summaryrefslogtreecommitdiffstats
path: root/libavfilter/ebur128.c
blob: c8986fb5e1a07d5c45ccc3af42134732b45ab6ef (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
/*
 * Copyright (c) 2011 Jan Kokemüller
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 *
 * This file is based on libebur128 which is available at
 * https://github.com/jiixyj/libebur128/
 *
 * Libebur128 has the following copyright:
 *
 * Permission is hereby granted, free of charge, to any person obtaining a copy
 * of this software and associated documentation files (the "Software"), to deal
 * in the Software without restriction, including without limitation the rights
 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 * copies of the Software, and to permit persons to whom the Software is
 * furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 * THE SOFTWARE.
*/

#include "ebur128.h"

#include <float.h>
#include <limits.h>
#include <math.h>               /* You may have to define _USE_MATH_DEFINES if you use MSVC */

#include "libavutil/common.h"
#include "libavutil/mem.h"
#include "libavutil/thread.h"

#define CHECK_ERROR(condition, errorcode, goto_point)                          \
    if ((condition)) {                                                         \
        errcode = (errorcode);                                                 \
        goto goto_point;                                                       \
    }

#define ALMOST_ZERO 0.000001

#define RELATIVE_GATE         (-10.0)
#define RELATIVE_GATE_FACTOR  pow(10.0, RELATIVE_GATE / 10.0)
#define MINUS_20DB            pow(10.0, -20.0 / 10.0)

struct FFEBUR128StateInternal {
    /** Filtered audio data (used as ring buffer). */
    double *audio_data;
    /** Size of audio_data array. */
    size_t audio_data_frames;
    /** Current index for audio_data. */
    size_t audio_data_index;
    /** How many frames are needed for a gating block. Will correspond to 400ms
     *  of audio at initialization, and 100ms after the first block (75% overlap
     *  as specified in the 2011 revision of BS1770). */
    unsigned long needed_frames;
    /** The channel map. Has as many elements as there are channels. */
    int *channel_map;
    /** How many samples fit in 100ms (rounded). */
    unsigned long samples_in_100ms;
    /** BS.1770 filter coefficients (nominator). */
    double b[5];
    /** BS.1770 filter coefficients (denominator). */
    double a[5];
    /** BS.1770 filter state. */
    double v[5][5];
    /** Histograms, used to calculate LRA. */
    unsigned long *block_energy_histogram;
    unsigned long *short_term_block_energy_histogram;
    /** Keeps track of when a new short term block is needed. */
    size_t short_term_frame_counter;
    /** Maximum sample peak, one per channel */
    double *sample_peak;
    /** The maximum window duration in ms. */
    unsigned long window;
    /** Data pointer array for interleaved data */
    void **data_ptrs;
};

static AVOnce histogram_init = AV_ONCE_INIT;
static DECLARE_ALIGNED(32, double, histogram_energies)[1000];
static DECLARE_ALIGNED(32, double, histogram_energy_boundaries)[1001];

static void ebur128_init_filter(FFEBUR128State * st)
{
    int i, j;

    double f0 = 1681.974450955533;
    double G = 3.999843853973347;
    double Q = 0.7071752369554196;

    double K = tan(M_PI * f0 / (double) st->samplerate);
    double Vh = pow(10.0, G / 20.0);
    double Vb = pow(Vh, 0.4996667741545416);

    double pb[3] = { 0.0, 0.0, 0.0 };
    double pa[3] = { 1.0, 0.0, 0.0 };
    double rb[3] = { 1.0, -2.0, 1.0 };
    double ra[3] = { 1.0, 0.0, 0.0 };

    double a0 = 1.0 + K / Q + K * K;
    pb[0] = (Vh + Vb * K / Q + K * K) / a0;
    pb[1] = 2.0 * (K * K - Vh) / a0;
    pb[2] = (Vh - Vb * K / Q + K * K) / a0;
    pa[1] = 2.0 * (K * K - 1.0) / a0;
    pa[2] = (1.0 - K / Q + K * K) / a0;

    f0 = 38.13547087602444;
    Q = 0.5003270373238773;
    K = tan(M_PI * f0 / (double) st->samplerate);

    ra[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K);
    ra[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K);

    st->d->b[0] = pb[0] * rb[0];
    st->d->b[1] = pb[0] * rb[1] + pb[1] * rb[0];
    st->d->b[2] = pb[0] * rb[2] + pb[1] * rb[1] + pb[2] * rb[0];
    st->d->b[3] = pb[1] * rb[2] + pb[2] * rb[1];
    st->d->b[4] = pb[2] * rb[2];

    st->d->a[0] = pa[0] * ra[0];
    st->d->a[1] = pa[0] * ra[1] + pa[1] * ra[0];
    st->d->a[2] = pa[0] * ra[2] + pa[1] * ra[1] + pa[2] * ra[0];
    st->d->a[3] = pa[1] * ra[2] + pa[2] * ra[1];
    st->d->a[4] = pa[2] * ra[2];

    for (i = 0; i < 5; ++i) {
        for (j = 0; j < 5; ++j) {
            st->d->v[i][j] = 0.0;
        }
    }
}

static int ebur128_init_channel_map(FFEBUR128State * st)
{
    size_t i;
    st->d->channel_map =
        (int *) av_malloc_array(st->channels, sizeof(int));
    if (!st->d->channel_map)
        return AVERROR(ENOMEM);
    if (st->channels == 4) {
        st->d->channel_map[0] = FF_EBUR128_LEFT;
        st->d->channel_map[1] = FF_EBUR128_RIGHT;
        st->d->channel_map[2] = FF_EBUR128_LEFT_SURROUND;
        st->d->channel_map[3] = FF_EBUR128_RIGHT_SURROUND;
    } else if (st->channels == 5) {
        st->d->channel_map[0] = FF_EBUR128_LEFT;
        st->d->channel_map[1] = FF_EBUR128_RIGHT;
        st->d->channel_map[2] = FF_EBUR128_CENTER;
        st->d->channel_map[3] = FF_EBUR128_LEFT_SURROUND;
        st->d->channel_map[4] = FF_EBUR128_RIGHT_SURROUND;
    } else {
        for (i = 0; i < st->channels; ++i) {
            switch (i) {
            case 0:
                st->d->channel_map[i] = FF_EBUR128_LEFT;
                break;
            case 1:
                st->d->channel_map[i] = FF_EBUR128_RIGHT;
                break;
            case 2:
                st->d->channel_map[i] = FF_EBUR128_CENTER;
                break;
            case 3:
                st->d->channel_map[i] = FF_EBUR128_UNUSED;
                break;
            case 4:
                st->d->channel_map[i] = FF_EBUR128_LEFT_SURROUND;
                break;
            case 5:
                st->d->channel_map[i] = FF_EBUR128_RIGHT_SURROUND;
                break;
            default:
                st->d->channel_map[i] = FF_EBUR128_UNUSED;
                break;
            }
        }
    }
    return 0;
}

static inline void init_histogram(void)
{
    int i;
    /* initialize static constants */
    histogram_energy_boundaries[0] = pow(10.0, (-70.0 + 0.691) / 10.0);
    for (i = 0; i < 1000; ++i) {
        histogram_energies[i] =
            pow(10.0, ((double) i / 10.0 - 69.95 + 0.691) / 10.0);
    }
    for (i = 1; i < 1001; ++i) {
        histogram_energy_boundaries[i] =
            pow(10.0, ((double) i / 10.0 - 70.0 + 0.691) / 10.0);
    }
}

FFEBUR128State *ff_ebur128_init(unsigned int channels,
                                unsigned long samplerate,
                                unsigned long window, int mode)
{
    int errcode;
    FFEBUR128State *st;

    st = (FFEBUR128State *) av_malloc(sizeof(FFEBUR128State));
    CHECK_ERROR(!st, 0, exit)
    st->d = (struct FFEBUR128StateInternal *)
        av_malloc(sizeof(struct FFEBUR128StateInternal));
    CHECK_ERROR(!st->d, 0, free_state)
    st->channels = channels;
    errcode = ebur128_init_channel_map(st);
    CHECK_ERROR(errcode, 0, free_internal)

    st->d->sample_peak =
        (double *) av_mallocz_array(channels, sizeof(double));
    CHECK_ERROR(!st->d->sample_peak, 0, free_channel_map)

    st->samplerate = samplerate;
    st->d->samples_in_100ms = (st->samplerate + 5) / 10;
    st->mode = mode;
    if ((mode & FF_EBUR128_MODE_S) == FF_EBUR128_MODE_S) {
        st->d->window = FFMAX(window, 3000);
    } else if ((mode & FF_EBUR128_MODE_M) == FF_EBUR128_MODE_M) {
        st->d->window = FFMAX(window, 400);
    } else {
        goto free_sample_peak;
    }
    st->d->audio_data_frames = st->samplerate * st->d->window / 1000;
    if (st->d->audio_data_frames % st->d->samples_in_100ms) {
        /* round up to multiple of samples_in_100ms */
        st->d->audio_data_frames = st->d->audio_data_frames
            + st->d->samples_in_100ms
            - (st->d->audio_data_frames % st->d->samples_in_100ms);
    }
    st->d->audio_data =
        (double *) av_mallocz_array(st->d->audio_data_frames,
                                    st->channels * sizeof(double));
    CHECK_ERROR(!st->d->audio_data, 0, free_sample_peak)

    ebur128_init_filter(st);

    st->d->block_energy_histogram =
        av_mallocz(1000 * sizeof(unsigned long));
    CHECK_ERROR(!st->d->block_energy_histogram, 0, free_audio_data)
    st->d->short_term_block_energy_histogram =
        av_mallocz(1000 * sizeof(unsigned long));
    CHECK_ERROR(!st->d->short_term_block_energy_histogram, 0,
                free_block_energy_histogram)
    st->d->short_term_frame_counter = 0;

    /* the first block needs 400ms of audio data */
    st->d->needed_frames = st->d->samples_in_100ms * 4;
    /* start at the beginning of the buffer */
    st->d->audio_data_index = 0;

    if (ff_thread_once(&histogram_init, &init_histogram) != 0)
        goto free_short_term_block_energy_histogram;

    st->d->data_ptrs = av_malloc_array(channels, sizeof(void *));
    CHECK_ERROR(!st->d->data_ptrs, 0,
                free_short_term_block_energy_histogram);

    return st;

free_short_term_block_energy_histogram:
    av_free(st->d->short_term_block_energy_histogram);
free_block_energy_histogram:
    av_free(st->d->block_energy_histogram);
free_audio_data:
    av_free(st->d->audio_data);
free_sample_peak:
    av_free(st->d->sample_peak);
free_channel_map:
    av_free(st->d->channel_map);
free_internal:
    av_free(st->d);
free_state:
    av_free(st);
exit:
    return NULL;
}

void ff_ebur128_destroy(FFEBUR128State ** st)
{
    av_free((*st)->d->block_energy_histogram);
    av_free((*st)->d->short_term_block_energy_histogram);
    av_free((*st)->d->audio_data);
    av_free((*st)->d->channel_map);
    av_free((*st)->d->sample_peak);
    av_free((*st)->d->data_ptrs);
    av_free((*st)->d);
    av_free(*st);
    *st = NULL;
}

#define EBUR128_FILTER(type, scaling_factor)                                       \
static void ebur128_filter_##type(FFEBUR128State* st, const type** srcs,           \
                                  size_t src_index, size_t frames,                 \
                                  int stride) {                                    \
    double* audio_data = st->d->audio_data + st->d->audio_data_index;              \
    size_t i, c;                                                                   \
                                                                                   \
    if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) == FF_EBUR128_MODE_SAMPLE_PEAK) { \
        for (c = 0; c < st->channels; ++c) {                                       \
            double max = 0.0;                                                      \
            for (i = 0; i < frames; ++i) {                                         \
                type v = srcs[c][src_index + i * stride];                          \
                if (v > max) {                                                     \
                    max =        v;                                                \
                } else if (-v > max) {                                             \
                    max = -1.0 * v;                                                \
                }                                                                  \
            }                                                                      \
            max /= scaling_factor;                                                 \
            if (max > st->d->sample_peak[c]) st->d->sample_peak[c] = max;          \
        }                                                                          \
    }                                                                              \
    for (c = 0; c < st->channels; ++c) {                                           \
        int ci = st->d->channel_map[c] - 1;                                        \
        if (ci < 0) continue;                                                      \
        else if (ci == FF_EBUR128_DUAL_MONO - 1) ci = 0; /*dual mono */            \
        for (i = 0; i < frames; ++i) {                                             \
            st->d->v[ci][0] = (double) (srcs[c][src_index + i * stride] / scaling_factor) \
                         - st->d->a[1] * st->d->v[ci][1]                           \
                         - st->d->a[2] * st->d->v[ci][2]                           \
                         - st->d->a[3] * st->d->v[ci][3]                           \
                         - st->d->a[4] * st->d->v[ci][4];                          \
            audio_data[i * st->channels + c] =                                     \
                           st->d->b[0] * st->d->v[ci][0]                           \
                         + st->d->b[1] * st->d->v[ci][1]                           \
                         + st->d->b[2] * st->d->v[ci][2]                           \
                         + st->d->b[3] * st->d->v[ci][3]                           \
                         + st->d->b[4] * st->d->v[ci][4];                          \
            st->d->v[ci][4] = st->d->v[ci][3];                                     \
            st->d->v[ci][3] = st->d->v[ci][2];                                     \
            st->d->v[ci][2] = st->d->v[ci][1];                                     \
            st->d->v[ci][1] = st->d->v[ci][0];                                     \
        }                                                                          \
        st->d->v[ci][4] = fabs(st->d->v[ci][4]) < DBL_MIN ? 0.0 : st->d->v[ci][4]; \
        st->d->v[ci][3] = fabs(st->d->v[ci][3]) < DBL_MIN ? 0.0 : st->d->v[ci][3]; \
        st->d->v[ci][2] = fabs(st->d->v[ci][2]) < DBL_MIN ? 0.0 : st->d->v[ci][2]; \
        st->d->v[ci][1] = fabs(st->d->v[ci][1]) < DBL_MIN ? 0.0 : st->d->v[ci][1]; \
    }                                                                              \
}
EBUR128_FILTER(short, -((double)SHRT_MIN))
EBUR128_FILTER(int, -((double)INT_MIN))
EBUR128_FILTER(float,  1.0)
EBUR128_FILTER(double, 1.0)

static double ebur128_energy_to_loudness(double energy)
{
    return 10 * log10(energy) - 0.691;
}

static size_t find_histogram_index(double energy)
{
    size_t index_min = 0;
    size_t index_max = 1000;
    size_t index_mid;

    do {
        index_mid = (index_min + index_max) / 2;
        if (energy >= histogram_energy_boundaries[index_mid]) {
            index_min = index_mid;
        } else {
            index_max = index_mid;
        }
    } while (index_max - index_min != 1);

    return index_min;
}

static void ebur128_calc_gating_block(FFEBUR128State * st,
                                      size_t frames_per_block,
                                      double *optional_output)
{
    size_t i, c;
    double sum = 0.0;
    double channel_sum;
    for (c = 0; c < st->channels; ++c) {
        if (st->d->channel_map[c] == FF_EBUR128_UNUSED)
            continue;
        channel_sum = 0.0;
        if (st->d->audio_data_index < frames_per_block * st->channels) {
            for (i = 0; i < st->d->audio_data_index / st->channels; ++i) {
                channel_sum += st->d->audio_data[i * st->channels + c] *
                    st->d->audio_data[i * st->channels + c];
            }
            for (i = st->d->audio_data_frames -
                 (frames_per_block -
                  st->d->audio_data_index / st->channels);
                 i < st->d->audio_data_frames; ++i) {
                channel_sum += st->d->audio_data[i * st->channels + c] *
                    st->d->audio_data[i * st->channels + c];
            }
        } else {
            for (i =
                 st->d->audio_data_index / st->channels - frames_per_block;
                 i < st->d->audio_data_index / st->channels; ++i) {
                channel_sum +=
                    st->d->audio_data[i * st->channels +
                                      c] * st->d->audio_data[i *
                                                             st->channels +
                                                             c];
            }
        }
        if (st->d->channel_map[c] == FF_EBUR128_Mp110 ||
            st->d->channel_map[c] == FF_EBUR128_Mm110 ||
            st->d->channel_map[c] == FF_EBUR128_Mp060 ||
            st->d->channel_map[c] == FF_EBUR128_Mm060 ||
            st->d->channel_map[c] == FF_EBUR128_Mp090 ||
            st->d->channel_map[c] == FF_EBUR128_Mm090) {
            channel_sum *= 1.41;
        } else if (st->d->channel_map[c] == FF_EBUR128_DUAL_MONO) {
            channel_sum *= 2.0;
        }
        sum += channel_sum;
    }
    sum /= (double) frames_per_block;
    if (optional_output) {
        *optional_output = sum;
    } else if (sum >= histogram_energy_boundaries[0]) {
        ++st->d->block_energy_histogram[find_histogram_index(sum)];
    }
}

int ff_ebur128_set_channel(FFEBUR128State * st,
                           unsigned int channel_number, int value)
{
    if (channel_number >= st->channels) {
        return 1;
    }
    if (value == FF_EBUR128_DUAL_MONO &&
        (st->channels != 1 || channel_number != 0)) {
        return 1;
    }
    st->d->channel_map[channel_number] = value;
    return 0;
}

static int ebur128_energy_shortterm(FFEBUR128State * st, double *out);
#define FF_EBUR128_ADD_FRAMES_PLANAR(type)                                             \
void ff_ebur128_add_frames_planar_##type(FFEBUR128State* st, const type** srcs,        \
                                 size_t frames, int stride) {                          \
    size_t src_index = 0;                                                              \
    while (frames > 0) {                                                               \
        if (frames >= st->d->needed_frames) {                                          \
            ebur128_filter_##type(st, srcs, src_index, st->d->needed_frames, stride);  \
            src_index += st->d->needed_frames * stride;                                \
            frames -= st->d->needed_frames;                                            \
            st->d->audio_data_index += st->d->needed_frames * st->channels;            \
            /* calculate the new gating block */                                       \
            if ((st->mode & FF_EBUR128_MODE_I) == FF_EBUR128_MODE_I) {                 \
                ebur128_calc_gating_block(st, st->d->samples_in_100ms * 4, NULL);      \
            }                                                                          \
            if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) {             \
                st->d->short_term_frame_counter += st->d->needed_frames;               \
                if (st->d->short_term_frame_counter == st->d->samples_in_100ms * 30) { \
                    double st_energy;                                                  \
                    ebur128_energy_shortterm(st, &st_energy);                          \
                    if (st_energy >= histogram_energy_boundaries[0]) {                 \
                        ++st->d->short_term_block_energy_histogram[                    \
                                                    find_histogram_index(st_energy)];  \
                    }                                                                  \
                    st->d->short_term_frame_counter = st->d->samples_in_100ms * 20;    \
                }                                                                      \
            }                                                                          \
            /* 100ms are needed for all blocks besides the first one */                \
            st->d->needed_frames = st->d->samples_in_100ms;                            \
            /* reset audio_data_index when buffer full */                              \
            if (st->d->audio_data_index == st->d->audio_data_frames * st->channels) {  \
                st->d->audio_data_index = 0;                                           \
            }                                                                          \
        } else {                                                                       \
            ebur128_filter_##type(st, srcs, src_index, frames, stride);                \
            st->d->audio_data_index += frames * st->channels;                          \
            if ((st->mode & FF_EBUR128_MODE_LRA) == FF_EBUR128_MODE_LRA) {             \
                st->d->short_term_frame_counter += frames;                             \
            }                                                                          \
            st->d->needed_frames -= frames;                                            \
            frames = 0;                                                                \
        }                                                                              \
    }                                                                                  \
}
FF_EBUR128_ADD_FRAMES_PLANAR(short)
FF_EBUR128_ADD_FRAMES_PLANAR(int)
FF_EBUR128_ADD_FRAMES_PLANAR(float)
FF_EBUR128_ADD_FRAMES_PLANAR(double)
#define FF_EBUR128_ADD_FRAMES(type)                                            \
void ff_ebur128_add_frames_##type(FFEBUR128State* st, const type* src,         \
                                    size_t frames) {                           \
  int i;                                                                       \
  const type **buf = (const type**)st->d->data_ptrs;                           \
  for (i = 0; i < st->channels; i++)                                           \
    buf[i] = src + i;                                                          \
  ff_ebur128_add_frames_planar_##type(st, buf, frames, st->channels);          \
}
FF_EBUR128_ADD_FRAMES(short)
FF_EBUR128_ADD_FRAMES(int)
FF_EBUR128_ADD_FRAMES(float)
FF_EBUR128_ADD_FRAMES(double)

static int ebur128_calc_relative_threshold(FFEBUR128State **sts, size_t size,
                                           double *relative_threshold)
{
    size_t i, j;
    int above_thresh_counter = 0;
    *relative_threshold = 0.0;

    for (i = 0; i < size; i++) {
        unsigned long *block_energy_histogram = sts[i]->d->block_energy_histogram;
        for (j = 0; j < 1000; ++j) {
            *relative_threshold += block_energy_histogram[j] * histogram_energies[j];
            above_thresh_counter += block_energy_histogram[j];
        }
    }

    if (above_thresh_counter != 0) {
        *relative_threshold /= (double)above_thresh_counter;
        *relative_threshold *= RELATIVE_GATE_FACTOR;
    }

    return above_thresh_counter;
}

static int ebur128_gated_loudness(FFEBUR128State ** sts, size_t size,
                                  double *out)
{
    double gated_loudness = 0.0;
    double relative_threshold;
    size_t above_thresh_counter;
    size_t i, j, start_index;

    for (i = 0; i < size; i++)
        if ((sts[i]->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I)
            return AVERROR(EINVAL);

    if (!ebur128_calc_relative_threshold(sts, size, &relative_threshold)) {
        *out = -HUGE_VAL;
        return 0;
    }

    above_thresh_counter = 0;
    if (relative_threshold < histogram_energy_boundaries[0]) {
        start_index = 0;
    } else {
        start_index = find_histogram_index(relative_threshold);
        if (relative_threshold > histogram_energies[start_index]) {
            ++start_index;
        }
    }
    for (i = 0; i < size; i++) {
        for (j = start_index; j < 1000; ++j) {
            gated_loudness += sts[i]->d->block_energy_histogram[j] *
                histogram_energies[j];
            above_thresh_counter += sts[i]->d->block_energy_histogram[j];
        }
    }
    if (!above_thresh_counter) {
        *out = -HUGE_VAL;
        return 0;
    }
    gated_loudness /= (double) above_thresh_counter;
    *out = ebur128_energy_to_loudness(gated_loudness);
    return 0;
}

int ff_ebur128_relative_threshold(FFEBUR128State * st, double *out)
{
    double relative_threshold;

    if ((st->mode & FF_EBUR128_MODE_I) != FF_EBUR128_MODE_I)
        return AVERROR(EINVAL);

    if (!ebur128_calc_relative_threshold(&st, 1, &relative_threshold)) {
        *out = -70.0;
        return 0;
    }

    *out = ebur128_energy_to_loudness(relative_threshold);
    return 0;
}

int ff_ebur128_loudness_global(FFEBUR128State * st, double *out)
{
    return ebur128_gated_loudness(&st, 1, out);
}

int ff_ebur128_loudness_global_multiple(FFEBUR128State ** sts, size_t size,
                                        double *out)
{
    return ebur128_gated_loudness(sts, size, out);
}

static int ebur128_energy_in_interval(FFEBUR128State * st,
                                      size_t interval_frames, double *out)
{
    if (interval_frames > st->d->audio_data_frames) {
        return AVERROR(EINVAL);
    }
    ebur128_calc_gating_block(st, interval_frames, out);
    return 0;
}

static int ebur128_energy_shortterm(FFEBUR128State * st, double *out)
{
    return ebur128_energy_in_interval(st, st->d->samples_in_100ms * 30,
                                      out);
}

int ff_ebur128_loudness_momentary(FFEBUR128State * st, double *out)
{
    double energy;
    int error = ebur128_energy_in_interval(st, st->d->samples_in_100ms * 4,
                                           &energy);
    if (error) {
        return error;
    } else if (energy <= 0.0) {
        *out = -HUGE_VAL;
        return 0;
    }
    *out = ebur128_energy_to_loudness(energy);
    return 0;
}

int ff_ebur128_loudness_shortterm(FFEBUR128State * st, double *out)
{
    double energy;
    int error = ebur128_energy_shortterm(st, &energy);
    if (error) {
        return error;
    } else if (energy <= 0.0) {
        *out = -HUGE_VAL;
        return 0;
    }
    *out = ebur128_energy_to_loudness(energy);
    return 0;
}

int ff_ebur128_loudness_window(FFEBUR128State * st,
                               unsigned long window, double *out)
{
    double energy;
    size_t interval_frames = st->samplerate * window / 1000;
    int error = ebur128_energy_in_interval(st, interval_frames, &energy);
    if (error) {
        return error;
    } else if (energy <= 0.0) {
        *out = -HUGE_VAL;
        return 0;
    }
    *out = ebur128_energy_to_loudness(energy);
    return 0;
}

/* EBU - TECH 3342 */
int ff_ebur128_loudness_range_multiple(FFEBUR128State ** sts, size_t size,
                                       double *out)
{
    size_t i, j;
    size_t stl_size;
    double stl_power, stl_integrated;
    /* High and low percentile energy */
    double h_en, l_en;
    unsigned long hist[1000] = { 0 };
    size_t percentile_low, percentile_high;
    size_t index;

    for (i = 0; i < size; ++i) {
        if (sts[i]) {
            if ((sts[i]->mode & FF_EBUR128_MODE_LRA) !=
                FF_EBUR128_MODE_LRA) {
                return AVERROR(EINVAL);
            }
        }
    }

    stl_size = 0;
    stl_power = 0.0;
    for (i = 0; i < size; ++i) {
        if (!sts[i])
            continue;
        for (j = 0; j < 1000; ++j) {
            hist[j] += sts[i]->d->short_term_block_energy_histogram[j];
            stl_size += sts[i]->d->short_term_block_energy_histogram[j];
            stl_power += sts[i]->d->short_term_block_energy_histogram[j]
                * histogram_energies[j];
        }
    }
    if (!stl_size) {
        *out = 0.0;
        return 0;
    }

    stl_power /= stl_size;
    stl_integrated = MINUS_20DB * stl_power;

    if (stl_integrated < histogram_energy_boundaries[0]) {
        index = 0;
    } else {
        index = find_histogram_index(stl_integrated);
        if (stl_integrated > histogram_energies[index]) {
            ++index;
        }
    }
    stl_size = 0;
    for (j = index; j < 1000; ++j) {
        stl_size += hist[j];
    }
    if (!stl_size) {
        *out = 0.0;
        return 0;
    }

    percentile_low = (size_t) ((stl_size - 1) * 0.1 + 0.5);
    percentile_high = (size_t) ((stl_size - 1) * 0.95 + 0.5);

    stl_size = 0;
    j = index;
    while (stl_size <= percentile_low) {
        stl_size += hist[j++];
    }
    l_en = histogram_energies[j - 1];
    while (stl_size <= percentile_high) {
        stl_size += hist[j++];
    }
    h_en = histogram_energies[j - 1];
    *out =
        ebur128_energy_to_loudness(h_en) -
        ebur128_energy_to_loudness(l_en);
    return 0;
}

int ff_ebur128_loudness_range(FFEBUR128State * st, double *out)
{
    return ff_ebur128_loudness_range_multiple(&st, 1, out);
}

int ff_ebur128_sample_peak(FFEBUR128State * st,
                           unsigned int channel_number, double *out)
{
    if ((st->mode & FF_EBUR128_MODE_SAMPLE_PEAK) !=
        FF_EBUR128_MODE_SAMPLE_PEAK) {
        return AVERROR(EINVAL);
    } else if (channel_number >= st->channels) {
        return AVERROR(EINVAL);
    }
    *out = st->d->sample_peak[channel_number];
    return 0;
}
OpenPOWER on IntegriCloud