diff options
author | fireice-uk <fireice-uk@users.noreply.github.com> | 2017-11-04 23:17:28 +0000 |
---|---|---|
committer | GitHub <noreply@github.com> | 2017-11-04 23:17:28 +0000 |
commit | f03f859564f8cd25388ccaf78d88291ae4fb98de (patch) | |
tree | 69643e17067d0147f83ec0ed4dbe6f9b4baf6835 /xmrstak/backend | |
parent | 11f1028782ca62df10a08e6b5907f2f252bc3fc7 (diff) | |
parent | 5acec3ea8e03469ae9d8cfb603ac45b3b5de6ffd (diff) | |
download | xmr-stak-f03f859564f8cd25388ccaf78d88291ae4fb98de.zip xmr-stak-f03f859564f8cd25388ccaf78d88291ae4fb98de.tar.gz |
Merge pull request #89 from psychocrypt/topic-optimizeNVIDIAAutosuggestion
optimize NVIDIA autosuggestion
Diffstat (limited to 'xmrstak/backend')
-rw-r--r-- | xmrstak/backend/nvidia/autoAdjust.hpp | 19 | ||||
-rw-r--r-- | xmrstak/backend/nvidia/nvcc_code/cuda_extra.cu | 20 |
2 files changed, 30 insertions, 9 deletions
diff --git a/xmrstak/backend/nvidia/autoAdjust.hpp b/xmrstak/backend/nvidia/autoAdjust.hpp index 87787fa..bf04518 100644 --- a/xmrstak/backend/nvidia/autoAdjust.hpp +++ b/xmrstak/backend/nvidia/autoAdjust.hpp @@ -88,17 +88,18 @@ private: constexpr size_t byte2mib = 1024u * 1024u; std::string conf; - int i = 0; for(auto& ctx : nvidCtxVec) { - conf += std::string(" // gpu: ") + ctx.name + " architecture: " + std::to_string(ctx.device_arch[0] * 10 + ctx.device_arch[1]) + "\n"; - conf += std::string(" // memory: ") + std::to_string(ctx.free_device_memory / byte2mib) + "/" + std::to_string(ctx.total_device_memory / byte2mib) + " MiB\n"; - conf += std::string(" { \"index\" : ") + std::to_string(ctx.device_id) + ",\n" + - " \"threads\" : " + std::to_string(ctx.device_threads) + ", \"blocks\" : " + std::to_string(ctx.device_blocks) + ",\n" + - " \"bfactor\" : " + std::to_string(ctx.device_bfactor) + ", \"bsleep\" : " + std::to_string(ctx.device_bsleep) + ",\n" + - " \"affine_to_cpu\" : false,\n" + - " },\n"; - ++i; + if(ctx.device_threads * ctx.device_blocks > 0) + { + conf += std::string(" // gpu: ") + ctx.name + " architecture: " + std::to_string(ctx.device_arch[0] * 10 + ctx.device_arch[1]) + "\n"; + conf += std::string(" // memory: ") + std::to_string(ctx.free_device_memory / byte2mib) + "/" + std::to_string(ctx.total_device_memory / byte2mib) + " MiB\n"; + conf += std::string(" { \"index\" : ") + std::to_string(ctx.device_id) + ",\n" + + " \"threads\" : " + std::to_string(ctx.device_threads) + ", \"blocks\" : " + std::to_string(ctx.device_blocks) + ",\n" + + " \"bfactor\" : " + std::to_string(ctx.device_bfactor) + ", \"bsleep\" : " + std::to_string(ctx.device_bsleep) + ",\n" + + " \"affine_to_cpu\" : false,\n" + + " },\n"; + } } configTpl.replace("GPUCONFIG",conf); diff --git a/xmrstak/backend/nvidia/nvcc_code/cuda_extra.cu b/xmrstak/backend/nvidia/nvcc_code/cuda_extra.cu index b161258..e18532f 100644 --- a/xmrstak/backend/nvidia/nvcc_code/cuda_extra.cu +++ b/xmrstak/backend/nvidia/nvcc_code/cuda_extra.cu @@ -364,6 +364,26 @@ extern "C" int cuda_get_deviceinfo(nvid_ctx* ctx) hashMemSize = AEON_MEMORY; } +#ifdef WIN32 + /* We use in windows bfactor (split slow kernel into smaller parts) to avoid + * that windows is killing long running kernel. + * In the case there is already memory used on the gpu than we + * assume that other application are running between the split kernel, + * this can result into TLB memory flushes and can strongly reduce the performance + * and the result can be that windows is killing the miner. + * Be reducing maxMemUsage we try to avoid this effect. + */ + size_t usedMem = totalMemory - freeMemory; + if(usedMem >= maxMemUsage) + { + printf("WARNING: NVIDIA GPU %d: already %s MiB memory in use, skip GPU.\n", + ctx->device_id, + std::to_string(usedMem/byteToMiB).c_str()); + } + else + maxMemUsage -= usedMem; + +#endif // keep 128MiB memory free (value is randomly chosen) // 200byte are meta data memory (result nonce, ...) size_t availableMem = freeMemory - (128u * byteToMiB) - 200u; |