summaryrefslogtreecommitdiffstats
path: root/libavcodec/magicyuvenc.c
blob: 16e9a1c28d4cc867a853e6e70164725e6ef48265 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
/*
 * MagicYUV encoder
 * Copyright (c) 2017 Paul B Mahol
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

#include <stdlib.h>
#include <string.h>

#include "libavutil/opt.h"
#include "libavutil/pixdesc.h"
#include "libavutil/qsort.h"

#include "avcodec.h"
#include "bytestream.h"
#include "put_bits.h"
#include "internal.h"
#include "thread.h"
#include "lossless_videoencdsp.h"

typedef enum Prediction {
    LEFT = 1,
    GRADIENT,
    MEDIAN,
} Prediction;

typedef struct HuffEntry {
    uint8_t  sym;
    uint8_t  len;
    uint32_t code;
} HuffEntry;

typedef struct PTable {
    int     value;  ///< input value
    int64_t prob;   ///< number of occurences of this value in input
} PTable;

typedef struct MagicYUVContext {
    const AVClass       *class;
    int                  frame_pred;
    PutBitContext        pb;
    int                  planes;
    uint8_t              format;
    AVFrame             *p;
    int                  slice_height;
    int                  nb_slices;
    int                  correlate;
    int                  hshift[4];
    int                  vshift[4];
    uint8_t             *slices[4];
    unsigned             slice_pos[4];
    unsigned             tables_size;
    HuffEntry            he[4][256];
    LLVidEncDSPContext   llvidencdsp;
    void (*predict)(struct MagicYUVContext *s, uint8_t *src, uint8_t *dst,
                    ptrdiff_t stride, int width, int height);
} MagicYUVContext;

static void left_predict(MagicYUVContext *s,
                         uint8_t *src, uint8_t *dst, ptrdiff_t stride,
                         int width, int height)
{
    uint8_t prev = 0;
    int i, j;

    for (i = 0; i < width; i++) {
        dst[i] = src[i] - prev;
        prev   = src[i];
    }
    dst += width;
    src += stride;
    for (j = 1; j < height; j++) {
        prev = src[-stride];
        for (i = 0; i < width; i++) {
            dst[i] = src[i] - prev;
            prev   = src[i];
        }
        dst += width;
        src += stride;
    }
}

static void gradient_predict(MagicYUVContext *s,
                             uint8_t *src, uint8_t *dst, ptrdiff_t stride,
                             int width, int height)
{
    int left = 0, top, lefttop;
    int i, j;

    for (i = 0; i < width; i++) {
        dst[i] = src[i] - left;
        left   = src[i];
    }
    dst += width;
    src += stride;
    for (j = 1; j < height; j++) {
        top = src[-stride];
        left = src[0] - top;
        dst[0] = left;
        for (i = 1; i < width; i++) {
            top = src[i - stride];
            lefttop = src[i - (stride + 1)];
            left = src[i-1];
            dst[i] = (src[i] - top) - left + lefttop;
        }
        dst += width;
        src += stride;
    }
}

static void median_predict(MagicYUVContext *s,
                           uint8_t *src, uint8_t *dst, ptrdiff_t stride,
                           int width, int height)
{
    int left = 0, lefttop;
    int i, j;

    for (i = 0; i < width; i++) {
        dst[i] = src[i] - left;
        left   = src[i];
    }
    dst += width;
    src += stride;
    for (j = 1; j < height; j++) {
        left = lefttop = src[-stride];
        s->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &left, &lefttop);
        dst += width;
        src += stride;
    }
}

static av_cold int magy_encode_init(AVCodecContext *avctx)
{
    MagicYUVContext *s = avctx->priv_data;
    PutByteContext pb;
    int i;

    switch (avctx->pix_fmt) {
    case AV_PIX_FMT_GBRP:
        avctx->codec_tag = MKTAG('M', '8', 'R', 'G');
        s->correlate = 1;
        s->format = 0x65;
        break;
    case AV_PIX_FMT_GBRAP:
        avctx->codec_tag = MKTAG('M', '8', 'R', 'A');
        s->correlate = 1;
        s->format = 0x66;
        break;
    case AV_PIX_FMT_YUV420P:
        avctx->codec_tag = MKTAG('M', '8', 'Y', '0');
        s->hshift[1] =
        s->vshift[1] =
        s->hshift[2] =
        s->vshift[2] = 1;
        s->format = 0x69;
        break;
    case AV_PIX_FMT_YUV422P:
        avctx->codec_tag = MKTAG('M', '8', 'Y', '2');
        s->hshift[1] =
        s->hshift[2] = 1;
        s->format = 0x68;
        break;
    case AV_PIX_FMT_YUV444P:
        avctx->codec_tag = MKTAG('M', '8', 'Y', '4');
        s->format = 0x67;
        break;
    case AV_PIX_FMT_YUVA444P:
        avctx->codec_tag = MKTAG('M', '8', 'Y', 'A');
        s->format = 0x6a;
        break;
    case AV_PIX_FMT_GRAY8:
        avctx->codec_tag = MKTAG('M', '8', 'G', '0');
        s->format = 0x6b;
        break;
    default:
        av_log(avctx, AV_LOG_ERROR, "Unsupported pixel format: %d\n",
               avctx->pix_fmt);
        return AVERROR_INVALIDDATA;
    }

    ff_llvidencdsp_init(&s->llvidencdsp);

    s->planes = av_pix_fmt_count_planes(avctx->pix_fmt);

    s->nb_slices = 1;

    for (i = 0; i < s->planes; i++) {
        s->slices[i] = av_malloc(avctx->width * (avctx->height + 2) +
                                 AV_INPUT_BUFFER_PADDING_SIZE);
        if (!s->slices[i]) {
            av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer.\n");
            return AVERROR(ENOMEM);
        }
    }

    switch (s->frame_pred) {
    case LEFT:     s->predict = left_predict;     break;
    case GRADIENT: s->predict = gradient_predict; break;
    case MEDIAN:   s->predict = median_predict;   break;
    }

    avctx->extradata_size = 32;

    avctx->extradata = av_mallocz(avctx->extradata_size +
                                  AV_INPUT_BUFFER_PADDING_SIZE);

    if (!avctx->extradata) {
        av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
        return AVERROR(ENOMEM);
    }

    bytestream2_init_writer(&pb, avctx->extradata, avctx->extradata_size);
    bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y'));
    bytestream2_put_le32(&pb, 32);
    bytestream2_put_byte(&pb, 7);
    bytestream2_put_byte(&pb, s->format);
    bytestream2_put_byte(&pb, 12);
    bytestream2_put_byte(&pb, 0);

    bytestream2_put_byte(&pb, 0);
    bytestream2_put_byte(&pb, 0);
    bytestream2_put_byte(&pb, 32);
    bytestream2_put_byte(&pb, 0);

    bytestream2_put_le32(&pb, avctx->width);
    bytestream2_put_le32(&pb, avctx->height);
    bytestream2_put_le32(&pb, avctx->width);
    bytestream2_put_le32(&pb, avctx->height);

    return 0;
}

static int magy_huff_cmp_len(const void *a, const void *b)
{
    const HuffEntry *aa = a, *bb = b;
    return (aa->len - bb->len) * 256 + aa->sym - bb->sym;
}

static int huff_cmp_sym(const void *a, const void *b)
{
    const HuffEntry *aa = a, *bb = b;
    return bb->sym - aa->sym;
}

static void calculate_codes(HuffEntry *he)
{
    uint32_t code;
    int i;

    AV_QSORT(he, 256, HuffEntry, magy_huff_cmp_len);

    code = 1;
    for (i = 255; i >= 0; i--) {
        he[i].code  = code >> (32 - he[i].len);
        code       += 0x80000000u >> (he[i].len - 1);
    }

    AV_QSORT(he, 256, HuffEntry, huff_cmp_sym);
}

static void count_usage(uint8_t *src, int width,
                        int height, PTable *counts)
{
    int i, j;

    for (j = 0; j < height; j++) {
        for (i = 0; i < width; i++) {
            counts[src[i]].prob++;
        }
        src += width;
    }
}

typedef struct PackageMergerList {
    int nitems;             ///< number of items in the list and probability      ex. 4
    int item_idx[515];      ///< index range for each item in items                   0, 2, 5, 9, 13
    int probability[514];   ///< probability of each item                             3, 8, 18, 46
    int items[257 * 16];    ///< chain of all individual values that make up items    A, B, A, B, C, A, B, C, D, C, D, D, E
} PackageMergerList;

static int compare_by_prob(const void *a, const void *b)
{
    PTable a_val = *(PTable *)a;
    PTable b_val = *(PTable *)b;
    return a_val.prob - b_val.prob;
}

static void magy_huffman_compute_bits(PTable *prob_table, HuffEntry *distincts,
                                      int size, int max_length)
{
    PackageMergerList list_a, list_b, *to = &list_a, *from = &list_b, *temp;
    int times, i, j, k;
    int nbits[257] = {0};
    int min;

    av_assert0(max_length > 0);

    to->nitems = 0;
    from->nitems = 0;
    to->item_idx[0] = 0;
    from->item_idx[0] = 0;
    AV_QSORT(prob_table, size, PTable, compare_by_prob);

    for (times = 0; times <= max_length; times++) {
        to->nitems = 0;
        to->item_idx[0] = 0;

        j = 0;
        k = 0;

        if (times < max_length) {
            i = 0;
        }
        while (i < size || j + 1 < from->nitems) {
            to->nitems++;
            to->item_idx[to->nitems] = to->item_idx[to->nitems - 1];
            if (i < size &&
                (j + 1 >= from->nitems ||
                 prob_table[i].prob <
                     from->probability[j] + from->probability[j + 1])) {
                to->items[to->item_idx[to->nitems]++] = prob_table[i].value;
                to->probability[to->nitems - 1] = prob_table[i].prob;
                i++;
            } else {
                for (k = from->item_idx[j]; k < from->item_idx[j + 2]; k++) {
                    to->items[to->item_idx[to->nitems]++] = from->items[k];
                }
                to->probability[to->nitems - 1] =
                    from->probability[j] + from->probability[j + 1];
                j += 2;
            }
        }
        temp = to;
        to = from;
        from = temp;
    }

    min = (size - 1 < from->nitems) ? size - 1 : from->nitems;
    for (i = 0; i < from->item_idx[min]; i++) {
        nbits[from->items[i]]++;
    }

    for (i = 0; i < size; i++) {
        distincts[i].sym = i;
        distincts[i].len = nbits[i];
    }
}

static int encode_table(AVCodecContext *avctx, uint8_t *dst,
                        int width, int height,
                        PutBitContext *pb, HuffEntry *he)
{
    PTable counts[256] = { {0} };
    int i;

    count_usage(dst, width, height, counts);

    for (i = 0; i < 256; i++) {
        counts[i].prob++;
        counts[i].value = 255 - i;
    }

    magy_huffman_compute_bits(counts, he, 256, 12);

    calculate_codes(he);

    for (i = 0; i < 256; i++) {
        put_bits(pb, 1, 0);
        put_bits(pb, 7, he[i].len);
    }

    return 0;
}

static int encode_slice(uint8_t *src, uint8_t *dst, int dst_size,
                        int width, int height, HuffEntry *he, int prediction)
{
    PutBitContext pb;
    int i, j;
    int count;

    init_put_bits(&pb, dst, dst_size);

    put_bits(&pb, 8, 0);
    put_bits(&pb, 8, prediction);

    for (j = 0; j < height; j++) {
        for (i = 0; i < width; i++) {
            const int idx = src[i];
            put_bits(&pb, he[idx].len, he[idx].code);
        }

        src += width;
    }

    count = put_bits_count(&pb) & 0x1F;

    if (count)
        put_bits(&pb, 32 - count, 0);

    count = put_bits_count(&pb);

    flush_put_bits(&pb);

    return count >> 3;
}

static int magy_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
                             const AVFrame *frame, int *got_packet)
{
    MagicYUVContext *s = avctx->priv_data;
    PutByteContext pb;
    const int width = avctx->width, height = avctx->height;
    int pos, slice, i, j, ret = 0;

    ret = ff_alloc_packet2(avctx, pkt, (256 + 4 * s->nb_slices + width * height) *
                           s->planes + 256, 0);
    if (ret < 0)
        return ret;

    bytestream2_init_writer(&pb, pkt->data, pkt->size);
    bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y'));
    bytestream2_put_le32(&pb, 32); // header size
    bytestream2_put_byte(&pb, 7);  // version
    bytestream2_put_byte(&pb, s->format);
    bytestream2_put_byte(&pb, 12); // max huffman length
    bytestream2_put_byte(&pb, 0);

    bytestream2_put_byte(&pb, 0);
    bytestream2_put_byte(&pb, 0);
    bytestream2_put_byte(&pb, 32); // coder type
    bytestream2_put_byte(&pb, 0);

    bytestream2_put_le32(&pb, avctx->width);
    bytestream2_put_le32(&pb, avctx->height);
    bytestream2_put_le32(&pb, avctx->width);
    bytestream2_put_le32(&pb, avctx->height);
    bytestream2_put_le32(&pb, 0);

    for (i = 0; i < s->planes; i++) {
        bytestream2_put_le32(&pb, 0);
        for (j = 1; j < s->nb_slices; j++) {
            bytestream2_put_le32(&pb, 0);
        }
    }

    bytestream2_put_byte(&pb, s->planes);

    for (i = 0; i < s->planes; i++) {
        for (slice = 0; slice < s->nb_slices; slice++) {
            bytestream2_put_byte(&pb, i);
        }
    }

    if (s->correlate) {
        uint8_t *r, *g, *b;
        AVFrame *p = av_frame_clone(frame);

        g = p->data[0];
        b = p->data[1];
        r = p->data[2];

        for (i = 0; i < height; i++) {
            s->llvidencdsp.diff_bytes(b, b, g, width);
            s->llvidencdsp.diff_bytes(r, r, g, width);
            g += p->linesize[0];
            b += p->linesize[1];
            r += p->linesize[2];
        }

        FFSWAP(uint8_t*, p->data[0], p->data[1]);
        FFSWAP(int, p->linesize[0], p->linesize[1]);

        for (i = 0; i < s->planes; i++) {
            for (slice = 0; slice < s->nb_slices; slice++) {
                s->predict(s, p->data[i], s->slices[i], p->linesize[i],
                               p->width, p->height);
            }
        }

        av_frame_free(&p);
    } else {
        for (i = 0; i < s->planes; i++) {
            for (slice = 0; slice < s->nb_slices; slice++) {
                s->predict(s, frame->data[i], s->slices[i], frame->linesize[i],
                           AV_CEIL_RSHIFT(frame->width, s->hshift[i]),
                           AV_CEIL_RSHIFT(frame->height, s->vshift[i]));
            }
        }
    }

    init_put_bits(&s->pb, pkt->data + bytestream2_tell_p(&pb), bytestream2_get_bytes_left_p(&pb));

    for (i = 0; i < s->planes; i++) {
        encode_table(avctx, s->slices[i],
                     AV_CEIL_RSHIFT(frame->width,  s->hshift[i]),
                     AV_CEIL_RSHIFT(frame->height, s->vshift[i]),
                     &s->pb, s->he[i]);
    }
    s->tables_size = (put_bits_count(&s->pb) + 7) >> 3;
    bytestream2_skip_p(&pb, s->tables_size);

    for (i = 0; i < s->planes; i++) {
        unsigned slice_size;

        s->slice_pos[i] = bytestream2_tell_p(&pb);
        slice_size = encode_slice(s->slices[i], pkt->data + bytestream2_tell_p(&pb),
                                  bytestream2_get_bytes_left_p(&pb),
                                  AV_CEIL_RSHIFT(frame->width,  s->hshift[i]),
                                  AV_CEIL_RSHIFT(frame->height, s->vshift[i]),
                                  s->he[i], s->frame_pred);
        bytestream2_skip_p(&pb, slice_size);
    }

    pos = bytestream2_tell_p(&pb);
    bytestream2_seek_p(&pb, 32, SEEK_SET);
    bytestream2_put_le32(&pb, s->slice_pos[0] - 32);
    for (i = 0; i < s->planes; i++) {
        bytestream2_put_le32(&pb, s->slice_pos[i] - 32);
    }
    bytestream2_seek_p(&pb, pos, SEEK_SET);

    pkt->size   = bytestream2_tell_p(&pb);
    pkt->flags |= AV_PKT_FLAG_KEY;

    *got_packet = 1;

    return 0;
}

static av_cold int magy_encode_close(AVCodecContext *avctx)
{
    MagicYUVContext *s = avctx->priv_data;
    int i;

    for (i = 0; i < s->planes; i++)
        av_freep(&s->slices[i]);

    return 0;
}

#define OFFSET(x) offsetof(MagicYUVContext, x)
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
static const AVOption options[] = {
    { "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, {.i64=LEFT}, LEFT, MEDIAN, VE, "pred" },
    { "left",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT },     0, 0, VE, "pred" },
    { "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = GRADIENT }, 0, 0, VE, "pred" },
    { "median",   NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN },   0, 0, VE, "pred" },
    { NULL},
};

static const AVClass magicyuv_class = {
    .class_name = "magicyuv",
    .item_name  = av_default_item_name,
    .option     = options,
    .version    = LIBAVUTIL_VERSION_INT,
};

AVCodec ff_magicyuv_encoder = {
    .name             = "magicyuv",
    .long_name        = NULL_IF_CONFIG_SMALL("MagicYUV video"),
    .type             = AVMEDIA_TYPE_VIDEO,
    .id               = AV_CODEC_ID_MAGICYUV,
    .priv_data_size   = sizeof(MagicYUVContext),
    .priv_class       = &magicyuv_class,
    .init             = magy_encode_init,
    .close            = magy_encode_close,
    .encode2          = magy_encode_frame,
    .capabilities     = AV_CODEC_CAP_FRAME_THREADS | AV_CODEC_CAP_INTRA_ONLY,
    .pix_fmts         = (const enum AVPixelFormat[]) {
                          AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV422P,
                          AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_GRAY8,
                          AV_PIX_FMT_NONE
                      },
};
OpenPOWER on IntegriCloud