1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
|
// -*-C++-*-
#ifndef VEC_QPX_DOUBLE4_H
#define VEC_QPX_DOUBLE4_H
#include "floatprops.h"
#include "mathfuncs.h"
#include "vec_base.h"
#include <cmath>
#warning "TODO"
#include <iostream>
// QPX intrinsics
#ifdef __clang__
# include <qpxintrin.h>
#else
# include <builtins.h>
#endif
#include <mass_simd.h>
namespace vecmathlib {
#define VECMATHLIB_HAVE_VEC_DOUBLE_4
template<> struct boolvec<double,4>;
template<> struct intvec<double,4>;
template<> struct realvec<double,4>;
template<>
struct boolvec<double,4>: floatprops<double>
{
static int const size = 4;
typedef bool scalar_t;
typedef vector4double bvector_t;
static int const alignment = sizeof(bvector_t);
static_assert(size * sizeof(real_t) == sizeof(bvector_t),
"vector size is wrong");
private:
// canonical true is +1.0, canonical false is -1.0
// >=0 is true, -0 is true, nan is false
static real_t from_bool(bool a) { return a ? +1.0 : -1.0; }
static bool to_bool(real_t a) { return a>=0.0; }
public:
typedef boolvec boolvec_t;
typedef intvec<real_t, size> intvec_t;
typedef realvec<real_t, size> realvec_t;
// Short names for type casts
typedef real_t R;
typedef int_t I;
typedef uint_t U;
typedef realvec_t RV;
typedef intvec_t IV;
typedef boolvec_t BV;
typedef floatprops<real_t> FP;
typedef mathfuncs<realvec_t> MF;
bvector_t v;
boolvec() {}
// Can't have a non-trivial copy constructor; if so, objects won't
// be passed in registers
// boolvec(boolvec const& x): v(x.v) {}
// boolvec& operator=(boolvec const& x) { return v=x.v, *this; }
boolvec(bvector_t x): v(x) {}
boolvec(bool a): v(vec_splats(from_bool(a))) {}
boolvec(bool const* as)
{
for (int d=0; d<size; ++d) set_elt(d, as[d]);
}
operator bvector_t() const { return v; }
bool operator[](int n) const
{
return to_bool(v[n]);
}
boolvec& set_elt(int n, bool a)
{
return v[n]=from_bool(a), *this;
}
intvec_t as_int() const; // defined after intvec
intvec_t convert_int() const; // defined after intvec
boolvec operator!() const { return vec_not(v); }
boolvec operator&&(boolvec x) const { return vec_and(v, x.v); }
boolvec operator||(boolvec x) const { return vec_or(v, x.v); }
boolvec operator==(boolvec x) const { return vec_logical(v, x.v, 0x9); }
boolvec operator!=(boolvec x) const { return vec_xor(v, x.v); }
bool all() const
{
return (*this)[0] && (*this)[1] && (*this)[2] && (*this)[3];
}
bool any() const
{
return (*this)[0] || (*this)[1] || (*this)[2] || (*this)[3];
}
// ifthen(condition, then-value, else-value)
intvec_t ifthen(intvec_t x, intvec_t y) const; // defined after intvec
realvec_t ifthen(realvec_t x, realvec_t y) const; // defined after realvec
};
template<>
struct intvec<double,4>: floatprops<double>
{
static int const size = 4;
typedef int_t scalar_t;
typedef vector4double ivector_t;
static int const alignment = sizeof(ivector_t);
static_assert(size * sizeof(real_t) == sizeof(ivector_t),
"vector size is wrong");
typedef boolvec<real_t, size> boolvec_t;
typedef intvec intvec_t;
typedef realvec<real_t, size> realvec_t;
// Short names for type casts
typedef real_t R;
typedef int_t I;
typedef uint_t U;
typedef realvec_t RV;
typedef intvec_t IV;
typedef boolvec_t BV;
typedef floatprops<real_t> FP;
typedef mathfuncs<realvec_t> MF;
ivector_t v;
intvec() {}
// Can't have a non-trivial copy constructor; if so, objects won't
// be passed in registers
// intvec(intvec const& x): v(x.v) {}
// intvec& operator=(intvec const& x) { return v=x.v, *this; }
intvec(ivector_t x): v(x) {}
intvec(int_t a): v(vec_splats(FP::as_float(a))) {}
intvec(int_t const* as)
{
for (int d=0; d<size; ++d) set_elt(d, as[d]);
}
static intvec iota()
{
const int_t iota_[] = {0, 1, 2, 4};
return intvec(iota_);
}
operator ivector_t() const { return v; }
int_t operator[](int n) const
{
return FP::as_int(v[n]);
}
intvec& set_elt(int n, int_t a)
{
return v[n]=FP::as_float(a), *this;
}
// Vector casts do not change the bit battern
boolvec_t as_bool() const { return v; }
boolvec_t convert_bool() const { return *this != IV(I(0)); }
realvec_t as_float() const; // defined after realvec
realvec_t convert_float() const; // defined after realvec
intvec operator+() const { return *this; }
intvec operator-() const
{
intvec r;
for (int d=0; d<size; ++d) r.set_elt(d, -(*this)[d]);
return r;
}
intvec operator+(intvec x) const
{
intvec r;
for (int d=0; d<size; ++d) r.set_elt(d, (*this)[d] + x[d]);
return r;
}
intvec operator-(intvec x) const
{
intvec r;
for (int d=0; d<size; ++d) r.set_elt(d, (*this)[d] - x[d]);
return r;
}
intvec& operator+=(intvec const& x) { return *this=*this+x; }
intvec& operator-=(intvec const& x) { return *this=*this-x; }
intvec operator~() const
{
intvec r;
for (int d=0; d<size; ++d) r.set_elt(d, ~(*this)[d]);
return r;
}
intvec operator&(intvec x) const
{
intvec r;
for (int d=0; d<size; ++d) r.set_elt(d, (*this)[d] & x[d]);
return r;
}
intvec operator|(intvec x) const
{
intvec r;
for (int d=0; d<size; ++d) r.set_elt(d, (*this)[d] | x[d]);
return r;
}
intvec operator^(intvec x) const
{
intvec r;
for (int d=0; d<size; ++d) r.set_elt(d, (*this)[d] ^ x[d]);
return r;
}
intvec& operator&=(intvec const& x) { return *this=*this&x; }
intvec& operator|=(intvec const& x) { return *this=*this|x; }
intvec& operator^=(intvec const& x) { return *this=*this^x; }
intvec lsr(int_t n) const
{
intvec r;
for (int d=0; d<size; ++d) r.set_elt(d, U((*this)[d]) >> U(n));
return r;
}
intvec operator>>(int_t n) const
{
intvec r;
for (int d=0; d<size; ++d) r.set_elt(d, (*this)[d] >> n);
return r;
}
intvec operator<<(int_t n) const
{
intvec r;
for (int d=0; d<size; ++d) r.set_elt(d, (*this)[d] << n);
return r;
}
intvec& operator>>=(int_t n) { return *this=*this>>n; }
intvec& operator<<=(int_t n) { return *this=*this<<n; }
intvec lsr(intvec n) const
{
intvec r;
for (int d=0; d<size; ++d) r.set_elt(d, U((*this)[d]) >> U(n[d]));
return r;
}
intvec operator>>(intvec n) const
{
intvec r;
for (int d=0; d<size; ++d) r.set_elt(d, (*this)[d] >> n[d]);
return r;
}
intvec operator<<(intvec n) const
{
intvec r;
for (int d=0; d<size; ++d) r.set_elt(d, (*this)[d] << n[d]);
return r;
}
intvec& operator>>=(intvec n) { return *this=*this>>n; }
intvec& operator<<=(intvec n) { return *this=*this<<n; }
boolvec_t signbit() const
{
return *this < IV(I(0));
}
boolvec_t operator==(intvec const& x) const
{
boolvec_t r;
for (int d=0; d<size; ++d) r.set_elt(d, (*this)[d] == x[d]);
return r;
}
boolvec_t operator!=(intvec const& x) const
{
boolvec_t r;
for (int d=0; d<size; ++d) r.set_elt(d, (*this)[d] != x[d]);
return r;
}
boolvec_t operator<(intvec const& x) const
{
boolvec_t r;
for (int d=0; d<size; ++d) r.set_elt(d, (*this)[d] < x[d]);
return r;
}
boolvec_t operator<=(intvec const& x) const
{
boolvec_t r;
for (int d=0; d<size; ++d) r.set_elt(d, (*this)[d] <= x[d]);
return r;
}
boolvec_t operator>(intvec const& x) const
{
boolvec_t r;
for (int d=0; d<size; ++d) r.set_elt(d, (*this)[d] > x[d]);
return r;
}
boolvec_t operator>=(intvec const& x) const
{
boolvec_t r;
for (int d=0; d<size; ++d) r.set_elt(d, (*this)[d] >= x[d]);
return r;
}
};
template<>
struct realvec<double,4>: floatprops<double>
{
static int const size = 4;
typedef real_t scalar_t;
typedef vector4double vector_t;
static int const alignment = sizeof(vector_t);
static char const* name() { return "<QPX:4*double>"; }
void barrier() { __asm__("": "+v"(v)); }
static_assert(size * sizeof(real_t) == sizeof(vector_t),
"vector size is wrong");
typedef boolvec<real_t, size> boolvec_t;
typedef intvec<real_t, size> intvec_t;
typedef realvec realvec_t;
// Short names for type casts
typedef real_t R;
typedef int_t I;
typedef uint_t U;
typedef realvec_t RV;
typedef intvec_t IV;
typedef boolvec_t BV;
typedef floatprops<real_t> FP;
typedef mathfuncs<realvec_t> MF;
vector_t v;
realvec() {}
// Can't have a non-trivial copy constructor; if so, objects won't
// be passed in registers
// realvec(realvec const& x): v(x.v) {}
// realvec& operator=(realvec const& x) { return v=x.v, *this; }
realvec(vector_t x): v(x) {}
realvec(real_t a): v(vec_splats(a)) {}
realvec(real_t const* as)
{
for (int d=0; d<size; ++d) set_elt(d, as[d]);
}
operator vector_t() const { return v; }
real_t operator[](int n) const
{
return v[n];
}
realvec& set_elt(int n, real_t a)
{
return v[n]=a, *this;
}
typedef vecmathlib::mask_t<realvec_t> mask_t;
static realvec_t loada(real_t const* p)
{
VML_ASSERT(intptr_t(p) % alignment == 0);
return vec_lda(0, (real_t*)p);
}
static realvec_t loadu(real_t const* p)
{
realvec_t v0 = vec_ld(0, (real_t*)p);
realvec_t v1 = vec_ld(31, (real_t*)p);
return vec_perm(v0.v, v1.v, vec_lvsl(0, (real_t*)p));
}
static realvec_t loadu(real_t const* p, std::ptrdiff_t ioff)
{
VML_ASSERT(intptr_t(p) % alignment == 0);
if (ioff % realvec::size == 0) return loada(p+ioff);
// TODO: use load instruction with fixed offset
return loadu(p+ioff);
}
realvec_t loada(real_t const* p, mask_t const& m) const
{
VML_ASSERT(intptr_t(p) % alignment == 0);
if (__builtin_expect(all(m.m), true)) {
return loada(p);
} else {
return m.m.ifthen(loada(p), *this);
}
}
realvec_t loadu(real_t const* p, mask_t const& m) const
{
if (__builtin_expect(m.all_m, true)) {
return loadu(p);
} else {
return m.m.ifthen(loadu(p), *this);
}
}
realvec_t loadu(real_t const* p, std::ptrdiff_t ioff, mask_t const& m) const
{
VML_ASSERT(intptr_t(p) % alignment == 0);
if (ioff % realvec::size == 0) return loada(p+ioff, m);
// TODO: use load instruction with fixed offset
return loadu(p+ioff, m);
}
void storea(real_t* p) const
{
VML_ASSERT(intptr_t(p) % alignment == 0);
#warning "TODO"
std::cout << "yes this is storea\n";
vec_sta(v, 0, p);
}
void storeu(real_t* p) const
{
// Vector stores would require vector loads, which would need to
// be atomic
// TODO: see <https://developer.apple.com/hardwaredrivers/ve/alignment.html> for good ideas
p[0] = (*this)[0];
p[1] = (*this)[1];
p[2] = (*this)[2];
p[3] = (*this)[3];
}
void storeu(real_t* p, std::ptrdiff_t ioff) const
{
VML_ASSERT(intptr_t(p) % alignment == 0);
if (ioff % realvec::size == 0) return storea(p+ioff);
storeu(p+ioff);
}
void storea(real_t* p, mask_t const& m) const
{
VML_ASSERT(intptr_t(p) % alignment == 0);
if (__builtin_expect(m.all_m, true)) {
storea(p);
} else {
if (m.m[0]) p[0] = (*this)[0];
if (m.m[1]) p[1] = (*this)[1];
if (m.m[2]) p[2] = (*this)[2];
if (m.m[3]) p[3] = (*this)[3];
}
}
void storeu(real_t* p, mask_t const& m) const
{
if (__builtin_expect(m.all_m, true)) {
storeu(p);
} else {
if (m.m[0]) p[0] = (*this)[0];
if (m.m[1]) p[1] = (*this)[1];
if (m.m[2]) p[2] = (*this)[2];
if (m.m[3]) p[3] = (*this)[3];
}
}
void storeu(real_t* p, std::ptrdiff_t ioff, mask_t const& m) const
{
VML_ASSERT(intptr_t(p) % alignment == 0);
if (ioff % realvec::size == 0) return storea(p+ioff, m);
storeu(p+ioff, m);
}
intvec_t as_int() const { return v; }
intvec_t convert_int() const { return vec_ctid(v); }
realvec operator+() const { return *this; }
realvec operator-() const { return vec_neg(v); }
realvec operator+(realvec x) const { return vec_add(v, x.v); }
realvec operator-(realvec x) const { return vec_sub(v, x.v); }
realvec operator*(realvec x) const { return vec_mul(v, x.v); }
realvec operator/(realvec x) const
{
// return vec_swdiv_nochk(v, x.v);
return div_fastd4(v, x.v);
}
realvec& operator+=(realvec const& x) { return *this=*this+x; }
realvec& operator-=(realvec const& x) { return *this=*this-x; }
realvec& operator*=(realvec const& x) { return *this=*this*x; }
realvec& operator/=(realvec const& x) { return *this=*this/x; }
real_t prod() const
{
return (*this)[0] * (*this)[1] * (*this)[2] * (*this)[3];
}
real_t sum() const
{
return (*this)[0] + (*this)[1] + (*this)[2] + (*this)[3];
}
boolvec_t operator==(realvec const& x) const { return vec_cmpeq(v, x.v); }
boolvec_t operator!=(realvec const& x) const { return ! (*this == x); }
boolvec_t operator<(realvec const& x) const { return vec_cmplt(v, x.v); }
boolvec_t operator<=(realvec const& x) const { return ! (*this > x); }
boolvec_t operator>(realvec const& x) const { return vec_cmpgt(v, x.v); }
boolvec_t operator>=(realvec const& x) const { return ! (*this < x); }
realvec acos() const { return acosd4(v); }
realvec acosh() const { return acoshd4(v); }
realvec asin() const { return asind4(v); }
realvec asinh() const { return asinhd4(v); }
realvec atan() const { return atand4(v); }
realvec atan2(realvec y) const { return atan2d4(v, y.v); }
realvec atanh() const { return atanhd4(v); }
realvec cbrt() const { return cbrtd4(v); }
realvec ceil() const { return vec_ceil(v); }
realvec copysign(realvec y) const { return vec_cpsgn(v, y.v); }
realvec cos() const { return cosd4(v); }
realvec cosh() const { return coshd4(v); }
realvec exp() const { return expd4(v); }
realvec exp10() const { return exp10d4(v); }
realvec exp2() const { return exp2d4(v); }
realvec expm1() const { return expm1d4(v); }
realvec fabs() const { return vec_abs(v); }
realvec fdim(realvec y) const { return MF::vml_fdim(*this, y); }
realvec floor() const { return vec_floor(v); }
realvec fma(realvec y, realvec z) const { return vec_madd(v, y.v, z.v); }
realvec fmax(realvec y) const { return MF::vml_fmax(v, y.v); }
realvec fmin(realvec y) const { return MF::vml_fmin(v, y.v); }
realvec fmod(realvec y) const { return MF::vml_fmod(*this, y); }
realvec frexp(intvec_t& r) const { return MF::vml_frexp(*this, r); }
realvec hypot(realvec y) const { return hypotd4(v, y.v); }
intvec_t ilogb() const
{
int_t ilogb_[] = {
::ilogb((*this)[0]),
::ilogb((*this)[1]),
::ilogb((*this)[2]),
::ilogb((*this)[3])
};
return intvec_t(ilogb_);
}
boolvec_t isfinite() const { return MF::vml_isfinite(*this); }
boolvec_t isinf() const { return MF::vml_isinf(*this); }
boolvec_t isnan() const
{
#ifdef VML_HAVE_NAN
return vec_tstnan(v, v);
#else
return BV(false);
#endif
}
boolvec_t isnormal() const { return MF::vml_isnormal(*this); }
realvec ldexp(int_t n) const { return ldexp(intvec_t(n)); }
realvec ldexp(intvec_t n) const
{
real_t ldexp_[] = {
std::ldexp((*this)[0], n[0]),
std::ldexp((*this)[1], n[1]),
std::ldexp((*this)[2], n[2]),
std::ldexp((*this)[3], n[3])
};
return realvec_t(ldexp_);
}
realvec log() const { return logd4(v); }
realvec log10() const { return log10d4(v); }
realvec log1p() const { return log1pd4(v); }
realvec log2() const { return log2d4(v); }
realvec nextafter(realvec y) const { return MF::vml_nextafter(*this, y); }
realvec pow(realvec y) const { return powd4(v, y.v); }
realvec rcp() const { return recip_fastd4(v); }
realvec remainder(realvec y) const { return MF::vml_remainder(*this, y); }
realvec rint() const { return MF::vml_rint(*this); }
realvec round() const { return vec_round(v); }
realvec rsqrt() const
{
realvec x = *this;
realvec r = vec_rsqrte(x.v); // this is only an approximation
// TODO: use fma
// one Newton iteration (see vml_rsqrt)
r += RV(0.5)*r * (RV(1.0) - x * r*r);
return r;
}
boolvec_t signbit() const { return !copysign(RV(1.0)).as_int().as_bool(); }
realvec sin() const { return sind4(v); }
realvec sinh() const { return sinhd4(v); }
realvec sqrt() const
{
// return vec_sqrtsw_nochk(v);
return *this * rsqrt();
}
realvec tan() const { return tand4(v); }
realvec tanh() const { return tanhd4(v); }
realvec trunc() const { return vec_trunc(v); }
};
// boolvec definitions
inline
boolvec<double,4>::intvec_t boolvec<double,4>::as_int() const
{
return v;
}
inline
boolvec<double,4>::intvec_t boolvec<double,4>::convert_int() const
{
return ifthen(IV(I(1)), IV(I(0)));
}
inline
boolvec<double,4>::intvec_t boolvec<double,4>::ifthen(intvec_t x,
intvec_t y) const
{
return ifthen(x.as_float(), y.as_float()).as_int();
}
inline
boolvec<double,4>::realvec_t boolvec<double,4>::ifthen(realvec_t x,
realvec_t y) const
{
return vec_sel(y.v, x.v, v);
}
// intvec definitions
inline intvec<double,4>::realvec_t intvec<double,4>::as_float() const
{
return v;
}
inline intvec<double,4>::realvec_t intvec<double,4>::convert_float() const
{
return vec_cfid(v);
}
} // namespace vecmathlib
#endif // #ifndef VEC_QPX_DOUBLE4_H
|