1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
|
// -*-C++-*-
#ifndef VEC_AVX_DOUBLE4_H
#define VEC_AVX_DOUBLE4_H
#include "floatprops.h"
#include "mathfuncs.h"
#include "vec_base.h"
#include <cmath>
// AVX intrinsics
#include <immintrin.h>
namespace vecmathlib {
#define VECMATHLIB_HAVE_VEC_DOUBLE_4
template <> struct boolvec<double, 4>;
template <> struct intvec<double, 4>;
template <> struct realvec<double, 4>;
template <> struct boolvec<double, 4> : floatprops<double> {
static int const size = 4;
typedef bool scalar_t;
typedef __m256d bvector_t;
static int const alignment = sizeof(bvector_t);
static_assert(size * sizeof(real_t) == sizeof(bvector_t),
"vector size is wrong");
private:
// true values have the sign bit set, false values have it unset
static uint_t from_bool(bool a) { return -uint_t(a); }
static bool to_bool(uint_t a) { return int_t(a) < int_t(0); }
public:
typedef boolvec boolvec_t;
typedef intvec<real_t, size> intvec_t;
typedef realvec<real_t, size> realvec_t;
// Short names for type casts
typedef real_t R;
typedef int_t I;
typedef uint_t U;
typedef realvec_t RV;
typedef intvec_t IV;
typedef boolvec_t BV;
typedef floatprops<real_t> FP;
typedef mathfuncs<realvec_t> MF;
bvector_t v;
boolvec() {}
// Can't have a non-trivial copy constructor; if so, objects won't
// be passed in registers
// boolvec(boolvec const& x): v(x.v) {}
// boolvec& operator=(boolvec const& x) { return v=x.v, *this; }
boolvec(bvector_t x) : v(x) {}
boolvec(bool a) : v(_mm256_castsi256_pd(_mm256_set1_epi64x(from_bool(a)))) {}
boolvec(bool const *as)
: v(_mm256_castsi256_pd(
_mm256_set_epi64x(from_bool(as[3]), from_bool(as[2]),
from_bool(as[1]), from_bool(as[0])))) {}
operator bvector_t() const { return v; }
bool operator[](int n) const {
return to_bool(vecmathlib::get_elt<BV, bvector_t, uint_t>(v, n));
}
boolvec_t &set_elt(int n, bool a) {
return vecmathlib::set_elt<BV, bvector_t, uint_t>(v, n, from_bool(a)),
*this;
}
intvec_t as_int() const; // defined after intvec
intvec_t convert_int() const; // defined after intvec
boolvec_t operator!() const { return _mm256_xor_pd(boolvec(true), v); }
boolvec_t operator&&(boolvec_t x) const { return _mm256_and_pd(v, x.v); }
boolvec_t operator||(boolvec_t x) const { return _mm256_or_pd(v, x.v); }
boolvec_t operator==(boolvec_t x) const { return !(*this != x); }
boolvec_t operator!=(boolvec_t x) const { return _mm256_xor_pd(v, x.v); }
bool all() const {
// return (*this)[0] && (*this)[1] && (*this)[2] && (*this)[3];
return !(!*this).any();
}
bool any() const {
// return (*this)[0] || (*this)[1] || (*this)[2] || (*this)[3];
return !bool(_mm256_testz_pd(v, v));
}
// ifthen(condition, then-value, else-value)
boolvec_t ifthen(boolvec_t x, boolvec_t y) const;
intvec_t ifthen(intvec_t x, intvec_t y) const; // defined after intvec
realvec_t ifthen(realvec_t x, realvec_t y) const; // defined after realvec
};
template <> struct intvec<double, 4> : floatprops<double> {
static int const size = 4;
typedef int_t scalar_t;
typedef __m256i ivector_t;
static int const alignment = sizeof(ivector_t);
static_assert(size * sizeof(real_t) == sizeof(ivector_t),
"vector size is wrong");
typedef boolvec<real_t, size> boolvec_t;
typedef intvec intvec_t;
typedef realvec<real_t, size> realvec_t;
// Short names for type casts
typedef real_t R;
typedef int_t I;
typedef uint_t U;
typedef realvec_t RV;
typedef intvec_t IV;
typedef boolvec_t BV;
typedef floatprops<real_t> FP;
typedef mathfuncs<realvec_t> MF;
ivector_t v;
intvec() {}
// Can't have a non-trivial copy constructor; if so, objects won't
// be passed in registers
// intvec(intvec const& x): v(x.v) {}
// intvec& operator=(intvec const& x) { return v=x.v, *this; }
intvec(ivector_t x) : v(x) {}
intvec(int_t a) : v(_mm256_set1_epi64x(a)) {}
intvec(int_t const *as) : v(_mm256_set_epi64x(as[3], as[2], as[1], as[0])) {}
static intvec_t iota() { return _mm256_set_epi64x(3, 2, 1, 0); }
operator ivector_t() const { return v; }
int_t operator[](int n) const {
return vecmathlib::get_elt<IV, ivector_t, int_t>(v, n);
}
intvec_t &set_elt(int n, int_t a) {
return vecmathlib::set_elt<IV, ivector_t, int_t>(v, n, a), *this;
}
boolvec_t as_bool() const { return _mm256_castsi256_pd(v); }
boolvec_t convert_bool() const {
// Result: convert_bool(0)=false, convert_bool(else)=true
#ifdef __AVX2__
return *this != IV(I(0));
#else
// There is no intrinsic to compare to zero. Instead, we check
// whether x is positive and x-1 is negative.
intvec_t x = *this;
// We know that boolvec_t values depend only on the sign bit
// return (~(x-1) | x).as_bool();
// return x.as_bool() || !(x-1).as_bool();
return x.as_bool() || (x + (FP::signbit_mask - 1)).as_bool();
#endif
}
realvec_t as_float() const; // defined after realvec
realvec_t convert_float() const; // defined after realvec
// Note: not all arithmetic operations are supported!
intvec_t operator+() const { return *this; }
intvec_t operator-() const { return IV(I(0)) - *this; }
intvec_t operator+(intvec_t x) const {
#ifdef __AVX2__
return _mm256_add_epi64(v, x.v);
#else
__m128i vlo = _mm256_castsi256_si128(v);
__m128i vhi = _mm256_extractf128_si256(v, 1);
__m128i xvlo = _mm256_castsi256_si128(x.v);
__m128i xvhi = _mm256_extractf128_si256(x.v, 1);
vlo = _mm_add_epi64(vlo, xvlo);
vhi = _mm_add_epi64(vhi, xvhi);
return _mm256_insertf128_si256(_mm256_castsi128_si256(vlo), vhi, 1);
#endif
}
intvec_t operator-(intvec_t x) const {
#ifdef __AVX2__
return _mm256_sub_epi64(v, x.v);
#else
__m128i vlo = _mm256_castsi256_si128(v);
__m128i vhi = _mm256_extractf128_si256(v, 1);
__m128i xvlo = _mm256_castsi256_si128(x.v);
__m128i xvhi = _mm256_extractf128_si256(x.v, 1);
vlo = _mm_sub_epi64(vlo, xvlo);
vhi = _mm_sub_epi64(vhi, xvhi);
return _mm256_insertf128_si256(_mm256_castsi128_si256(vlo), vhi, 1);
#endif
}
intvec_t &operator+=(intvec_t const &x) { return *this = *this + x; }
intvec_t &operator-=(intvec_t const &x) { return *this = *this - x; }
intvec_t operator~() const { return IV(~U(0)) ^ *this; }
intvec_t operator&(intvec_t x) const {
#ifdef __AVX2__
return _mm256_and_si256(v, x.v);
#else
return _mm256_castpd_si256(
_mm256_and_pd(_mm256_castsi256_pd(v), _mm256_castsi256_pd(x.v)));
#endif
}
intvec_t operator|(intvec_t x) const {
#ifdef __AVX2__
return _mm256_or_si256(v, x.v);
#else
return _mm256_castpd_si256(
_mm256_or_pd(_mm256_castsi256_pd(v), _mm256_castsi256_pd(x.v)));
#endif
}
intvec_t operator^(intvec_t x) const {
#ifdef __AVX2__
return _mm256_xor_si256(v, x.v);
#else
return _mm256_castpd_si256(
_mm256_xor_pd(_mm256_castsi256_pd(v), _mm256_castsi256_pd(x.v)));
#endif
}
intvec_t &operator&=(intvec_t const &x) { return *this = *this & x; }
intvec_t &operator|=(intvec_t const &x) { return *this = *this | x; }
intvec_t &operator^=(intvec_t const &x) { return *this = *this ^ x; }
intvec_t bitifthen(intvec_t x, intvec_t y) const;
intvec_t lsr(int_t n) const {
#ifdef __AVX2__
return _mm256_srli_epi64(v, n);
#else
__m128i vlo = _mm256_castsi256_si128(v);
__m128i vhi = _mm256_extractf128_si256(v, 1);
vlo = _mm_srli_epi64(vlo, n);
vhi = _mm_srli_epi64(vhi, n);
return _mm256_insertf128_si256(_mm256_castsi128_si256(vlo), vhi, 1);
#endif
}
intvec_t rotate(int_t n) const;
intvec_t operator>>(int_t n) const {
#ifdef __AVX2__
// There is no _mm256_srai_epi64. To emulate it, add 0x80000000
// before shifting, and subtract the shifted 0x80000000 after
// shifting
intvec_t offset = U(1) << (bits - 1);
return (*this + offset).lsr(n) - offset.lsr(n);
#else
__m128i vlo = _mm256_castsi256_si128(v);
__m128i vhi = _mm256_extractf128_si256(v, 1);
// There is no _mm_srai_epi64. To emulate it, add 0x80000000
// before shifting, and subtract the shifted 0x80000000 after
// shifting
#if 0
__m128i signmask01 = _mm_sub_epi64(_mm_set1_epi64x(0),
_mm_srli_epi64(vlo, 63));
__m128i signmask23 = _mm_sub_epi64(_mm_set1_epi64x(0),
_mm_srli_epi64(vhi, 63));
vlo = _mm_xor_si128(signmask01, vlo);
vhi = _mm_xor_si128(signmask23, vhi);
vlo = _mm_srli_epi64(vlo, n);
vhi = _mm_srli_epi64(vhi, n);
vlo = _mm_xor_si128(signmask01, vlo);
vhi = _mm_xor_si128(signmask23, vhi);
#else
// Convert signed to unsiged
vlo = _mm_add_epi64(vlo, _mm_set1_epi64x(U(1) << (bits - 1)));
vhi = _mm_add_epi64(vhi, _mm_set1_epi64x(U(1) << (bits - 1)));
// Shift
vlo = _mm_srli_epi64(vlo, n);
vhi = _mm_srli_epi64(vhi, n);
// Undo conversion
vlo = _mm_sub_epi64(vlo, _mm_set1_epi64x(U(1) << (bits - 1 - n)));
vhi = _mm_sub_epi64(vhi, _mm_set1_epi64x(U(1) << (bits - 1 - n)));
#endif
return _mm256_insertf128_si256(_mm256_castsi128_si256(vlo), vhi, 1);
#endif
}
intvec_t operator<<(int_t n) const {
#ifdef __AVX2__
return _mm256_slli_epi64(v, n);
#else
__m128i vlo = _mm256_castsi256_si128(v);
__m128i vhi = _mm256_extractf128_si256(v, 1);
vlo = _mm_slli_epi64(vlo, n);
vhi = _mm_slli_epi64(vhi, n);
return _mm256_insertf128_si256(_mm256_castsi128_si256(vlo), vhi, 1);
#endif
}
intvec_t &operator>>=(int_t n) { return *this = *this >> n; }
intvec_t &operator<<=(int_t n) { return *this = *this << n; }
intvec_t lsr(intvec_t n) const {
#ifdef __AVX2__
return _mm256_srlv_epi64(v, n.v);
#else
intvec_t r;
for (int i = 0; i < size; ++i) {
r.set_elt(i, U((*this)[i]) >> U(n[i]));
}
return r;
#endif
}
intvec_t rotate(intvec_t n) const;
intvec_t operator>>(intvec_t n) const {
#ifdef __AVX2__
// See operator>> above
intvec_t offset = U(1) << (bits - 1);
return (*this + offset).lsr(n) - offset.lsr(n);
#else
intvec_t r;
for (int i = 0; i < size; ++i) {
r.set_elt(i, (*this)[i] >> n[i]);
}
return r;
#endif
}
intvec_t operator<<(intvec_t n) const {
#ifdef __AVX2__
return _mm256_sllv_epi64(v, n.v);
#else
intvec_t r;
for (int i = 0; i < size; ++i) {
r.set_elt(i, (*this)[i] << n[i]);
}
return r;
#endif
}
intvec_t &operator>>=(intvec_t n) { return *this = *this >> n; }
intvec_t &operator<<=(intvec_t n) { return *this = *this << n; }
intvec_t clz() const;
intvec_t popcount() const;
boolvec_t operator==(intvec_t const &x) const {
#ifdef __AVX2__
return _mm256_castsi256_pd(_mm256_cmpeq_epi64(v, x.v));
#else
return !(*this != x);
#endif
}
boolvec_t operator!=(intvec_t const &x) const {
#ifdef __AVX2__
return !(*this == x);
#else
return (*this ^ x).convert_bool();
#endif
}
boolvec_t operator<(intvec_t const &x) const {
#ifdef __AVX2__
return _mm256_castsi256_pd(_mm256_cmpgt_epi64(x.v, v));
#else
// return (*this - x).as_bool();
boolvec_t r;
for (int i = 0; i < size; ++i) {
r.set_elt(i, (*this)[i] < x[i]);
}
return r;
#endif
}
boolvec_t operator<=(intvec_t const &x) const { return !(*this > x); }
boolvec_t operator>(intvec_t const &x) const { return x < *this; }
boolvec_t operator>=(intvec_t const &x) const { return !(*this < x); }
intvec_t abs() const;
boolvec_t isignbit() const { return as_bool(); }
intvec_t max(intvec_t x) const;
intvec_t min(intvec_t x) const;
};
template <> struct realvec<double, 4> : floatprops<double> {
static int const size = 4;
typedef real_t scalar_t;
typedef __m256d vector_t;
static int const alignment = sizeof(vector_t);
static char const *name() {
#ifdef __AVX2__
return "<AVX2:4*double>";
#else
return "<AVX:4*double>";
#endif
}
void barrier() { __asm__("" : "+x"(v)); }
static_assert(size * sizeof(real_t) == sizeof(vector_t),
"vector size is wrong");
typedef boolvec<real_t, size> boolvec_t;
typedef intvec<real_t, size> intvec_t;
typedef realvec realvec_t;
// Short names for type casts
typedef real_t R;
typedef int_t I;
typedef uint_t U;
typedef realvec_t RV;
typedef intvec_t IV;
typedef boolvec_t BV;
typedef floatprops<real_t> FP;
typedef mathfuncs<realvec_t> MF;
vector_t v;
realvec() {}
// Can't have a non-trivial copy constructor; if so, objects won't
// be passed in registers
// realvec(realvec const& x): v(x.v) {}
// realvec& operator=(realvec const& x) { return v=x.v, *this; }
realvec(vector_t x) : v(x) {}
realvec(real_t a) : v(_mm256_set1_pd(a)) {}
realvec(real_t const *as) : v(_mm256_set_pd(as[3], as[2], as[1], as[0])) {}
operator vector_t() const { return v; }
real_t operator[](int n) const {
return vecmathlib::get_elt<RV, vector_t, real_t>(v, n);
}
realvec_t &set_elt(int n, real_t a) {
return vecmathlib::set_elt<RV, vector_t, real_t>(v, n, a), *this;
}
typedef vecmathlib::mask_t<realvec_t> mask_t;
static realvec_t loada(real_t const *p) {
VML_ASSERT(intptr_t(p) % alignment == 0);
return _mm256_load_pd(p);
}
static realvec_t loadu(real_t const *p) { return _mm256_loadu_pd(p); }
static realvec_t loadu(real_t const *p, std::ptrdiff_t ioff) {
VML_ASSERT(intptr_t(p) % alignment == 0);
if (ioff % realvec::size == 0)
return loada(p + ioff);
return loadu(p + ioff);
}
realvec_t loada(real_t const *p, mask_t const &m) const {
VML_ASSERT(intptr_t(p) % alignment == 0);
if (__builtin_expect(all(m.m), true)) {
return loada(p);
} else {
return m.m.ifthen(loada(p), *this);
}
}
realvec_t loadu(real_t const *p, mask_t const &m) const {
if (__builtin_expect(m.all_m, true)) {
return loadu(p);
} else {
return m.m.ifthen(loadu(p), *this);
}
}
realvec_t loadu(real_t const *p, std::ptrdiff_t ioff, mask_t const &m) const {
VML_ASSERT(intptr_t(p) % alignment == 0);
if (ioff % realvec::size == 0)
return loada(p + ioff, m);
return loadu(p + ioff, m);
}
void storea(real_t *p) const {
VML_ASSERT(intptr_t(p) % alignment == 0);
_mm256_store_pd(p, v);
}
void storeu(real_t *p) const { return _mm256_storeu_pd(p, v); }
void storeu(real_t *p, std::ptrdiff_t ioff) const {
VML_ASSERT(intptr_t(p) % alignment == 0);
if (ioff % realvec::size == 0)
return storea(p + ioff);
storeu(p + ioff);
}
void storea(real_t *p, mask_t const &m) const {
VML_ASSERT(intptr_t(p) % alignment == 0);
if (__builtin_expect(m.all_m, true)) {
storea(p);
} else {
_mm256_maskstore_pd(p, m.m.as_int(), v);
}
}
void storeu(real_t *p, mask_t const &m) const {
if (__builtin_expect(m.all_m, true)) {
storeu(p);
} else {
for (int d = 0; d < size; ++d) {
if (m.m[d])
p[d] = (*this)[d];
}
}
}
void storeu(real_t *p, std::ptrdiff_t ioff, mask_t const &m) const {
VML_ASSERT(intptr_t(p) % alignment == 0);
if (ioff % realvec::size == 0)
return storea(p + ioff, m);
storeu(p + ioff, m);
}
intvec_t as_int() const { return _mm256_castpd_si256(v); }
intvec_t convert_int() const {
intvec_t r;
for (int d = 0; d < size; ++d) {
r.set_elt(d, floatprops::convert_int((*this)[d]));
}
return r;
}
realvec_t operator+() const { return *this; }
realvec_t operator-() const { return RV(0.0) - *this; }
realvec_t operator+(realvec_t x) const { return _mm256_add_pd(v, x.v); }
realvec_t operator-(realvec_t x) const { return _mm256_sub_pd(v, x.v); }
realvec_t operator*(realvec_t x) const { return _mm256_mul_pd(v, x.v); }
realvec_t operator/(realvec_t x) const { return _mm256_div_pd(v, x.v); }
realvec_t &operator+=(realvec_t const &x) { return *this = *this + x; }
realvec_t &operator-=(realvec_t const &x) { return *this = *this - x; }
realvec_t &operator*=(realvec_t const &x) { return *this = *this * x; }
realvec_t &operator/=(realvec_t const &x) { return *this = *this / x; }
real_t maxval() const {
// return vml_std::fmax(vml_std::fmax((*this)[0], (*this)[1]),
// vml_std::fmax((*this)[2], (*this)[3]));
realvec_t x0123 = *this;
realvec_t x1032 = _mm256_shuffle_pd(x0123, x0123, 0b0101);
realvec_t y0022 = x0123.fmax(x1032);
return vml_std::fmax(y0022[0], y0022[2]);
}
real_t minval() const {
// return vml_std::fmin(vml_std::fmin((*this)[0], (*this)[1]),
// vml_std::fmin((*this)[2], (*this)[3]));
realvec_t x0123 = *this;
realvec_t x1032 = _mm256_shuffle_pd(x0123, x0123, 0b0101);
realvec_t y0022 = x0123.fmin(x1032);
return vml_std::fmin(y0022[0], y0022[2]);
}
real_t prod() const {
// return (*this)[0] * (*this)[1] * (*this)[2] * (*this)[3];
realvec_t x0123 = *this;
realvec_t x1032 = _mm256_shuffle_pd(x0123, x0123, 0b0101);
realvec_t y0022 = x0123 * x1032;
return y0022[0] * y0022[2];
}
real_t sum() const {
// return (*this)[0] + (*this)[1] + (*this)[2] + (*this)[3];
// __m256d x = _mm256_hadd_pd(v, v);
// __m128d xlo = _mm256_extractf128_pd(x, 0);
// __m128d xhi = _mm256_extractf128_pd(x, 1);
realvec_t x = *this;
x = _mm256_hadd_pd(x.v, x.v);
return x[0] + x[2];
}
boolvec_t operator==(realvec_t const &x) const {
return _mm256_cmp_pd(v, x.v, _CMP_EQ_OQ);
}
boolvec_t operator!=(realvec_t const &x) const {
return _mm256_cmp_pd(v, x.v, _CMP_NEQ_UQ); // Note: _UQ here
}
boolvec_t operator<(realvec_t const &x) const {
return _mm256_cmp_pd(v, x.v, _CMP_LT_OQ);
}
boolvec_t operator<=(realvec_t const &x) const {
return _mm256_cmp_pd(v, x.v, _CMP_LE_OQ);
}
boolvec_t operator>(realvec_t const &x) const {
return _mm256_cmp_pd(v, x.v, _CMP_GT_OQ);
}
boolvec_t operator>=(realvec_t const &x) const {
return _mm256_cmp_pd(v, x.v, _CMP_GE_OQ);
}
realvec_t acos() const { return MF::vml_acos(*this); }
realvec_t acosh() const { return MF::vml_acosh(*this); }
realvec_t asin() const { return MF::vml_asin(*this); }
realvec_t asinh() const { return MF::vml_asinh(*this); }
realvec_t atan() const { return MF::vml_atan(*this); }
realvec_t atan2(realvec_t y) const { return MF::vml_atan2(*this, y); }
realvec_t atanh() const { return MF::vml_atanh(*this); }
realvec_t cbrt() const { return MF::vml_cbrt(*this); }
realvec_t ceil() const { return _mm256_ceil_pd(v); }
realvec_t copysign(realvec_t y) const { return MF::vml_copysign(*this, y); }
realvec_t cos() const { return MF::vml_cos(*this); }
realvec_t cosh() const { return MF::vml_cosh(*this); }
realvec_t exp() const { return MF::vml_exp(*this); }
realvec_t exp10() const { return MF::vml_exp10(*this); }
realvec_t exp2() const { return MF::vml_exp2(*this); }
realvec_t expm1() const { return MF::vml_expm1(*this); }
realvec_t fabs() const { return MF::vml_fabs(*this); }
realvec_t fdim(realvec_t y) const { return MF::vml_fdim(*this, y); }
realvec_t floor() const { return _mm256_floor_pd(v); }
realvec_t fma(realvec_t y, realvec_t z) const {
return MF::vml_fma(*this, y, z);
}
realvec_t fmax(realvec_t y) const { return _mm256_max_pd(v, y.v); }
realvec_t fmin(realvec_t y) const { return _mm256_min_pd(v, y.v); }
realvec_t fmod(realvec_t y) const { return MF::vml_fmod(*this, y); }
realvec_t frexp(intvec_t *r) const { return MF::vml_frexp(*this, r); }
realvec_t hypot(realvec_t y) const { return MF::vml_hypot(*this, y); }
intvec_t ilogb() const { return MF::vml_ilogb(*this); }
boolvec_t isfinite() const { return MF::vml_isfinite(*this); }
boolvec_t isinf() const { return MF::vml_isinf(*this); }
boolvec_t isnan() const {
#ifdef VML_HAVE_NAN
return _mm256_cmp_pd(v, v, _CMP_UNORD_Q);
#else
return BV(false);
#endif
}
boolvec_t isnormal() const { return MF::vml_isnormal(*this); }
realvec_t ldexp(int_t n) const { return MF::vml_ldexp(*this, n); }
realvec_t ldexp(intvec_t n) const { return MF::vml_ldexp(*this, n); }
realvec_t log() const { return MF::vml_log(*this); }
realvec_t log10() const { return MF::vml_log10(*this); }
realvec_t log1p() const { return MF::vml_log1p(*this); }
realvec_t log2() const { return MF::vml_log2(*this); }
realvec_t mad(realvec_t y, realvec_t z) const {
return MF::vml_mad(*this, y, z);
}
realvec_t nextafter(realvec_t y) const { return MF::vml_nextafter(*this, y); }
realvec_t pow(realvec_t y) const { return MF::vml_pow(*this, y); }
realvec_t rcp() const { return _mm256_div_pd(_mm256_set1_pd(1.0), v); }
realvec_t remainder(realvec_t y) const { return MF::vml_remainder(*this, y); }
realvec_t rint() const {
return _mm256_round_pd(v, _MM_FROUND_TO_NEAREST_INT);
}
realvec_t round() const { return MF::vml_round(*this); }
realvec_t rsqrt() const { return MF::vml_rsqrt(*this); }
boolvec_t signbit() const { return v; }
realvec_t sin() const { return MF::vml_sin(*this); }
realvec_t sinh() const { return MF::vml_sinh(*this); }
realvec_t sqrt() const { return _mm256_sqrt_pd(v); }
realvec_t tan() const { return MF::vml_tan(*this); }
realvec_t tanh() const { return MF::vml_tanh(*this); }
realvec_t trunc() const { return _mm256_round_pd(v, _MM_FROUND_TO_ZERO); }
};
// boolvec definitions
inline intvec<double, 4> boolvec<double, 4>::as_int() const {
return _mm256_castpd_si256(v);
}
inline intvec<double, 4> boolvec<double, 4>::convert_int() const {
// return ifthen(v, U(1), U(0));
return lsr(as_int(), bits - 1);
}
inline boolvec<double, 4> boolvec<double, 4>::ifthen(boolvec_t x,
boolvec_t y) const {
return ifthen(x.as_int(), y.as_int()).as_bool();
}
inline intvec<double, 4> boolvec<double, 4>::ifthen(intvec_t x,
intvec_t y) const {
return ifthen(x.as_float(), y.as_float()).as_int();
}
inline realvec<double, 4> boolvec<double, 4>::ifthen(realvec_t x,
realvec_t y) const {
return _mm256_blendv_pd(y.v, x.v, v);
}
// intvec definitions
inline intvec<double, 4> intvec<double, 4>::abs() const {
return MF::vml_abs(*this);
}
inline intvec<double, 4> intvec<double, 4>::bitifthen(intvec_t x,
intvec_t y) const {
return MF::vml_bitifthen(*this, x, y);
}
inline intvec<double, 4> intvec<double, 4>::clz() const {
return MF::vml_clz(*this);
}
inline realvec<double, 4> intvec<double, 4>::as_float() const {
return _mm256_castsi256_pd(v);
}
inline realvec<double, 4> intvec<double, 4>::convert_float() const {
realvec_t r;
for (int d = 0; d < size; ++d) {
r.set_elt(d, floatprops::convert_float((*this)[d]));
}
return r;
}
inline intvec<double, 4> intvec<double, 4>::max(intvec_t x) const {
return MF::vml_max(*this, x);
}
inline intvec<double, 4> intvec<double, 4>::min(intvec_t x) const {
return MF::vml_min(*this, x);
}
inline intvec<double, 4> intvec<double, 4>::popcount() const {
return MF::vml_popcount(*this);
}
inline intvec<double, 4> intvec<double, 4>::rotate(int_t n) const {
return MF::vml_rotate(*this, n);
}
inline intvec<double, 4> intvec<double, 4>::rotate(intvec_t n) const {
return MF::vml_rotate(*this, n);
}
} // namespace vecmathlib
#endif // #ifndef VEC_AVX_DOUBLE4_H
|