1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
|
/*
* Copyright (C) 2010 Georg Martius <georg.martius@web.de>
* Copyright (C) 2010 Daniel G. Taylor <dan@programmer-art.org>
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/**
* @file
* transform input video
*/
#include "libavutil/common.h"
#include "libavutil/avassert.h"
#include "transform.h"
#define INTERPOLATE_METHOD(name) \
static uint8_t name(float x, float y, const uint8_t *src, \
int width, int height, int stride, uint8_t def)
#define PIXEL(img, x, y, w, h, stride, def) \
((x) < 0 || (y) < 0) ? (def) : \
(((x) >= (w) || (y) >= (h)) ? (def) : \
img[(x) + (y) * (stride)])
/**
* Nearest neighbor interpolation
*/
INTERPOLATE_METHOD(interpolate_nearest)
{
return PIXEL(src, (int)(x + 0.5), (int)(y + 0.5), width, height, stride, def);
}
/**
* Bilinear interpolation
*/
INTERPOLATE_METHOD(interpolate_bilinear)
{
int x_c, x_f, y_c, y_f;
int v1, v2, v3, v4;
if (x < -1 || x > width || y < -1 || y > height) {
return def;
} else {
x_f = (int)x;
x_c = x_f + 1;
y_f = (int)y;
y_c = y_f + 1;
v1 = PIXEL(src, x_c, y_c, width, height, stride, def);
v2 = PIXEL(src, x_c, y_f, width, height, stride, def);
v3 = PIXEL(src, x_f, y_c, width, height, stride, def);
v4 = PIXEL(src, x_f, y_f, width, height, stride, def);
return (v1*(x - x_f)*(y - y_f) + v2*((x - x_f)*(y_c - y)) +
v3*(x_c - x)*(y - y_f) + v4*((x_c - x)*(y_c - y)));
}
}
/**
* Biquadratic interpolation
*/
INTERPOLATE_METHOD(interpolate_biquadratic)
{
int x_c, x_f, y_c, y_f;
uint8_t v1, v2, v3, v4;
float f1, f2, f3, f4;
if (x < - 1 || x > width || y < -1 || y > height)
return def;
else {
x_f = (int)x;
x_c = x_f + 1;
y_f = (int)y;
y_c = y_f + 1;
v1 = PIXEL(src, x_c, y_c, width, height, stride, def);
v2 = PIXEL(src, x_c, y_f, width, height, stride, def);
v3 = PIXEL(src, x_f, y_c, width, height, stride, def);
v4 = PIXEL(src, x_f, y_f, width, height, stride, def);
f1 = 1 - sqrt((x_c - x) * (y_c - y));
f2 = 1 - sqrt((x_c - x) * (y - y_f));
f3 = 1 - sqrt((x - x_f) * (y_c - y));
f4 = 1 - sqrt((x - x_f) * (y - y_f));
return (v1 * f1 + v2 * f2 + v3 * f3 + v4 * f4) / (f1 + f2 + f3 + f4);
}
}
void ff_get_matrix(
float x_shift,
float y_shift,
float angle,
float scale_x,
float scale_y,
float *matrix
) {
matrix[0] = scale_x * cos(angle);
matrix[1] = -sin(angle);
matrix[2] = x_shift;
matrix[3] = -matrix[1];
matrix[4] = scale_y * cos(angle);
matrix[5] = y_shift;
matrix[6] = 0;
matrix[7] = 0;
matrix[8] = 1;
}
void avfilter_add_matrix(const float *m1, const float *m2, float *result)
{
int i;
for (i = 0; i < 9; i++)
result[i] = m1[i] + m2[i];
}
void avfilter_sub_matrix(const float *m1, const float *m2, float *result)
{
int i;
for (i = 0; i < 9; i++)
result[i] = m1[i] - m2[i];
}
void avfilter_mul_matrix(const float *m1, float scalar, float *result)
{
int i;
for (i = 0; i < 9; i++)
result[i] = m1[i] * scalar;
}
int avfilter_transform(const uint8_t *src, uint8_t *dst,
int src_stride, int dst_stride,
int width, int height, const float *matrix,
enum InterpolateMethod interpolate,
enum FillMethod fill)
{
int x, y;
float x_s, y_s;
uint8_t def = 0;
uint8_t (*func)(float, float, const uint8_t *, int, int, int, uint8_t) = NULL;
switch(interpolate) {
case INTERPOLATE_NEAREST:
func = interpolate_nearest;
break;
case INTERPOLATE_BILINEAR:
func = interpolate_bilinear;
break;
case INTERPOLATE_BIQUADRATIC:
func = interpolate_biquadratic;
break;
default:
return AVERROR(EINVAL);
}
for (y = 0; y < height; y++) {
for(x = 0; x < width; x++) {
x_s = x * matrix[0] + y * matrix[1] + matrix[2];
y_s = x * matrix[3] + y * matrix[4] + matrix[5];
switch(fill) {
case FILL_ORIGINAL:
def = src[y * src_stride + x];
break;
case FILL_CLAMP:
y_s = av_clipf(y_s, 0, height - 1);
x_s = av_clipf(x_s, 0, width - 1);
def = src[(int)y_s * src_stride + (int)x_s];
break;
case FILL_MIRROR:
x_s = avpriv_mirror(x_s, width-1);
y_s = avpriv_mirror(y_s, height-1);
av_assert2(x_s >= 0 && y_s >= 0);
av_assert2(x_s < width && y_s < height);
def = src[(int)y_s * src_stride + (int)x_s];
}
dst[y * dst_stride + x] = func(x_s, y_s, src, width, height, src_stride, def);
}
}
return 0;
}
|