1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
|
// -*-C++-*-
#ifndef VEC_DOUBLE_AVX_H
#define VEC_DOUBLE_AVX_H
#include "floatprops.h"
#include "mathfuncs.h"
#include "vec_base.h"
#include <cmath>
// AVX intrinsics
#include <immintrin.h>
namespace vecmathlib {
#define VECMATHLIB_HAVE_VEC_DOUBLE_4
template<> struct boolvec<double,4>;
template<> struct intvec<double,4>;
template<> struct realvec<double,4>;
template<>
struct boolvec<double,4>: floatprops<double>
{
static int const size = 4;
typedef bool scalar_t;
typedef __m256d bvector_t;
static_assert(size * sizeof(real_t) == sizeof(bvector_t),
"vector size is wrong");
private:
// true values have the sign bit set, false values have it unset
static uint_t from_bool(bool a) { return - uint_t(a); }
static bool to_bool(uint_t a) { return int_t(a) < int_t(0); }
public:
typedef boolvec boolvec_t;
typedef intvec<real_t, size> intvec_t;
typedef realvec<real_t, size> realvec_t;
// Short names for type casts
typedef real_t R;
typedef int_t I;
typedef uint_t U;
typedef realvec_t RV;
typedef intvec_t IV;
typedef boolvec_t BV;
typedef floatprops<real_t> FP;
typedef mathfuncs<realvec_t> MF;
bvector_t v;
boolvec() {}
// Can't have a non-trivial copy constructor; if so, objects won't
// be passed in registers
// boolvec(boolvec const& x): v(x.v) {}
// boolvec& operator=(boolvec const& x) { return v=x.v, *this; }
boolvec(bvector_t x): v(x) {}
boolvec(bool a):
v(_mm256_castsi256_pd(_mm256_set1_epi64x(from_bool(a)))) {}
boolvec(bool const* as):
v(_mm256_castsi256_pd(_mm256_set_epi64x(from_bool(as[3]),
from_bool(as[2]),
from_bool(as[1]),
from_bool(as[0])))) {}
operator bvector_t() const { return v; }
bool operator[](int n) const
{
// return to_bool(((uint_t const*)&v)[n]);
__m128d x =
n & 2 ? _mm256_extractf128_pd(v, 1) : _mm256_castpd256_pd128(v);
switch (n & 1){
case 0: /* do nothing */ break;
case 1: x = _mm_shuffle_pd(x, x, _MM_SHUFFLE2(0,1)); break;
default: assert(0);
}
// return to_bool(FP::as_int(_mm_cvtss_f32(x)));
return to_bool(_mm_cvtsi128_si64(_mm_castpd_si128(x)));
}
boolvec& set_elt(int n, bool a)
{
return ((int_t*)&v)[n] = from_bool(a), *this;
}
intvec_t as_int() const; // defined after intvec
intvec_t convert_int() const; // defined after intvec
boolvec operator!() const { return _mm256_xor_pd(boolvec(true), v); }
boolvec operator&&(boolvec x) const { return _mm256_and_pd(v, x.v); }
boolvec operator||(boolvec x) const { return _mm256_or_pd(v, x.v); }
boolvec operator==(boolvec x) const { return !(*this==x); }
boolvec operator!=(boolvec x) const { return _mm256_xor_pd(v, x.v); }
bool all() const;
bool any() const;
// ifthen(condition, then-value, else-value)
intvec_t ifthen(intvec_t x, intvec_t y) const; // defined after intvec
realvec_t ifthen(realvec_t x, realvec_t y) const; // defined after realvec
};
template<>
struct intvec<double,4>: floatprops<double>
{
static int const size = 4;
typedef int_t scalar_t;
typedef __m256i ivector_t;
static_assert(size * sizeof(real_t) == sizeof(ivector_t),
"vector size is wrong");
typedef boolvec<real_t, size> boolvec_t;
typedef intvec intvec_t;
typedef realvec<real_t, size> realvec_t;
// Short names for type casts
typedef real_t R;
typedef int_t I;
typedef uint_t U;
typedef realvec_t RV;
typedef intvec_t IV;
typedef boolvec_t BV;
typedef floatprops<real_t> FP;
typedef mathfuncs<realvec_t> MF;
ivector_t v;
intvec() {}
// Can't have a non-trivial copy constructor; if so, objects won't
// be passed in registers
// intvec(intvec const& x): v(x.v) {}
// intvec& operator=(intvec const& x) { return v=x.v, *this; }
intvec(ivector_t x): v(x) {}
intvec(int_t a): v(_mm256_set1_epi64x(a)) {}
intvec(int_t const* as): v(_mm256_set_epi64x(as[3], as[2], as[1], as[0])) {}
static intvec iota() { return _mm256_set_epi64x(3, 2, 1, 0); }
operator ivector_t() const { return v; }
int_t operator[](int n) const
{
// return ((int_t const*)&v)[n];
__m128i x =
n & 2 ? _mm256_extractf128_si256(v, 1) : _mm256_castsi256_si128(v);
switch (n & 1){
case 0: /* do nothing */ break;
case 1: x = _mm_castpd_si128(_mm_shuffle_pd(_mm_castsi128_pd(x),
_mm_castsi128_pd(x),
_MM_SHUFFLE2(0,1))); break;
default: assert(0);
}
return _mm_cvtsi128_si64(x);
}
intvec& set_elt(int n, int_t a) { return ((int_t*)&v)[n]=a, *this; }
boolvec_t as_bool() const { return _mm256_castsi256_pd(v); }
boolvec_t convert_bool() const
{
// Result: convert_bool(0)=false, convert_bool(else)=true
// There is no intrinsic to compare with zero. Instead, we check
// whether x is positive and x-1 is negative.
intvec x = *this;
// We know that boolvec values depend only on the sign bit
// return (~(x-1) | x).as_bool();
// return x.as_bool() || !(x-1).as_bool();
return x.as_bool() || (x + (FP::signbit_mask - 1)).as_bool();
}
realvec_t as_float() const; // defined after realvec
realvec_t convert_float() const; // defined after realvec
// Note: not all arithmetic operations are supported!
intvec operator+() const { return *this; }
intvec operator-() const { return IV(I(0)) - *this; }
intvec operator+(intvec x) const
{
__m128i vlo = _mm256_castsi256_si128(v);
__m128i vhi = _mm256_extractf128_si256(v, 1);
__m128i xvlo = _mm256_castsi256_si128(x.v);
__m128i xvhi = _mm256_extractf128_si256(x.v, 1);
vlo = _mm_add_epi64(vlo, xvlo);
vhi = _mm_add_epi64(vhi, xvhi);
return _mm256_insertf128_si256(_mm256_castsi128_si256(vlo), vhi, 1);
}
intvec operator-(intvec x) const
{
__m128i vlo = _mm256_castsi256_si128(v);
__m128i vhi = _mm256_extractf128_si256(v, 1);
__m128i xvlo = _mm256_castsi256_si128(x.v);
__m128i xvhi = _mm256_extractf128_si256(x.v, 1);
vlo = _mm_sub_epi64(vlo, xvlo);
vhi = _mm_sub_epi64(vhi, xvhi);
return _mm256_insertf128_si256(_mm256_castsi128_si256(vlo), vhi, 1);
}
intvec& operator+=(intvec const& x) { return *this=*this+x; }
intvec& operator-=(intvec const& x) { return *this=*this-x; }
intvec operator~() const { return IV(~U(0)) ^ *this; }
intvec operator&(intvec x) const
{
return _mm256_castpd_si256(_mm256_and_pd(_mm256_castsi256_pd(v),
_mm256_castsi256_pd(x.v)));
}
intvec operator|(intvec x) const
{
return _mm256_castpd_si256(_mm256_or_pd(_mm256_castsi256_pd(v),
_mm256_castsi256_pd(x.v)));
}
intvec operator^(intvec x) const
{
return _mm256_castpd_si256(_mm256_xor_pd(_mm256_castsi256_pd(v),
_mm256_castsi256_pd(x.v)));
}
intvec& operator&=(intvec const& x) { return *this=*this&x; }
intvec& operator|=(intvec const& x) { return *this=*this|x; }
intvec& operator^=(intvec const& x) { return *this=*this^x; }
intvec lsr(int_t n) const
{
__m128i vlo = _mm256_castsi256_si128(v);
__m128i vhi = _mm256_extractf128_si256(v, 1);
vlo = _mm_srli_epi64(vlo, n);
vhi = _mm_srli_epi64(vhi, n);
return _mm256_insertf128_si256(_mm256_castsi128_si256(vlo), vhi, 1);
}
intvec operator>>(int_t n) const
{
__m128i vlo = _mm256_castsi256_si128(v);
__m128i vhi = _mm256_extractf128_si256(v, 1);
// There is no _mm_srai_epi64. To emulate it, add 0x80000000
// before shifting, and subtract the shifted 0x80000000 after
// shifting
#if 0
__m128i signmask01 = _mm_sub_epi64(_mm_set1_epi64x(0),
_mm_srli_epi64(vlo, 63));
__m128i signmask23 = _mm_sub_epi64(_mm_set1_epi64x(0),
_mm_srli_epi64(vhi, 63));
vlo = _mm_xor_si128(signmask01, vlo);
vhi = _mm_xor_si128(signmask23, vhi);
vlo = _mm_srli_epi64(vlo, n);
vhi = _mm_srli_epi64(vhi, n);
vlo = _mm_xor_si128(signmask01, vlo);
vhi = _mm_xor_si128(signmask23, vhi);
#else
// Convert signed to unsiged
vlo = _mm_add_epi64(vlo, _mm_set1_epi64x(U(1) << (bits-1)));
vhi = _mm_add_epi64(vhi, _mm_set1_epi64x(U(1) << (bits-1)));
// Shift
vlo = _mm_srli_epi64(vlo, n);
vhi = _mm_srli_epi64(vhi, n);
// Undo conversion
vlo = _mm_sub_epi64(vlo, _mm_set1_epi64x(U(1) << (bits-n)));
vhi = _mm_sub_epi64(vhi, _mm_set1_epi64x(U(1) << (bits-n)));
#endif
return _mm256_insertf128_si256(_mm256_castsi128_si256(vlo), vhi, 1);
}
intvec operator<<(int_t n) const
{
__m128i vlo = _mm256_castsi256_si128(v);
__m128i vhi = _mm256_extractf128_si256(v, 1);
vlo = _mm_slli_epi64(vlo, n);
vhi = _mm_slli_epi64(vhi, n);
return _mm256_insertf128_si256(_mm256_castsi128_si256(vlo), vhi, 1);
}
intvec& operator>>=(int_t n) { return *this=*this>>n; }
intvec& operator<<=(int_t n) { return *this=*this<<n; }
intvec lsr(intvec n) const
{
__m128i vlo = _mm256_castsi256_si128(v);
__m128i vhi = _mm256_extractf128_si256(v, 1);
__m128i nvlo = _mm256_castsi256_si128(n.v);
__m128i nvhi = _mm256_extractf128_si256(n.v, 1);
vlo = _mm_srl_epi64(vlo, nvlo);
vhi = _mm_srl_epi64(vhi, nvhi);
return _mm256_insertf128_si256(_mm256_castsi128_si256(vlo), vhi, 1);
}
intvec operator>>(intvec n) const
{
__m128i vlo = _mm256_castsi256_si128(v);
__m128i vhi = _mm256_extractf128_si256(v, 1);
__m128i nvlo = _mm256_castsi256_si128(n.v);
__m128i nvhi = _mm256_extractf128_si256(n.v, 1);
#if 0
// There is no _mm_srai_epi64. To emulate it, invert all bits
// before and after shifting if the sign bit is set.
__m128i signmask01 = _mm_sub_epi64(_mm_set1_epi64x(0),
_mm_srli_epi64(vlo, 63));
__m128i signmask23 = _mm_sub_epi64(_mm_set1_epi64x(0),
_mm_srli_epi64(vhi, 63));
vlo = _mm_xor_si128(signmask01, vlo);
vhi = _mm_xor_si128(signmask23, vhi);
vlo = _mm_srl_epi64(vlo, nvlo);
vhi = _mm_srl_epi64(vhi, nvhi);
vlo = _mm_xor_si128(signmask01, vlo);
vhi = _mm_xor_si128(signmask23, vhi);
#else
// Convert signed to unsiged
vlo = _mm_add_epi64(vlo, _mm_set1_epi64x(U(1) << (bits-1)));
vhi = _mm_add_epi64(vhi, _mm_set1_epi64x(U(1) << (bits-1)));
// Shift
vlo = _mm_srl_epi64(vlo, nvlo);
vhi = _mm_srl_epi64(vhi, nvhi);
// Undo conversion
vlo = _mm_sub_epi64(vlo,
_mm_sll_epi64(_mm_set1_epi64x(1),
_mm_sub_epi64(_mm_set1_epi64x(bits),
nvlo)));
vhi = _mm_sub_epi64(vhi,
_mm_sll_epi64(_mm_set1_epi64x(1),
_mm_sub_epi64(_mm_set1_epi64x(bits),
nvhi)));
#endif
return _mm256_insertf128_si256(_mm256_castsi128_si256(vlo), vhi, 1);
}
intvec operator<<(intvec n) const
{
__m128i vlo = _mm256_castsi256_si128(v);
__m128i vhi = _mm256_extractf128_si256(v, 1);
__m128i nvlo = _mm256_castsi256_si128(n.v);
__m128i nvhi = _mm256_extractf128_si256(n.v, 1);
vlo = _mm_sll_epi64(vlo, nvlo);
vhi = _mm_sll_epi64(vhi, nvhi);
return _mm256_insertf128_si256(_mm256_castsi128_si256(vlo), vhi, 1);
}
intvec& operator>>=(intvec n) { return *this=*this>>n; }
intvec& operator<<=(intvec n) { return *this=*this<<n; }
boolvec_t operator==(intvec const& x) const
{
return ! (*this != x);
}
boolvec_t operator!=(intvec const& x) const
{
return (*this ^ x).convert_bool();
}
boolvec_t operator<(intvec const& x) const
{
return (*this - x).as_bool();
}
boolvec_t operator<=(intvec const& x) const
{
return ! (*this > x);
}
boolvec_t operator>(intvec const& x) const
{
return x < *this;
}
boolvec_t operator>=(intvec const& x) const
{
return ! (*this < x);
}
};
template<>
struct realvec<double,4>: floatprops<double>
{
static int const size = 4;
typedef real_t scalar_t;
typedef __m256d vector_t;
static char const* name() { return "<AVX:4*double>"; }
inline void barrier() { asm("": "+x" (v)); }
static_assert(size * sizeof(real_t) == sizeof(vector_t),
"vector size is wrong");
typedef boolvec<real_t, size> boolvec_t;
typedef intvec<real_t, size> intvec_t;
typedef realvec realvec_t;
// Short names for type casts
typedef real_t R;
typedef int_t I;
typedef uint_t U;
typedef realvec_t RV;
typedef intvec_t IV;
typedef boolvec_t BV;
typedef floatprops<real_t> FP;
typedef mathfuncs<realvec_t> MF;
vector_t v;
realvec() {}
// Can't have a non-trivial copy constructor; if so, objects won't
// be passed in registers
// realvec(realvec const& x): v(x.v) {}
// realvec& operator=(realvec const& x) { return v=x.v, *this; }
realvec(vector_t x): v(x) {}
realvec(real_t a): v(_mm256_set1_pd(a)) {}
realvec(real_t const* as): v(_mm256_set_pd(as[3], as[2], as[1], as[0])) {}
operator vector_t() const { return v; }
real_t operator[](int n) const
{
// return ((real_t const*)&v)[n];
__m128d x =
n & 2 ? _mm256_extractf128_pd(v, 1) : _mm256_castpd256_pd128(v);
switch (n & 1){
case 0: /* do nothing */ break;
case 1: x = _mm_shuffle_pd(x, x, _MM_SHUFFLE2(0,1)); break;
default: assert(0);
}
return _mm_cvtsd_f64(x);
}
realvec& set_elt(int n, real_t a) { return ((real_t*)&v)[n]=a, *this; }
typedef vecmathlib::mask_t<realvec_t> mask_t;
static realvec_t loada(real_t const* p)
{
VML_ASSERT(intptr_t(p) % sizeof(realvec_t) == 0);
return _mm256_load_pd(p);
}
static realvec_t loadu(real_t const* p)
{
return _mm256_loadu_pd(p);
}
static realvec_t loadu(real_t const* p, size_t ioff)
{
VML_ASSERT(intptr_t(p) % sizeof(realvec_t) == 0);
if (ioff==0) return loada(p);
return loadu(p+ioff);
}
realvec_t loada(real_t const* p, mask_t const& m) const
{
VML_ASSERT(intptr_t(p) % sizeof(realvec_t) == 0);
if (__builtin_expect(all(m.m), true)) {
return loada(p);
} else {
return m.m.ifthen(loada(p), *this);
}
}
realvec_t loadu(real_t const* p, mask_t const& m) const
{
if (__builtin_expect(m.all_m, true)) {
return loadu(p);
} else {
return m.m.ifthen(loadu(p), *this);
}
}
realvec_t loadu(real_t const* p, size_t ioff, mask_t const& m) const
{
VML_ASSERT(intptr_t(p) % sizeof(realvec_t) == 0);
if (ioff==0) return loada(p, m);
return loadu(p+ioff, m);
}
void storea(real_t* p) const
{
VML_ASSERT(intptr_t(p) % sizeof(realvec_t) == 0);
_mm256_store_pd(p, v);
}
void storeu(real_t* p) const
{
return _mm256_storeu_pd(p, v);
}
void storeu(real_t* p, size_t ioff) const
{
VML_ASSERT(intptr_t(p) % sizeof(realvec_t) == 0);
if (ioff==0) return storea(p);
storeu(p+ioff);
}
void storea(real_t* p, mask_t const& m) const
{
VML_ASSERT(intptr_t(p) % sizeof(realvec_t) == 0);
if (__builtin_expect(m.all_m, true)) {
storea(p);
} else {
_mm256_maskstore_pd(p, m.m.as_int(), v);
}
}
void storeu(real_t* p, mask_t const& m) const
{
if (__builtin_expect(m.all_m, true)) {
storeu(p);
} else {
if (m.m[0]) p[0] = (*this)[0];
if (m.m[1]) p[1] = (*this)[1];
if (m.m[2]) p[2] = (*this)[2];
if (m.m[3]) p[3] = (*this)[3];
}
}
void storeu(real_t* p, size_t ioff, mask_t const& m) const
{
VML_ASSERT(intptr_t(p) % sizeof(realvec_t) == 0);
if (ioff==0) return storea(p, m);
storeu(p+ioff, m);
}
intvec_t as_int() const { return _mm256_castpd_si256(v); }
intvec_t convert_int() const { return MF::vml_convert_int(*this); }
realvec operator+() const { return *this; }
realvec operator-() const { return RV(0.0) - *this; }
realvec operator+(realvec x) const { return _mm256_add_pd(v, x.v); }
realvec operator-(realvec x) const { return _mm256_sub_pd(v, x.v); }
realvec operator*(realvec x) const { return _mm256_mul_pd(v, x.v); }
realvec operator/(realvec x) const { return _mm256_div_pd(v, x.v); }
realvec& operator+=(realvec const& x) { return *this=*this+x; }
realvec& operator-=(realvec const& x) { return *this=*this-x; }
realvec& operator*=(realvec const& x) { return *this=*this*x; }
realvec& operator/=(realvec const& x) { return *this=*this/x; }
real_t prod() const
{
return (*this)[0] * (*this)[1] * (*this)[2] * (*this)[3];
}
real_t sum() const
{
// return (*this)[0] + (*this)[1] + (*this)[2] + (*this)[3];
// __m256d x = _mm256_hadd_pd(v, v);
// __m128d xlo = _mm256_extractf128_pd(x, 0);
// __m128d xhi = _mm256_extractf128_pd(x, 1);
realvec x = *this;
x = _mm256_hadd_pd(x.v, x.v);
return x[0] + x[2];
}
boolvec_t operator==(realvec const& x) const
{
return _mm256_cmp_pd(v, x.v, _CMP_EQ_OQ);
}
boolvec_t operator!=(realvec const& x) const
{
return _mm256_cmp_pd(v, x.v, _CMP_NEQ_OQ);
}
boolvec_t operator<(realvec const& x) const
{
return _mm256_cmp_pd(v, x.v, _CMP_LT_OQ);
}
boolvec_t operator<=(realvec const& x) const
{
return _mm256_cmp_pd(v, x.v, _CMP_LE_OQ);
}
boolvec_t operator>(realvec const& x) const
{
return _mm256_cmp_pd(v, x.v, _CMP_GT_OQ);
}
boolvec_t operator>=(realvec const& x) const
{
return _mm256_cmp_pd(v, x.v, _CMP_GE_OQ);
}
realvec acos() const { return MF::vml_acos(*this); }
realvec acosh() const { return MF::vml_acosh(*this); }
realvec asin() const { return MF::vml_asin(*this); }
realvec asinh() const { return MF::vml_asinh(*this); }
realvec atan() const { return MF::vml_atan(*this); }
realvec atanh() const { return MF::vml_atanh(*this); }
realvec ceil() const { return _mm256_ceil_pd(v); }
realvec copysign(realvec y) const { return MF::vml_copysign(*this, y); }
realvec cos() const { return MF::vml_cos_chebyshev_double(*this); }
realvec cosh() const { return MF::vml_cosh(*this); }
realvec exp() const { return MF::vml_exp(*this); }
realvec exp10() const { return MF::vml_exp10(*this); }
realvec exp2() const { return MF::vml_exp2(*this); }
realvec expm1() const { return MF::vml_expm1(*this); }
realvec fabs() const { return MF::vml_fabs(*this); }
realvec fdim(realvec y) const { return MF::vml_fdim(*this, y); }
realvec floor() const { return _mm256_floor_pd(v); }
realvec fma(realvec y, realvec z) const { return MF::vml_fma(*this, y, z); }
realvec fmax(realvec y) const { return _mm256_max_pd(v, y.v); }
realvec fmin(realvec y) const { return _mm256_min_pd(v, y.v); }
realvec fmod(realvec y) const { return MF::vml_fmod(*this, y); }
intvec_t ilogb() const { return MF::vml_ilogb(*this); }
boolvec_t isfinite() const { return MF::vml_isfinite(*this); }
boolvec_t isinf() const { return MF::vml_isinf(*this); }
boolvec_t isnan() const { return MF::vml_isnan(*this); }
boolvec_t isnormal() const { return MF::vml_isnormal(*this); }
realvec log() const { return MF::vml_log(*this); }
realvec log10() const { return MF::vml_log10(*this); }
realvec log1p() const { return MF::vml_log1p(*this); }
realvec log2() const { return MF::vml_log2(*this); }
realvec pow(realvec y) const { return MF::vml_pow(*this, y); }
realvec rcp() const { return _mm256_div_pd(_mm256_set1_pd(1.0), v); }
realvec remainder(realvec y) const { return MF::vml_remainder(*this, y); }
realvec round() const { return _mm256_round_pd(v, _MM_FROUND_NINT); }
realvec rsqrt() const { return MF::vml_rsqrt(*this); }
realvec scalbn(int_t n) const { return MF::vml_scalbn(*this, n); }
realvec scalbn(intvec_t n) const { return MF::vml_scalbn(*this, n); }
boolvec_t signbit() const { return v; }
realvec sin() const { return MF::vml_sin_chebyshev_double(*this); }
realvec sinh() const { return MF::vml_sinh(*this); }
realvec sqrt() const { return _mm256_sqrt_pd(v); }
realvec tan() const { return MF::vml_tan(*this); }
realvec tanh() const { return MF::vml_tanh(*this); }
};
// boolvec definitions
inline
auto boolvec<double,4>::as_int() const -> intvec_t
{
return _mm256_castpd_si256(v);
}
inline
auto boolvec<double,4>::convert_int() const -> intvec_t
{
//return ifthen(v, U(1), U(0));
return lsr(as_int(), bits-1);
}
inline
bool boolvec<double,4>::all() const
{
// return (*this)[0] && (*this)[1] && (*this)[2] && (*this)[3];
boolvec x = *this;
x = x && _mm256_shuffle_pd(x.v, x.v, _MM_SHUFFLE2(0,1));
__m128d y = _mm_and_pd(_mm256_castpd256_pd128(x.v),
_mm256_extractf128_pd(x.v, 1));
return to_bool(_mm_cvtsi128_si64(_mm_castpd_si128(y)));
}
inline
bool boolvec<double,4>::any() const
{
// return (*this)[0] || (*this)[1] || (*this)[2] || (*this)[3];
boolvec x = *this;
x = x || _mm256_shuffle_pd(x.v, x.v, _MM_SHUFFLE2(0,1));
__m128d y = _mm_or_pd(_mm256_castpd256_pd128(x.v),
_mm256_extractf128_pd(x.v, 1));
return to_bool(_mm_cvtsi128_si64(_mm_castpd_si128(y)));
}
inline
auto boolvec<double,4>::ifthen(intvec_t x, intvec_t y) const -> intvec_t
{
return ifthen(x.as_float(), y.as_float()).as_int();
}
inline
auto boolvec<double,4>::ifthen(realvec_t x, realvec_t y) const -> realvec_t
{
return _mm256_blendv_pd(y.v, x.v, v);
}
// intvec definitions
inline auto intvec<double,4>::as_float() const -> realvec_t
{
return _mm256_castsi256_pd(v);
}
inline auto intvec<double,4>::convert_float() const -> realvec_t
{
return MF::vml_convert_float(*this);
}
} // namespace vecmathlib
#endif // #ifndef VEC_DOUBLE_AVX_H
|