summaryrefslogtreecommitdiffstats
path: root/libavfilter/af_flanger.c
blob: 33c8245ea55892cce13f22285fd1a33cbb9f2c79 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
/*
 * Copyright (c) 2006 Rob Sykes <robs@users.sourceforge.net>
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include "libavutil/avstring.h"
#include "libavutil/opt.h"
#include "libavutil/samplefmt.h"
#include "avfilter.h"
#include "audio.h"
#include "internal.h"
#include "generate_wave_table.h"

#define INTERPOLATION_LINEAR    0
#define INTERPOLATION_QUADRATIC 1

typedef struct FlangerContext {
    const AVClass *class;
    double delay_min;
    double delay_depth;
    double feedback_gain;
    double delay_gain;
    double speed;
    int wave_shape;
    double channel_phase;
    int interpolation;
    double in_gain;
    int max_samples;
    uint8_t **delay_buffer;
    int delay_buf_pos;
    double *delay_last;
    float *lfo;
    int lfo_length;
    int lfo_pos;
} FlangerContext;

#define OFFSET(x) offsetof(FlangerContext, x)
#define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM

static const AVOption flanger_options[] = {
    { "delay", "base delay in milliseconds",        OFFSET(delay_min),   AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 30, A },
    { "depth", "added swept delay in milliseconds", OFFSET(delay_depth), AV_OPT_TYPE_DOUBLE, {.dbl=2}, 0, 10, A },
    { "regen", "percentage regeneration (delayed signal feedback)", OFFSET(feedback_gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -95, 95, A },
    { "width", "percentage of delayed signal mixed with original", OFFSET(delay_gain), AV_OPT_TYPE_DOUBLE, {.dbl=71}, 0, 100, A },
    { "speed", "sweeps per second (Hz)", OFFSET(speed), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0.1, 10, A },
    { "shape", "swept wave shape", OFFSET(wave_shape), AV_OPT_TYPE_INT, {.i64=WAVE_SIN}, WAVE_SIN, WAVE_NB-1, A, "type" },
    { "triangular",  NULL, 0, AV_OPT_TYPE_CONST,  {.i64=WAVE_TRI}, 0, 0, A, "type" },
    { "t",           NULL, 0, AV_OPT_TYPE_CONST,  {.i64=WAVE_TRI}, 0, 0, A, "type" },
    { "sinusoidal",  NULL, 0, AV_OPT_TYPE_CONST,  {.i64=WAVE_SIN}, 0, 0, A, "type" },
    { "s",           NULL, 0, AV_OPT_TYPE_CONST,  {.i64=WAVE_SIN}, 0, 0, A, "type" },
    { "phase", "swept wave percentage phase-shift for multi-channel", OFFSET(channel_phase), AV_OPT_TYPE_DOUBLE, {.dbl=25}, 0, 100, A },
    { "interp", "delay-line interpolation", OFFSET(interpolation), AV_OPT_TYPE_INT, {.i64=0}, 0, 1, A, "itype" },
    { "linear",     NULL, 0, AV_OPT_TYPE_CONST,  {.i64=INTERPOLATION_LINEAR},    0, 0, A, "itype" },
    { "quadratic",  NULL, 0, AV_OPT_TYPE_CONST,  {.i64=INTERPOLATION_QUADRATIC}, 0, 0, A, "itype" },
    { NULL }
};

AVFILTER_DEFINE_CLASS(flanger);

static av_cold int init(AVFilterContext *ctx)
{
    FlangerContext *s = ctx->priv;

    s->feedback_gain /= 100;
    s->delay_gain    /= 100;
    s->channel_phase /= 100;
    s->delay_min     /= 1000;
    s->delay_depth   /= 1000;
    s->in_gain        = 1 / (1 + s->delay_gain);
    s->delay_gain    /= 1 + s->delay_gain;
    s->delay_gain    *= 1 - fabs(s->feedback_gain);

    return 0;
}

static int query_formats(AVFilterContext *ctx)
{
    AVFilterChannelLayouts *layouts;
    AVFilterFormats *formats;
    static const enum AVSampleFormat sample_fmts[] = {
        AV_SAMPLE_FMT_DBLP, AV_SAMPLE_FMT_NONE
    };
    int ret;

    layouts = ff_all_channel_counts();
    if (!layouts)
        return AVERROR(ENOMEM);
    ret = ff_set_common_channel_layouts(ctx, layouts);
    if (ret < 0)
        return ret;

    formats = ff_make_format_list(sample_fmts);
    if (!formats)
        return AVERROR(ENOMEM);
    ret = ff_set_common_formats(ctx, formats);
    if (ret < 0)
        return ret;

    formats = ff_all_samplerates();
    if (!formats)
        return AVERROR(ENOMEM);
    return ff_set_common_samplerates(ctx, formats);
}

static int config_input(AVFilterLink *inlink)
{
    AVFilterContext *ctx = inlink->dst;
    FlangerContext *s = ctx->priv;

    s->max_samples = (s->delay_min + s->delay_depth) * inlink->sample_rate + 2.5;
    s->lfo_length  = inlink->sample_rate / s->speed;
    s->delay_last  = av_calloc(inlink->channels, sizeof(*s->delay_last));
    s->lfo         = av_calloc(s->lfo_length, sizeof(*s->lfo));
    if (!s->lfo || !s->delay_last)
        return AVERROR(ENOMEM);

    ff_generate_wave_table(s->wave_shape, AV_SAMPLE_FMT_FLT, s->lfo, s->lfo_length,
                           rint(s->delay_min * inlink->sample_rate),
                           s->max_samples - 2., 3 * M_PI_2);

    return av_samples_alloc_array_and_samples(&s->delay_buffer, NULL,
                                              inlink->channels, s->max_samples,
                                              inlink->format, 0);
}

static int filter_frame(AVFilterLink *inlink, AVFrame *frame)
{
    AVFilterContext *ctx = inlink->dst;
    FlangerContext *s = ctx->priv;
    AVFrame *out_frame;
    int chan, i;

    if (av_frame_is_writable(frame)) {
        out_frame = frame;
    } else {
        out_frame = ff_get_audio_buffer(ctx->outputs[0], frame->nb_samples);
        if (!out_frame) {
            av_frame_free(&frame);
            return AVERROR(ENOMEM);
        }
        av_frame_copy_props(out_frame, frame);
    }

    for (i = 0; i < frame->nb_samples; i++) {

        s->delay_buf_pos = (s->delay_buf_pos + s->max_samples - 1) % s->max_samples;

        for (chan = 0; chan < inlink->channels; chan++) {
            double *src = (double *)frame->extended_data[chan];
            double *dst = (double *)out_frame->extended_data[chan];
            double delayed_0, delayed_1;
            double delayed;
            double in, out;
            int channel_phase = chan * s->lfo_length * s->channel_phase + .5;
            double delay = s->lfo[(s->lfo_pos + channel_phase) % s->lfo_length];
            int int_delay = (int)delay;
            double frac_delay = modf(delay, &delay);
            double *delay_buffer = (double *)s->delay_buffer[chan];

            in = src[i];
            delay_buffer[s->delay_buf_pos] = in + s->delay_last[chan] *
                                                           s->feedback_gain;
            delayed_0 = delay_buffer[(s->delay_buf_pos + int_delay++) % s->max_samples];
            delayed_1 = delay_buffer[(s->delay_buf_pos + int_delay++) % s->max_samples];

            if (s->interpolation == INTERPOLATION_LINEAR) {
                delayed = delayed_0 + (delayed_1 - delayed_0) * frac_delay;
            } else {
                double a, b;
                double delayed_2 = delay_buffer[(s->delay_buf_pos + int_delay++) % s->max_samples];
                delayed_2 -= delayed_0;
                delayed_1 -= delayed_0;
                a = delayed_2 * .5 - delayed_1;
                b = delayed_1 *  2 - delayed_2 *.5;
                delayed = delayed_0 + (a * frac_delay + b) * frac_delay;
            }

            s->delay_last[chan] = delayed;
            out = in * s->in_gain + delayed * s->delay_gain;
            dst[i] = out;
        }
        s->lfo_pos = (s->lfo_pos + 1) % s->lfo_length;
    }

    if (frame != out_frame)
        av_frame_free(&frame);

    return ff_filter_frame(ctx->outputs[0], out_frame);
}

static av_cold void uninit(AVFilterContext *ctx)
{
    FlangerContext *s = ctx->priv;

    av_freep(&s->lfo);
    av_freep(&s->delay_last);

    if (s->delay_buffer)
        av_freep(&s->delay_buffer[0]);
    av_freep(&s->delay_buffer);
}

static const AVFilterPad flanger_inputs[] = {
    {
        .name         = "default",
        .type         = AVMEDIA_TYPE_AUDIO,
        .config_props = config_input,
        .filter_frame = filter_frame,
    },
    { NULL }
};

static const AVFilterPad flanger_outputs[] = {
    {
        .name          = "default",
        .type          = AVMEDIA_TYPE_AUDIO,
    },
    { NULL }
};

AVFilter ff_af_flanger = {
    .name          = "flanger",
    .description   = NULL_IF_CONFIG_SMALL("Apply a flanging effect to the audio."),
    .query_formats = query_formats,
    .priv_size     = sizeof(FlangerContext),
    .priv_class    = &flanger_class,
    .init          = init,
    .uninit        = uninit,
    .inputs        = flanger_inputs,
    .outputs       = flanger_outputs,
};
OpenPOWER on IntegriCloud