1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
|
// -*-C++-*-
#ifndef MATHFUNCS_EXP_H
#define MATHFUNCS_EXP_H
#include "mathfuncs_base.h"
#include <cmath>
namespace vecmathlib {
template <typename realvec_t>
realvec_t mathfuncs<realvec_t>::vml_exp2(realvec_t x) {
// TODO: Check SLEEF 2.80 algorithm
// (in particular the improved-precision truncation)
// Rescale
realvec_t x0 = x;
// realvec_t round_x = rint(x);
// intvec_t iround_x = convert_int(round_x);
// r = ldexp(r, iround_x);
#if 0
// Straightforward implementation
realvec_t round_x = rint(x);
x -= round_x;
#elif 1
// Round by adding, then subtracting again a large number
// Add a large number to move the mantissa bits to the right
int_t large = (U(1) << FP::mantissa_bits) + FP::exponent_offset;
realvec_t tmp = x + RV(R(large));
tmp.barrier();
realvec_t round_x = tmp - RV(R(large));
x -= round_x;
#else
// Straightforward implementation, using round instead of rint,
// since round is faster for QPX
realvec_t round_x = round(x);
x -= round_x;
#endif
VML_ASSERT(all(x >= RV(-0.5) && x <= RV(0.5)));
// Polynomial expansion
realvec_t r;
switch (sizeof(real_t)) {
case 4:
#ifdef VML_HAVE_FP_CONTRACT
// float, error=4.55549108005200277750378992345e-9
r = RV(0.000154653240842602623787395880898);
r = mad(r, x, RV(0.00133952915439234389712105060319));
r = mad(r, x, RV(0.0096180399118156827664944870552));
r = mad(r, x, RV(0.055503406540531310853149866446));
r = mad(r, x, RV(0.240226511015459465468737123346));
r = mad(r, x, RV(0.69314720007380208630542805293));
r = mad(r, x, RV(0.99999999997182023878745628977));
#else
// float, error=1.62772721960621336664735896836e-7
r = RV(0.00133952915439234389712105060319);
r = mad(r, x, RV(0.009670773148229417605024318985));
r = mad(r, x, RV(0.055503406540531310853149866446));
r = mad(r, x, RV(0.240222115700585316818177639177));
r = mad(r, x, RV(0.69314720007380208630542805293));
r = mad(r, x, RV(1.00000005230745711373079206024));
#endif
break;
case 8:
#ifdef VML_HAVE_FP_CONTRACT
// double, error=9.32016781355638010975628074746e-18
r = RV(4.45623165388261696886670014471e-10);
r = mad(r, x, RV(7.0733589360775271430968224806e-9));
r = mad(r, x, RV(1.01780540270960163558119510246e-7));
r = mad(r, x, RV(1.3215437348041505269462510712e-6));
r = mad(r, x, RV(0.000015252733849766201174247690629));
r = mad(r, x, RV(0.000154035304541242555115696403795));
r = mad(r, x, RV(0.00133335581463968601407096905671));
r = mad(r, x, RV(0.0096181291075949686712855561931));
r = mad(r, x, RV(0.055504108664821672870565883052));
r = mad(r, x, RV(0.240226506959101382690753994082));
r = mad(r, x, RV(0.69314718055994530864272481773));
r = mad(r, x, RV(0.9999999999999999978508676375));
#else
// double, error=3.74939899823302048807873981077e-14
r = RV(1.02072375599725694063203809188e-7);
r = mad(r, x, RV(1.32573274434801314145133004073e-6));
r = mad(r, x, RV(0.0000152526647170731944840736190013));
r = mad(r, x, RV(0.000154034441925859828261898614555));
r = mad(r, x, RV(0.00133335582175770747495287552557));
r = mad(r, x, RV(0.0096181291794939392517233403183));
r = mad(r, x, RV(0.055504108664525029438908798685));
r = mad(r, x, RV(0.240226506957026959772247598695));
r = mad(r, x, RV(0.6931471805599487321347668143));
r = mad(r, x, RV(1.00000000000000942892870993489));
#endif
break;
default:
__builtin_unreachable();
}
// Undo rescaling
#if 0
// Straightforward implementation
r = ldexp(r, convert_int(round_x));
#elif 1
// Use direct integer manipulation
// Extract integer as lowest mantissa bits (highest bits still
// contain offset, exponent, and sign)
intvec_t itmp = as_int(tmp);
// Construct scale factor by setting exponent (this shifts out the
// highest bits)
realvec_t scale = as_float(itmp << I(FP::mantissa_bits));
r *= scale;
#else
// Use floating point operations instead of integer operations,
// since these are faster for QPX
real_t exponent_factor = R(I(1) << I(FP::mantissa_bits));
real_t exponent_offset = R(I(FP::exponent_offset) << I(FP::mantissa_bits));
realvec_t exponent = mad(round_x, RV(exponent_factor), RV(exponent_offset));
realvec_t scale = as_float(convert_int(exponent));
r *= scale;
#endif
r = ifthen(x0 < RV(R(FP::min_exponent)), RV(0.0), r);
return r;
}
template <typename realvec_t>
inline realvec_t mathfuncs<realvec_t>::vml_exp(realvec_t x) {
return exp2(RV(M_LOG2E) * x);
}
template <typename realvec_t>
inline realvec_t mathfuncs<realvec_t>::vml_exp10(realvec_t x) {
return exp2(RV(M_LOG2E * M_LN10) * x);
}
template <typename realvec_t>
inline realvec_t mathfuncs<realvec_t>::vml_expm1(realvec_t x) {
// TODO: improve this
return exp(x) - RV(1.0);
#if 0
r = exp(x) - RV(1.0);
return ifthen(r == RV(0.0), x, r);
#endif
}
}; // namespace vecmathlib
#endif // #ifndef MATHFUNCS_EXP_H
|