1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
|
// -*-C++-*-
#ifndef VEC_VSX_DOUBLE2_H
#define VEC_VSX_DOUBLE2_H
#include "floatprops.h"
#include "mathfuncs.h"
#include "vec_base.h"
#include <cmath>
// VSX intrinsics
#include <altivec.h>
#if defined __clang__
#define __vector vector
#define __pixel pixel
#define __bool bool
#elif defined __gcc__
#undef vector
#undef pixel
#undef bool
#elif defined __xlC__
#define __bool bool
#else
#error "Unknown compiler"
#endif
namespace vecmathlib {
#define VECMATHLIB_HAVE_VEC_DOUBLE_2
template <> struct boolvec<double, 2>;
template <> struct intvec<double, 2>;
template <> struct realvec<double, 2>;
template <> struct boolvec<double, 2> : floatprops<double> {
static int const size = 2;
typedef bool scalar_t;
typedef __vector __bool long long bvector_t;
static int const alignment = sizeof(bvector_t);
static_assert(size * sizeof(real_t) == sizeof(bvector_t),
"vector size is wrong");
private:
// true values are -1, false values are 0
// truth values are interpreted bit-wise
static uint_t from_bool(bool a) { return -int_t(a); }
static bool to_bool(uint_t a) { return a; }
public:
typedef boolvec boolvec_t;
typedef intvec<real_t, size> intvec_t;
typedef realvec<real_t, size> realvec_t;
// Short names for type casts
typedef real_t R;
typedef int_t I;
typedef uint_t U;
typedef realvec_t RV;
typedef intvec_t IV;
typedef boolvec_t BV;
typedef floatprops<real_t> FP;
typedef mathfuncs<realvec_t> MF;
bvector_t v;
boolvec() {}
// Can't have a non-trivial copy constructor; if so, objects won't
// be passed in registers
// boolvec(boolvec const& x): v(x.v) {}
// boolvec& operator=(boolvec const& x) { return v=x.v, *this; }
boolvec(bvector_t x) : v(x) {}
boolvec(bool a)
: v((bvector_t)vec_splats((unsigned long long)from_bool(a))) {}
boolvec(bool const *as) {
for (int d = 0; d < size; ++d)
set_elt(d, as[d]);
}
operator bvector_t() const { return v; }
bool operator[](int n) const {
return to_bool(vecmathlib::get_elt<BV, bvector_t, uint_t>(v, n));
}
boolvec &set_elt(int n, bool a) {
return vecmathlib::set_elt<BV, bvector_t, uint_t>(v, n, from_bool(a)),
*this;
}
intvec_t as_int() const; // defined after intvec
intvec_t convert_int() const; // defined after intvec
boolvec operator!() const { return vec_nor(v, v); }
boolvec operator&&(boolvec x) const { return vec_and(v, x.v); }
boolvec operator||(boolvec x) const { return vec_or(v, x.v); }
boolvec operator==(boolvec x) const { return !(*this != x); }
boolvec operator!=(boolvec x) const { return vec_xor(v, x.v); }
bool all() const { return vec_all_ne(v, BV(false)); }
bool any() const { return vec_any_ne(v, BV(false)); }
// ifthen(condition, then-value, else-value)
boolvec_t ifthen(boolvec_t x, boolvec_t y) const;
intvec_t ifthen(intvec_t x, intvec_t y) const; // defined after intvec
realvec_t ifthen(realvec_t x, realvec_t y) const; // defined after realvec
};
template <> struct intvec<double, 2> : floatprops<double> {
static int const size = 2;
typedef int_t scalar_t;
typedef __vector signed long long ivector_t;
static int const alignment = sizeof(ivector_t);
static_assert(size * sizeof(real_t) == sizeof(ivector_t),
"vector size is wrong");
typedef boolvec<real_t, size> boolvec_t;
typedef intvec intvec_t;
typedef realvec<real_t, size> realvec_t;
// Short names for type casts
typedef real_t R;
typedef int_t I;
typedef uint_t U;
typedef realvec_t RV;
typedef intvec_t IV;
typedef boolvec_t BV;
typedef floatprops<real_t> FP;
typedef mathfuncs<realvec_t> MF;
ivector_t v;
intvec() {}
// Can't have a non-trivial copy constructor; if so, objects won't
// be passed in registers
// intvec(intvec const& x): v(x.v) {}
// intvec& operator=(intvec const& x) { return v=x.v, *this; }
intvec(ivector_t x) : v(x) {}
intvec(int_t a) : v(vec_splats((long long)a)) {}
intvec(int_t const *as) {
for (int d = 0; d < size; ++d)
set_elt(d, as[d]);
}
static intvec iota() { return (__vector signed long long){0, 1}; }
operator ivector_t() const { return v; }
int_t operator[](int n) const {
return vecmathlib::get_elt<IV, ivector_t, int_t>(v, n);
}
intvec_t &set_elt(int n, int_t a) {
return vecmathlib::set_elt<IV, ivector_t, int_t>(v, n, a), *this;
}
// Vector casts do not change the bit battern
boolvec_t as_bool() const { return (__vector __bool long long)v; }
boolvec_t convert_bool() const { return *this != IV(I(0)); }
realvec_t as_float() const; // defined after realvec
realvec_t convert_float() const; // defined after realvec
// Permutation control words
private:
// 0123 4567 -> 1436
// exchange pairs
static __vector unsigned char perm_int_swap() {
return (__vector unsigned char){4, 5, 6, 7, 16, 17, 18, 19,
12, 13, 14, 15, 24, 25, 26, 27};
}
// 0123 4567 -> 0426
// broadcast high elements of pairs
static __vector unsigned char perm_int_bchi() {
return (__vector unsigned char){0, 1, 2, 3, 16, 17, 18, 19,
8, 9, 10, 11, 24, 25, 26, 27};
}
public:
intvec operator+() const { return *this; }
intvec operator-() const { return vec_neg(v); }
intvec operator+(intvec x) const { return vec_add(v, x.v); }
intvec operator-(intvec x) const { return vec_sub(v, x.v); }
intvec operator*(intvec x) const { return vec_mul(v, x.v); }
intvec operator/(intvec x) const { return vec_div(v, x.v); }
intvec operator%(intvec x) const { return *this - *this / x * x; }
intvec &operator+=(intvec const &x) { return *this = *this + x; }
intvec &operator-=(intvec const &x) { return *this = *this - x; }
intvec &operator*=(intvec const &x) { return *this = *this * x; }
intvec &operator/=(intvec const &x) { return *this = *this / x; }
intvec &operator%=(intvec const &x) { return *this = *this % x; }
intvec operator~() const {
return (__vector signed long long)vec_nor((__vector signed int)v,
(__vector signed int)v);
}
intvec operator&(intvec x) const {
return (__vector signed long long)vec_and((__vector signed int)v,
(__vector signed int)x.v);
}
intvec operator|(intvec x) const {
return (__vector signed long long)vec_or((__vector signed int)v,
(__vector signed int)x.v);
}
intvec operator^(intvec x) const {
return (__vector signed long long)vec_xor((__vector signed int)v,
(__vector signed int)x.v);
}
intvec &operator&=(intvec const &x) { return *this = *this & x; }
intvec &operator|=(intvec const &x) { return *this = *this | x; }
intvec &operator^=(intvec const &x) { return *this = *this ^ x; }
intvec_t bitifthen(intvec_t x, intvec_t y) const;
intvec lsr(int_t n) const { return lsr(IV(n)); }
intvec_t rotate(int_t n) const;
intvec operator>>(int_t n) const { return *this >> IV(n); }
intvec operator<<(int_t n) const { return *this << IV(n); }
intvec &operator>>=(int_t n) { return *this = *this >> n; }
intvec &operator<<=(int_t n) { return *this = *this << n; }
intvec lsr(intvec n) const {
// return vec_sr(v, (__vector unsigned long long)n.v);
intvec r;
for (int i = 0; i < size; ++i) {
r.set_elt(i, U((*this)[i]) >> U(n[i]));
}
return r;
}
intvec_t rotate(intvec_t n) const;
intvec operator>>(intvec n) const {
// return vec_sra(v, (__vector unsigned long long)n.v);
intvec r;
for (int i = 0; i < size; ++i) {
r.set_elt(i, (*this)[i] >> n[i]);
}
return r;
}
intvec operator<<(intvec n) const {
// return vec_sl(v, (__vector unsigned long long)n.v);
intvec r;
for (int i = 0; i < size; ++i) {
r.set_elt(i, (*this)[i] << n[i]);
}
return r;
}
intvec &operator>>=(intvec n) { return *this = *this >> n; }
intvec &operator<<=(intvec n) { return *this = *this << n; }
intvec_t clz() const;
intvec_t popcount() const;
boolvec_t operator==(intvec const &x) const {
// return vec_cmpeq(v, x.v);
__vector signed int a = (__vector signed int)v;
__vector signed int b = (__vector signed int)x.v;
__vector __bool int c = vec_cmpeq(a, b);
__vector __bool int cx = vec_perm(c, c, perm_int_swap());
__vector __bool int r = vec_and(c, cx);
return (__vector __bool long long)r;
}
boolvec_t operator!=(intvec const &x) const { return !(*this == x); }
boolvec_t operator<(intvec const &x) const {
__vector signed int a = (__vector signed int)v;
__vector signed int b = (__vector signed int)x.v;
__vector __bool int lt = vec_cmplt(a, b);
__vector __bool int eq = vec_cmpeq(a, b);
__vector unsigned int ua = (__vector unsigned int)v;
__vector unsigned int ub = (__vector unsigned int)x.v;
__vector __bool int ult = vec_cmplt(ua, ub);
__vector __bool int ultx = vec_perm(ult, ult, perm_int_swap());
__vector __bool int r = vec_or(lt, vec_and(eq, ultx));
r = vec_perm(r, r, perm_int_bchi());
return (__vector __bool long long)r;
}
boolvec_t operator<=(intvec const &x) const { return !(*this > x); }
boolvec_t operator>(intvec const &x) const { return x < *this; }
boolvec_t operator>=(intvec const &x) const { return !(*this < x); }
intvec_t abs() const;
boolvec_t isignbit() const { return (*this >> (bits - 1)).as_bool(); }
intvec_t max(intvec_t x) const;
intvec_t min(intvec_t x) const;
};
template <> struct realvec<double, 2> : floatprops<double> {
static int const size = 2;
typedef real_t scalar_t;
typedef __vector double vector_t;
static int const alignment = sizeof(vector_t);
static char const *name() { return "<VSX:2*double>"; }
void barrier() { __asm__("" : "+v"(v)); }
static_assert(size * sizeof(real_t) == sizeof(vector_t),
"vector size is wrong");
typedef boolvec<real_t, size> boolvec_t;
typedef intvec<real_t, size> intvec_t;
typedef realvec realvec_t;
// Short names for type casts
typedef real_t R;
typedef int_t I;
typedef uint_t U;
typedef realvec_t RV;
typedef intvec_t IV;
typedef boolvec_t BV;
typedef floatprops<real_t> FP;
typedef mathfuncs<realvec_t> MF;
vector_t v;
realvec() {}
// Can't have a non-trivial copy constructor; if so, objects won't
// be passed in registers
// realvec(realvec const& x): v(x.v) {}
// realvec& operator=(realvec const& x) { return v=x.v, *this; }
realvec(vector_t x) : v(x) {}
realvec(real_t a) : v(vec_splats(a)) {}
realvec(real_t const *as) {
for (int d = 0; d < size; ++d)
set_elt(d, as[d]);
}
operator vector_t() const { return v; }
real_t operator[](int n) const {
return vecmathlib::get_elt<RV, vector_t, real_t>(v, n);
}
realvec_t &set_elt(int n, real_t a) {
return vecmathlib::set_elt<RV, vector_t, real_t>(v, n, a), *this;
}
typedef vecmathlib::mask_t<realvec_t> mask_t;
static realvec_t loada(real_t const *p) {
VML_ASSERT(intptr_t(p) % alignment == 0);
return vec_xld2(0, (real_t *)p);
}
static realvec_t loadu(real_t const *p) {
// TODO: Can this handle unaligned access?
return vec_xld2(0, (real_t *)p);
}
static realvec_t loadu(real_t const *p, std::ptrdiff_t ioff) {
VML_ASSERT(intptr_t(p) % alignment == 0);
if (ioff % realvec::size == 0)
return loada(p + ioff);
return loadu(p + ioff);
}
realvec_t loada(real_t const *p, mask_t const &m) const {
VML_ASSERT(intptr_t(p) % alignment == 0);
if (__builtin_expect(all(m.m), true)) {
return loada(p);
} else {
return m.m.ifthen(loada(p), *this);
}
}
realvec_t loadu(real_t const *p, mask_t const &m) const {
if (__builtin_expect(m.all_m, true)) {
return loadu(p);
} else {
return m.m.ifthen(loadu(p), *this);
}
}
realvec_t loadu(real_t const *p, std::ptrdiff_t ioff, mask_t const &m) const {
VML_ASSERT(intptr_t(p) % alignment == 0);
if (ioff % realvec::size == 0)
return loada(p + ioff, m);
return loadu(p + ioff, m);
}
void storea(real_t *p) const {
VML_ASSERT(intptr_t(p) % alignment == 0);
vec_xstd2(v, 0, p);
}
void storeu(real_t *p) const {
// Vector stores would require vector loads, which would need to
// be atomic
// TODO: see <https://developer.apple.com/hardwaredrivers/ve/alignment.html>
// for good ideas
p[0] = (*this)[0];
p[1] = (*this)[1];
}
void storeu(real_t *p, std::ptrdiff_t ioff) const {
VML_ASSERT(intptr_t(p) % alignment == 0);
if (ioff % realvec::size == 0)
return storea(p + ioff);
storeu(p + ioff);
}
void storea(real_t *p, mask_t const &m) const {
VML_ASSERT(intptr_t(p) % alignment == 0);
if (__builtin_expect(m.all_m, true)) {
storea(p);
} else {
// Use vec_ste?
if (m.m[0])
p[0] = (*this)[0];
if (m.m[1])
p[1] = (*this)[1];
}
}
void storeu(real_t *p, mask_t const &m) const {
if (__builtin_expect(m.all_m, true)) {
storeu(p);
} else {
// Use vec_ste?
if (m.m[0])
p[0] = (*this)[0];
if (m.m[1])
p[1] = (*this)[1];
}
}
void storeu(real_t *p, std::ptrdiff_t ioff, mask_t const &m) const {
VML_ASSERT(intptr_t(p) % alignment == 0);
if (ioff % realvec::size == 0)
return storea(p + ioff, m);
storeu(p + ioff, m);
}
intvec_t as_int() const { return (__vector signed long long)v; }
intvec_t convert_int() const { return MF::vml_convert_int(*this); }
realvec operator+() const { return *this; }
realvec operator-() const { return RV(0.0) - *this; }
realvec operator+(realvec x) const { return vec_add(v, x.v); }
realvec operator-(realvec x) const { return vec_sub(v, x.v); }
realvec operator*(realvec x) const { return vec_mul(v, x.v); }
realvec operator/(realvec x) const { return vec_div(v, x.v); }
realvec &operator+=(realvec const &x) { return *this = *this + x; }
realvec &operator-=(realvec const &x) { return *this = *this - x; }
realvec &operator*=(realvec const &x) { return *this = *this * x; }
realvec &operator/=(realvec const &x) { return *this = *this / x; }
real_t maxval() const { return vml_std::fmax((*this)[0], (*this)[1]); }
real_t minval() const { return vml_std::fmin((*this)[0], (*this)[1]); }
real_t prod() const { return (*this)[0] * (*this)[1]; }
real_t sum() const { return (*this)[0] + (*this)[1]; }
boolvec_t operator==(realvec const &x) const { return vec_cmpeq(v, x.v); }
boolvec_t operator!=(realvec const &x) const { return !(*this == x); }
boolvec_t operator<(realvec const &x) const { return vec_cmplt(v, x.v); }
boolvec_t operator<=(realvec const &x) const { return vec_cmple(v, x.v); }
boolvec_t operator>(realvec const &x) const { return vec_cmpgt(v, x.v); }
boolvec_t operator>=(realvec const &x) const { return vec_cmpge(v, x.v); }
realvec acos() const { return MF::vml_acos(*this); }
realvec acosh() const { return MF::vml_acosh(*this); }
realvec asin() const { return MF::vml_asin(*this); }
realvec asinh() const { return MF::vml_asinh(*this); }
realvec atan() const { return MF::vml_atan(*this); }
realvec atan2(realvec y) const { return MF::vml_atan2(*this, y); }
realvec atanh() const { return MF::vml_atanh(*this); }
realvec cbrt() const { return MF::vml_cbrt(*this); }
realvec ceil() const { return vec_ceil(v); }
realvec copysign(realvec y) const { return MF::vml_copysign(*this, y); }
realvec cos() const { return MF::vml_cos(*this); }
realvec cosh() const { return MF::vml_cosh(*this); }
realvec exp() const { return MF::vml_exp(*this); }
realvec exp10() const { return MF::vml_exp10(*this); }
realvec exp2() const { return MF::vml_exp2(*this); }
realvec expm1() const { return MF::vml_expm1(*this); }
realvec fabs() const { return vec_abs(v); }
realvec fdim(realvec y) const { return MF::vml_fdim(*this, y); }
realvec floor() const { return vec_floor(v); }
realvec fma(realvec y, realvec z) const { return vec_madd(v, y.v, z.v); }
realvec fmax(realvec y) const { return vec_max(v, y.v); }
realvec fmin(realvec y) const { return vec_min(v, y.v); }
realvec fmod(realvec y) const { return MF::vml_fmod(*this, y); }
realvec frexp(intvec_t *r) const { return MF::vml_frexp(*this, r); }
realvec hypot(realvec y) const { return MF::vml_hypot(*this, y); }
intvec_t ilogb() const { return MF::vml_ilogb(*this); }
boolvec_t isfinite() const { return MF::vml_isfinite(*this); }
boolvec_t isinf() const { return MF::vml_isinf(*this); }
boolvec_t isnan() const { return MF::vml_isnan(*this); }
boolvec_t isnormal() const { return MF::vml_isnormal(*this); }
realvec ldexp(int_t n) const { return MF::vml_ldexp(*this, n); }
realvec ldexp(intvec_t n) const { return MF::vml_ldexp(*this, n); }
realvec log() const { return MF::vml_log(*this); }
realvec log10() const { return MF::vml_log10(*this); }
realvec log1p() const { return MF::vml_log1p(*this); }
realvec log2() const { return MF::vml_log2(*this); }
realvec_t mad(realvec_t y, realvec_t z) const {
return MF::vml_mad(*this, y, z);
}
realvec nextafter(realvec y) const { return MF::vml_nextafter(*this, y); }
realvec pow(realvec y) const { return MF::vml_pow(*this, y); }
realvec rcp() const {
realvec x = *this;
realvec r = vec_re(v); // this is only an approximation
// TODO: use fma
// Note: don't rewrite this expression, this may introduce
// cancellation errors
r += r * (RV(1.0) - x * r); // two Newton iterations (see vml_rcp)
r += r * (RV(1.0) - x * r);
return r;
}
realvec remainder(realvec y) const { return MF::vml_remainder(*this, y); }
realvec rint() const { return vec_round(v); /* sic! */ }
realvec round() const { return MF::vml_round(*this); }
realvec rsqrt() const { return RV(1.0) / sqrt(); }
boolvec_t signbit() const { return MF::vml_signbit(*this); }
realvec sin() const { return MF::vml_sin(*this); }
realvec sinh() const { return MF::vml_sinh(*this); }
realvec sqrt() const { return vec_sqrt(v); }
realvec tan() const { return MF::vml_tan(*this); }
realvec tanh() const { return MF::vml_tanh(*this); }
realvec trunc() const { return vec_trunc(v); }
};
// boolvec definitions
inline intvec<double, 2> boolvec<double, 2>::as_int() const {
return (__vector signed long long)v;
}
inline intvec<double, 2> boolvec<double, 2>::convert_int() const {
return -(__vector signed long long)v;
}
inline boolvec<double, 2> boolvec<double, 2>::ifthen(boolvec_t x,
boolvec_t y) const {
return vec_sel(y.v, x.v, v);
}
inline intvec<double, 2> boolvec<double, 2>::ifthen(intvec_t x,
intvec_t y) const {
return vec_sel(y.v, x.v, v);
}
inline realvec<double, 2> boolvec<double, 2>::ifthen(realvec_t x,
realvec_t y) const {
return vec_sel(y.v, x.v, v);
}
// intvec definitions
inline intvec<double, 2> intvec<double, 2>::abs() const {
return MF::vml_abs(*this);
}
inline realvec<double, 2> intvec<double, 2>::as_float() const {
return (__vector double)v;
}
inline intvec<double, 2> intvec<double, 2>::bitifthen(intvec_t x,
intvec_t y) const {
return MF::vml_bitifthen(*this, x, y);
}
inline intvec<double, 2> intvec<double, 2>::clz() const {
return MF::vml_clz(*this);
}
inline realvec<double, 2> intvec<double, 2>::convert_float() const {
// return vec_ctd(v, 0);
return MF::vml_convert_float(*this);
}
inline intvec<double, 2> intvec<double, 2>::max(intvec_t x) const {
return MF::vml_max(*this, x);
}
inline intvec<double, 2> intvec<double, 2>::min(intvec_t x) const {
return MF::vml_min(*this, x);
}
inline intvec<double, 2> intvec<double, 2>::popcount() const {
return MF::vml_popcount(*this);
}
inline intvec<double, 2> intvec<double, 2>::rotate(int_t n) const {
return MF::vml_rotate(*this, n);
}
inline intvec<double, 2> intvec<double, 2>::rotate(intvec_t n) const {
return MF::vml_rotate(*this, n);
}
} // namespace vecmathlib
#endif // #ifndef VEC_VSX_DOUBLE2_H
|