summaryrefslogtreecommitdiffstats
path: root/crypto/cryptonight_aesni.h
blob: 6d990d3cb0afaaa5834dad84214954a99032936a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
/*
  * This program is free software: you can redistribute it and/or modify
  * it under the terms of the GNU General Public License as published by
  * the Free Software Foundation, either version 3 of the License, or
  * any later version.
  *
  * This program is distributed in the hope that it will be useful,
  * but WITHOUT ANY WARRANTY; without even the implied warranty of
  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  * GNU General Public License for more details.
  *
  * You should have received a copy of the GNU General Public License
  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  *
  */
#pragma once

#include "cryptonight.h"
#include <memory.h>
#include <stdio.h>

#ifdef __GNUC__
#include <x86intrin.h>
static inline uint64_t _umul128(uint64_t a, uint64_t b, uint64_t* hi)
{
	unsigned __int128 r = (unsigned __int128)a * (unsigned __int128)b;
	*hi = r >> 64;
	return (uint64_t)r;
}
#define _mm256_set_m128i(v0, v1)  _mm256_insertf128_si256(_mm256_castsi128_si256(v1), (v0), 1)
#else
#include <intrin.h>
#endif // __GNUC__

#if !defined(_LP64) && !defined(_WIN64)
#error You are trying to do a 32-bit build. This will all end in tears. I know it.
#endif

extern "C"
{
	void keccak(const uint8_t *in, int inlen, uint8_t *md, int mdlen);
	void keccakf(uint64_t st[25], int rounds);
	extern void(*const extra_hashes[4])(const void *, size_t, char *);

	__m128i soft_aesenc(__m128i in, __m128i key);
	__m128i soft_aeskeygenassist(__m128i key, uint8_t rcon);
}

// This will shift and xor tmp1 into itself as 4 32-bit vals such as
// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1)
static inline __m128i sl_xor(__m128i tmp1)
{
	__m128i tmp4;
	tmp4 = _mm_slli_si128(tmp1, 0x04);
	tmp1 = _mm_xor_si128(tmp1, tmp4);
	tmp4 = _mm_slli_si128(tmp4, 0x04);
	tmp1 = _mm_xor_si128(tmp1, tmp4);
	tmp4 = _mm_slli_si128(tmp4, 0x04);
	tmp1 = _mm_xor_si128(tmp1, tmp4);
	return tmp1;
}

template<uint8_t rcon>
static inline void aes_genkey_sub(__m128i* xout0, __m128i* xout2)
{
	__m128i xout1 = _mm_aeskeygenassist_si128(*xout2, rcon);
	xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem
	*xout0 = sl_xor(*xout0);
	*xout0 = _mm_xor_si128(*xout0, xout1);
	xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00);
	xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem
	*xout2 = sl_xor(*xout2);
	*xout2 = _mm_xor_si128(*xout2, xout1);
}

static inline void soft_aes_genkey_sub(__m128i* xout0, __m128i* xout2, uint8_t rcon)
{
	__m128i xout1 = soft_aeskeygenassist(*xout2, rcon);
	xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem
	*xout0 = sl_xor(*xout0);
	*xout0 = _mm_xor_si128(*xout0, xout1);
	xout1 = soft_aeskeygenassist(*xout0, 0x00);
	xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem
	*xout2 = sl_xor(*xout2);
	*xout2 = _mm_xor_si128(*xout2, xout1);
}

template<bool SOFT_AES>
static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3,
	__m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
{
	__m128i xout0, xout2;

	xout0 = _mm_load_si128(memory);
	xout2 = _mm_load_si128(memory+1);
	*k0 = xout0;
	*k1 = xout2;

	if(SOFT_AES)
		soft_aes_genkey_sub(&xout0, &xout2, 0x01);
	else
		aes_genkey_sub<0x01>(&xout0, &xout2);
	*k2 = xout0;
	*k3 = xout2;

	if(SOFT_AES)
		soft_aes_genkey_sub(&xout0, &xout2, 0x02);
	else
		aes_genkey_sub<0x02>(&xout0, &xout2);
	*k4 = xout0;
	*k5 = xout2;

	if(SOFT_AES)
		soft_aes_genkey_sub(&xout0, &xout2, 0x04);
	else
		aes_genkey_sub<0x04>(&xout0, &xout2);
	*k6 = xout0;
	*k7 = xout2;

	if(SOFT_AES)
		soft_aes_genkey_sub(&xout0, &xout2, 0x08);
	else
		aes_genkey_sub<0x08>(&xout0, &xout2);
	*k8 = xout0;
	*k9 = xout2;
}

static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
{
	*x0 = _mm_aesenc_si128(*x0, key);
	*x1 = _mm_aesenc_si128(*x1, key);
	*x2 = _mm_aesenc_si128(*x2, key);
	*x3 = _mm_aesenc_si128(*x3, key);
	*x4 = _mm_aesenc_si128(*x4, key);
	*x5 = _mm_aesenc_si128(*x5, key);
	*x6 = _mm_aesenc_si128(*x6, key);
	*x7 = _mm_aesenc_si128(*x7, key);
}

static inline void soft_aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
{
	*x0 = soft_aesenc(*x0, key);
	*x1 = soft_aesenc(*x1, key);
	*x2 = soft_aesenc(*x2, key);
	*x3 = soft_aesenc(*x3, key);
	*x4 = soft_aesenc(*x4, key);
	*x5 = soft_aesenc(*x5, key);
	*x6 = soft_aesenc(*x6, key);
	*x7 = soft_aesenc(*x7, key);
}

template<size_t MEM, bool SOFT_AES>
void cn_explode_scratchpad(const __m128i* input, __m128i* output)
{
	// This is more than we have registers, compiler will assign 2 keys on the stack
	__m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
	__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;

	aes_genkey<SOFT_AES>(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);

	xin0 = _mm_load_si128(input + 4);
	xin1 = _mm_load_si128(input + 5);
	xin2 = _mm_load_si128(input + 6);
	xin3 = _mm_load_si128(input + 7);
	xin4 = _mm_load_si128(input + 8);
	xin5 = _mm_load_si128(input + 9);
	xin6 = _mm_load_si128(input + 10);
	xin7 = _mm_load_si128(input + 11);

	for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8)
	{
		if(SOFT_AES)
		{
			soft_aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			soft_aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			soft_aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			soft_aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			soft_aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			soft_aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			soft_aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			soft_aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			soft_aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			soft_aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
		}
		else
		{
			aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
			aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
		}

		_mm_store_si128(output + i + 0, xin0);
		_mm_store_si128(output + i + 1, xin1);
		_mm_store_si128(output + i + 2, xin2);
		_mm_store_si128(output + i + 3, xin3);
		_mm_prefetch((const char*)output + i + 0, _MM_HINT_T2);
		_mm_store_si128(output + i + 4, xin4);
		_mm_store_si128(output + i + 5, xin5);
		_mm_store_si128(output + i + 6, xin6);
		_mm_store_si128(output + i + 7, xin7);
		_mm_prefetch((const char*)output + i + 4, _MM_HINT_T2);
	}
}

template<size_t MEM, bool SOFT_AES>
void cn_implode_scratchpad(const __m128i* input, __m128i* output)
{
	// This is more than we have registers, compiler will assign 2 keys on the stack
	__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
	__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;

	aes_genkey<SOFT_AES>(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);

	xout0 = _mm_load_si128(output + 4);
	xout1 = _mm_load_si128(output + 5);
	xout2 = _mm_load_si128(output + 6);
	xout3 = _mm_load_si128(output + 7);
	xout4 = _mm_load_si128(output + 8);
	xout5 = _mm_load_si128(output + 9);
	xout6 = _mm_load_si128(output + 10);
	xout7 = _mm_load_si128(output + 11);

	for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8)
	{
		_mm_prefetch((const char*)input + i + 0, _MM_HINT_NTA);
		xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
		xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
		xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
		xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
		_mm_prefetch((const char*)input + i + 4, _MM_HINT_NTA);
		xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
		xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
		xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
		xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);

		if(SOFT_AES)
		{
			soft_aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			soft_aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			soft_aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			soft_aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			soft_aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			soft_aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			soft_aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			soft_aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			soft_aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			soft_aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
		}
		else
		{
			aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
			aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
		}
	}

	_mm_store_si128(output + 4, xout0);
	_mm_store_si128(output + 5, xout1);
	_mm_store_si128(output + 6, xout2);
	_mm_store_si128(output + 7, xout3);
	_mm_store_si128(output + 8, xout4);
	_mm_store_si128(output + 9, xout5);
	_mm_store_si128(output + 10, xout6);
	_mm_store_si128(output + 11, xout7);
}

template<size_t ITERATIONS, size_t MEM, bool SOFT_AES, bool PREFETCH>
void cryptonight_hash(const void* input, size_t len, void* output, cryptonight_ctx* ctx0)
{
	keccak((const uint8_t *)input, len, ctx0->hash_state, 200);

	// Optim - 99% time boundary
	cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*)ctx0->hash_state, (__m128i*)ctx0->long_state);

	uint8_t* l0 = ctx0->long_state;
	uint64_t* h0 = (uint64_t*)ctx0->hash_state;

	uint64_t al0 = h0[0] ^ h0[4];
	uint64_t ah0 = h0[1] ^ h0[5];
	__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);

	uint64_t idx0 = h0[0] ^ h0[4];

	// Optim - 90% time boundary
	for(size_t i = 0; i < ITERATIONS; i++)
	{
		__m128i cx;
		cx = _mm_load_si128((__m128i *)&l0[idx0 & 0x1FFFF0]);

		if(SOFT_AES)
			cx = soft_aesenc(cx, _mm_set_epi64x(ah0, al0));
		else
			cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah0, al0));

		_mm_store_si128((__m128i *)&l0[idx0 & 0x1FFFF0], _mm_xor_si128(bx0, cx));
		idx0 = _mm_cvtsi128_si64(cx);
		bx0 = cx;

		if(PREFETCH)
			_mm_prefetch((const char*)&l0[idx0 & 0x1FFFF0], _MM_HINT_T0);

		uint64_t hi, lo, cl, ch;
		cl = ((uint64_t*)&l0[idx0 & 0x1FFFF0])[0];
		ch = ((uint64_t*)&l0[idx0 & 0x1FFFF0])[1];

		lo = _umul128(idx0, cl, &hi);

		al0 += hi;
		ah0 += lo;
		((uint64_t*)&l0[idx0 & 0x1FFFF0])[0] = al0;
		((uint64_t*)&l0[idx0 & 0x1FFFF0])[1] = ah0;
		ah0 ^= ch;
		al0 ^= cl;
		idx0 = al0;

		if(PREFETCH)
			_mm_prefetch((const char*)&l0[idx0 & 0x1FFFF0], _MM_HINT_T0);
	}

	// Optim - 90% time boundary
	cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*)ctx0->long_state, (__m128i*)ctx0->hash_state);

	// Optim - 99% time boundary

	keccakf((uint64_t*)ctx0->hash_state, 24);
	extra_hashes[ctx0->hash_state[0] & 3](ctx0->hash_state, 200, (char*)output);
}

// This lovely creation will do 2 cn hashes at a time. We have plenty of space on silicon
// to fit temporary vars for two contexts. Function will read len*2 from input and write 64 bytes to output
// We are still limited by L3 cache, so doubling will only work with CPUs where we have more than 2MB to core (Xeons)
template<size_t ITERATIONS, size_t MEM, bool SOFT_AES, bool PREFETCH>
void cryptonight_double_hash(const void* input, size_t len, void* output, cryptonight_ctx* __restrict ctx0, cryptonight_ctx* __restrict ctx1)
{
	keccak((const uint8_t *)input, len, ctx0->hash_state, 200);
	keccak((const uint8_t *)input+len, len, ctx1->hash_state, 200);

	// Optim - 99% time boundary
	cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*)ctx0->hash_state, (__m128i*)ctx0->long_state);
	cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*)ctx1->hash_state, (__m128i*)ctx1->long_state);

	uint8_t* l0 = ctx0->long_state;
	uint64_t* h0 = (uint64_t*)ctx0->hash_state;
	uint8_t* l1 = ctx1->long_state;
	uint64_t* h1 = (uint64_t*)ctx1->hash_state;

	__m128i ax0 = _mm_set_epi64x(h0[1] ^ h0[5], h0[0] ^ h0[4]);
	__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
	__m128i ax1 = _mm_set_epi64x(h1[1] ^ h1[5], h1[0] ^ h1[4]);
	__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);

	uint64_t idx0 = h0[0] ^ h0[4];
	uint64_t idx1 = h1[0] ^ h1[4];

	// Optim - 90% time boundary
	for (size_t i = 0; i < ITERATIONS; i++)
	{
		__m128i cx;
		cx = _mm_load_si128((__m128i *)&l0[idx0 & 0x1FFFF0]);

		if(SOFT_AES)
			cx = soft_aesenc(cx, ax0);
		else
			cx = _mm_aesenc_si128(cx, ax0);

		_mm_store_si128((__m128i *)&l0[idx0 & 0x1FFFF0], _mm_xor_si128(bx0, cx));
		idx0 = _mm_cvtsi128_si64(cx);
		bx0 = cx;

		if(PREFETCH)
			_mm_prefetch((const char*)&l0[idx0 & 0x1FFFF0], _MM_HINT_T0);

		cx = _mm_load_si128((__m128i *)&l1[idx1 & 0x1FFFF0]);

		if(SOFT_AES)
			cx = soft_aesenc(cx, ax1);
		else
			cx = _mm_aesenc_si128(cx, ax1);

		_mm_store_si128((__m128i *)&l1[idx1 & 0x1FFFF0], _mm_xor_si128(bx1, cx));
		idx1 = _mm_cvtsi128_si64(cx);
		bx1 = cx;

		if(PREFETCH)
			_mm_prefetch((const char*)&l1[idx1 & 0x1FFFF0], _MM_HINT_T0);

		uint64_t hi, lo;
		cx = _mm_load_si128((__m128i *)&l0[idx0 & 0x1FFFF0]);

		lo = _umul128(idx0, _mm_cvtsi128_si64(cx), &hi);

		ax0 = _mm_add_epi64(ax0, _mm_set_epi64x(lo, hi));
		_mm_store_si128((__m128i*)&l0[idx0 & 0x1FFFF0], ax0);
		ax0 = _mm_xor_si128(ax0, cx);
		idx0 = _mm_cvtsi128_si64(ax0);

		if(PREFETCH)
			_mm_prefetch((const char*)&l0[idx0 & 0x1FFFF0], _MM_HINT_T0);

		cx = _mm_load_si128((__m128i *)&l1[idx1 & 0x1FFFF0]);

		lo = _umul128(idx1, _mm_cvtsi128_si64(cx), &hi);

		ax1 = _mm_add_epi64(ax1, _mm_set_epi64x(lo, hi));
		_mm_store_si128((__m128i*)&l1[idx1 & 0x1FFFF0], ax1);
		ax1 = _mm_xor_si128(ax1, cx);
		idx1 = _mm_cvtsi128_si64(ax1);

		if(PREFETCH)
			_mm_prefetch((const char*)&l1[idx1 & 0x1FFFF0], _MM_HINT_T0);
	}

	// Optim - 90% time boundary
	cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*)ctx0->long_state, (__m128i*)ctx0->hash_state);
	cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*)ctx1->long_state, (__m128i*)ctx1->hash_state);

	// Optim - 99% time boundary

	keccakf((uint64_t*)ctx0->hash_state, 24);
	extra_hashes[ctx0->hash_state[0] & 3](ctx0->hash_state, 200, (char*)output);
	keccakf((uint64_t*)ctx1->hash_state, 24);
	extra_hashes[ctx1->hash_state[0] & 3](ctx1->hash_state, 200, (char*)output + 32);
}
OpenPOWER on IntegriCloud