non AMD device: %s", platformName.c_str());
}
if((ret = clGetDeviceIDs(PlatformIDList[platform_idx], CL_DEVICE_TYPE_GPU, 0, NULL, &entries)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clGetDeviceIDs for number of devices.", err_to_str(ret));
return ERR_OCL_API;
}
// Same as the platform index sanity check, except we must check all requested device indexes
for(int i = 0; i < num_gpus; ++i)
{
if(entries <= ctx[i].deviceIdx)
{
printer::inst()->print_msg(L1,"Selected OpenCL device index %lu doesn't exist.\n", ctx[i].deviceIdx);
return ERR_STUPID_PARAMS;
}
}
#ifdef __GNUC__
cl_device_id DeviceIDList[entries];
#else
cl_device_id* DeviceIDList = (cl_device_id*)_alloca(entries * sizeof(cl_device_id));
#endif
if((ret = clGetDeviceIDs(PlatformIDList[platform_idx], CL_DEVICE_TYPE_GPU, entries, DeviceIDList, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clGetDeviceIDs for device ID information.", err_to_str(ret));
return ERR_OCL_API;
}
// Indexes sanity checked above
#ifdef __GNUC__
cl_device_id TempDeviceList[num_gpus];
#else
cl_device_id* TempDeviceList = (cl_device_id*)_alloca(entries * sizeof(cl_device_id));
#endif
for(int i = 0; i < num_gpus; ++i)
{
ctx[i].DeviceID = DeviceIDList[ctx[i].deviceIdx];
TempDeviceList[i] = DeviceIDList[ctx[i].deviceIdx];
}
opencl_ctx = clCreateContext(NULL, num_gpus, TempDeviceList, NULL, NULL, &ret);
if(ret != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clCreateContext.", err_to_str(ret));
return ERR_OCL_API;
}
//char* source_code = LoadTextFile(sSourcePath);
const char *cryptonightCL =
#include "./opencl/cryptonight.cl"
;
const char *blake256CL =
#include "./opencl/blake256.cl"
;
const char *groestl256CL =
#include "./opencl/groestl256.cl"
;
const char *jhCL =
#include "./opencl/jh.cl"
;
const char *wolfAesCL =
#include "./opencl/wolf-aes.cl"
;
const char *wolfSkeinCL =
#include "./opencl/wolf-skein.cl"
;
std::string source_code(cryptonightCL);
source_code = std::regex_replace(source_code, std::regex("XMRSTAK_INCLUDE_WOLF_AES"), wolfAesCL);
source_code = std::regex_replace(source_code, std::regex("XMRSTAK_INCLUDE_WOLF_SKEIN"), wolfSkeinCL);
source_code = std::regex_replace(source_code, std::regex("XMRSTAK_INCLUDE_JH"), jhCL);
source_code = std::regex_replace(source_code, std::regex("XMRSTAK_INCLUDE_BLAKE256"), blake256CL);
source_code = std::regex_replace(source_code, std::regex("XMRSTAK_INCLUDE_GROESTL256"), groestl256CL);
// create a directory for the OpenCL compile cache
create_directory(get_home() + "/.openclcache");
for(int i = 0; i < num_gpus; ++i)
{
if(ctx[i].stridedIndex == 2 && (ctx[i].rawIntensity % ctx[i].workSize) != 0)
{
size_t reduced_intensity = (ctx[i].rawIntensity / ctx[i].workSize) * ctx[i].workSize;
ctx[i].rawIntensity = reduced_intensity;
const std::string backendName = xmrstak::params::inst().openCLVendor;
printer::inst()->print_msg(L0, "WARNING %s: gpu %d intensity is not a multiple of 'worksize', auto reduce intensity to %d", backendName.c_str(), ctx[i].deviceIdx, int(reduced_intensity));
}
if((ret = InitOpenCLGpu(opencl_ctx, &ctx[i], source_code.c_str())) != ERR_SUCCESS)
{
return ret;
}
}
return ERR_SUCCESS;
}
size_t XMRSetJob(GpuContext* ctx, uint8_t* input, size_t input_len, uint64_t target, xmrstak_algo miner_algo)
{
// switch to the kernel storage
int kernel_storage = miner_algo == ::jconf::inst()->GetMiningAlgo() ? 0 : 1;
cl_int ret;
if(input_len > 84)
return ERR_STUPID_PARAMS;
input[input_len] = 0x01;
memset(input + input_len + 1, 0, 88 - input_len - 1);
size_t numThreads = ctx->rawIntensity;
if((ret = clEnqueueWriteBuffer(ctx->CommandQueues, ctx->InputBuffer, CL_TRUE, 0, 88, input, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueWriteBuffer to fill input buffer.", err_to_str(ret));
return ERR_OCL_API;
}
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][0], 0, sizeof(cl_mem), &ctx->InputBuffer)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 0, argument 0.", err_to_str(ret));
return ERR_OCL_API;
}
// Scratchpads
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][0], 1, sizeof(cl_mem), ctx->ExtraBuffers + 0)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 0, argument 1.", err_to_str(ret));
return ERR_OCL_API;
}
// States
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][0], 2, sizeof(cl_mem), ctx->ExtraBuffers + 1)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 0, argument 2.", err_to_str(ret));
return ERR_OCL_API;
}
// Threads
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][0], 3, sizeof(cl_ulong), &numThreads)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 0, argument 3.", err_to_str(ret));
return(ERR_OCL_API);
}
// CN1 Kernel
// Scratchpads
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][1], 0, sizeof(cl_mem), ctx->ExtraBuffers + 0)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 1, argument 0.", err_to_str(ret));
return ERR_OCL_API;
}
// States
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][1], 1, sizeof(cl_mem), ctx->ExtraBuffers + 1)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 1, argument 1.", err_to_str(ret));
return ERR_OCL_API;
}
// Threads
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][1], 2, sizeof(cl_ulong), &numThreads)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 1, argument 2.", err_to_str(ret));
return(ERR_OCL_API);
}
if(miner_algo == cryptonight_monero || miner_algo == cryptonight_aeon )
{
// Input
if ((ret = clSetKernelArg(ctx->Kernels[kernel_storage][1], 3, sizeof(cl_mem), &ctx->InputBuffer)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1, "Error %s when calling clSetKernelArg for kernel 1, arugment 4(input buffer).", err_to_str(ret));
return ERR_OCL_API;
}
}
// CN3 Kernel
// Scratchpads
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][2], 0, sizeof(cl_mem), ctx->ExtraBuffers + 0)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 2, argument 0.", err_to_str(ret));
return ERR_OCL_API;
}
// States
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][2], 1, sizeof(cl_mem), ctx->ExtraBuffers + 1)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 2, argument 1.", err_to_str(ret));
return ERR_OCL_API;
}
// Branch 0
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][2], 2, sizeof(cl_mem), ctx->ExtraBuffers + 2)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 2, argument 2.", err_to_str(ret));
return ERR_OCL_API;
}
// Branch 1
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][2], 3, sizeof(cl_mem), ctx->ExtraBuffers + 3)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 2, argument 3.", err_to_str(ret));
return ERR_OCL_API;
}
// Branch 2
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][2], 4, sizeof(cl_mem), ctx->ExtraBuffers + 4)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 2, argument 4.", err_to_str(ret));
return ERR_OCL_API;
}
// Branch 3
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][2], 5, sizeof(cl_mem), ctx->ExtraBuffers + 5)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 2, argument 5.", err_to_str(ret));
return ERR_OCL_API;
}
// Threads
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][2], 6, sizeof(cl_ulong), &numThreads)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel 2, argument 6.", err_to_str(ret));
return(ERR_OCL_API);
}
for(int i = 0; i < 4; ++i)
{
// States
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][i + 3], 0, sizeof(cl_mem), ctx->ExtraBuffers + 1)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel %d, argument %d.", err_to_str(ret), i + 3, 0);
return ERR_OCL_API;
}
// Nonce buffer
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][i + 3], 1, sizeof(cl_mem), ctx->ExtraBuffers + (i + 2))) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel %d, argument %d.", err_to_str(ret), i + 3, 1);
return ERR_OCL_API;
}
// Output
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][i + 3], 2, sizeof(cl_mem), &ctx->OutputBuffer)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel %d, argument %d.", err_to_str(ret), i + 3, 2);
return ERR_OCL_API;
}
// Target
if((ret = clSetKernelArg(ctx->Kernels[kernel_storage][i + 3], 3, sizeof(cl_ulong), &target)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel %d, argument %d.", err_to_str(ret), i + 3, 3);
return ERR_OCL_API;
}
}
return ERR_SUCCESS;
}
size_t XMRRunJob(GpuContext* ctx, cl_uint* HashOutput, xmrstak_algo miner_algo)
{
// switch to the kernel storage
int kernel_storage = miner_algo == ::jconf::inst()->GetMiningAlgo() ? 0 : 1;
cl_int ret;
cl_uint zero = 0;
size_t BranchNonces[4];
memset(BranchNonces,0,sizeof(size_t)*4);
size_t g_intensity = ctx->rawIntensity;
size_t w_size = ctx->workSize;
size_t g_thd = g_intensity;
if(ctx->compMode)
{
// round up to next multiple of w_size
g_thd = ((g_intensity + w_size - 1u) / w_size) * w_size;
// number of global threads must be a multiple of the work group size (w_size)
assert(g_thd%w_size == 0);
}
for(int i = 2; i < 6; ++i)
{
if((ret = clEnqueueWriteBuffer(ctx->CommandQueues, ctx->ExtraBuffers[i], CL_FALSE, sizeof(cl_uint) * g_intensity, sizeof(cl_uint), &zero, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueWriteBuffer to zero branch buffer counter %d.", err_to_str(ret), i - 2);
return ERR_OCL_API;
}
}
if((ret = clEnqueueWriteBuffer(ctx->CommandQueues, ctx->OutputBuffer, CL_FALSE, sizeof(cl_uint) * 0xFF, sizeof(cl_uint), &zero, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueReadBuffer to fetch results.", err_to_str(ret));
return ERR_OCL_API;
}
clFinish(ctx->CommandQueues);
size_t Nonce[2] = {ctx->Nonce, 1}, gthreads[2] = { g_thd, 8 }, lthreads[2] = { w_size, 8 };
if((ret = clEnqueueNDRangeKernel(ctx->CommandQueues, ctx->Kernels[kernel_storage][0], 2, Nonce, gthreads, lthreads, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueNDRangeKernel for kernel %d.", err_to_str(ret), 0);
return ERR_OCL_API;
}
size_t tmpNonce = ctx->Nonce;
if((ret = clEnqueueNDRangeKernel(ctx->CommandQueues, ctx->Kernels[kernel_storage][1], 1, &tmpNonce, &g_thd, &w_size, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueNDRangeKernel for kernel %d.", err_to_str(ret), 1);
return ERR_OCL_API;
}
if((ret = clEnqueueNDRangeKernel(ctx->CommandQueues, ctx->Kernels[kernel_storage][2], 2, Nonce, gthreads, lthreads, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueNDRangeKernel for kernel %d.", err_to_str(ret), 2);
return ERR_OCL_API;
}
if((ret = clEnqueueReadBuffer(ctx->CommandQueues, ctx->ExtraBuffers[2], CL_FALSE, sizeof(cl_uint) * g_intensity, sizeof(cl_uint), BranchNonces, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueReadBuffer to fetch results.", err_to_str(ret));
return ERR_OCL_API;
}
if((ret = clEnqueueReadBuffer(ctx->CommandQueues, ctx->ExtraBuffers[3], CL_FALSE, sizeof(cl_uint) * g_intensity, sizeof(cl_uint), BranchNonces + 1, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueReadBuffer to fetch results.", err_to_str(ret));
return ERR_OCL_API;
}
if((ret = clEnqueueReadBuffer(ctx->CommandQueues, ctx->ExtraBuffers[4], CL_FALSE, sizeof(cl_uint) * g_intensity, sizeof(cl_uint), BranchNonces + 2, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueReadBuffer to fetch results.", err_to_str(ret));
return ERR_OCL_API;
}
if((ret = clEnqueueReadBuffer(ctx->CommandQueues, ctx->ExtraBuffers[5], CL_FALSE, sizeof(cl_uint) * g_intensity, sizeof(cl_uint), BranchNonces + 3, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueReadBuffer to fetch results.", err_to_str(ret));
return ERR_OCL_API;
}
clFinish(ctx->CommandQueues);
for(int i = 0; i < 4; ++i)
{
if(BranchNonces[i])
{
// Threads
if((clSetKernelArg(ctx->Kernels[kernel_storage][i + 3], 4, sizeof(cl_ulong), BranchNonces + i)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clSetKernelArg for kernel %d, argument %d.", err_to_str(ret), i + 3, 4);
return(ERR_OCL_API);
}
// round up to next multiple of w_size
BranchNonces[i] = ((BranchNonces[i] + w_size - 1u) / w_size) * w_size;
// number of global threads must be a multiple of the work group size (w_size)
assert(BranchNonces[i]%w_size == 0);
size_t tmpNonce = ctx->Nonce;
if((ret = clEnqueueNDRangeKernel(ctx->CommandQueues, ctx->Kernels[kernel_storage][i + 3], 1, &tmpNonce, BranchNonces + i, &w_size, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueNDRangeKernel for kernel %d.", err_to_str(ret), i + 3);
return ERR_OCL_API;
}
}
}
if((ret = clEnqueueReadBuffer(ctx->CommandQueues, ctx->OutputBuffer, CL_TRUE, 0, sizeof(cl_uint) * 0x100, HashOutput, 0, NULL, NULL)) != CL_SUCCESS)
{
printer::inst()->print_msg(L1,"Error %s when calling clEnqueueReadBuffer to fetch results.", err_to_str(ret));
return ERR_OCL_API;
}
clFinish(ctx->CommandQueues);
auto & numHashValues = HashOutput[0xFF];
// avoid out of memory read, we have only storage for 0xFF results
if(numHashValues > 0xFF)
numHashValues = 0xFF;
ctx->Nonce += g_intensity;
return ERR_SUCCESS;
}
|