1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
|
/*
* G.726 ADPCM audio codec
* Copyright (c) 2004 Roman Shaposhnik.
*
* This is a very straightforward rendition of the G.726
* Section 4 "Computational Details".
*
* This file is part of FFmpeg.
*
* FFmpeg is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* FFmpeg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with FFmpeg; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include <limits.h>
#include "avcodec.h"
#include "bitstream.h"
/**
* G.726 11bit float.
* G.726 Standard uses rather odd 11bit floating point arithmentic for
* numerous occasions. It's a mistery to me why they did it this way
* instead of simply using 32bit integer arithmetic.
*/
typedef struct Float11 {
int sign; /**< 1bit sign */
int exp; /**< 4bit exponent */
int mant; /**< 6bit mantissa */
} Float11;
static inline Float11* i2f(int16_t i, Float11* f)
{
f->sign = (i < 0);
if (f->sign)
i = -i;
f->exp = av_log2_16bit(i) + !!i;
f->mant = i? (i<<6) >> f->exp : 1<<5;
return f;
}
static inline int16_t mult(Float11* f1, Float11* f2)
{
int res, exp;
exp = f1->exp + f2->exp;
res = (((f1->mant * f2->mant) + 0x30) >> 4) << 7;
res = exp > 26 ? res << (exp - 26) : res >> (26 - exp);
return (f1->sign ^ f2->sign) ? -res : res;
}
static inline int sgn(int value)
{
return (value < 0) ? -1 : 1;
}
typedef struct G726Tables {
int bits; /**< bits per sample */
int* quant; /**< quantization table */
int* iquant; /**< inverse quantization table */
int* W; /**< special table #1 ;-) */
int* F; /**< special table #2 */
} G726Tables;
typedef struct G726Context {
G726Tables* tbls; /**< static tables needed for computation */
Float11 sr[2]; /**< prev. reconstructed samples */
Float11 dq[6]; /**< prev. difference */
int a[2]; /**< second order predictor coeffs */
int b[6]; /**< sixth order predictor coeffs */
int pk[2]; /**< signs of prev. 2 sez + dq */
int ap; /**< scale factor control */
int yu; /**< fast scale factor */
int yl; /**< slow scale factor */
int dms; /**< short average magnitude of F[i] */
int dml; /**< long average magnitude of F[i] */
int td; /**< tone detect */
int se; /**< estimated signal for the next iteration */
int sez; /**< estimated second order prediction */
int y; /**< quantizer scaling factor for the next iteration */
} G726Context;
static int quant_tbl16[] = /**< 16kbit/s 2bits per sample */
{ 260, INT_MAX };
static int iquant_tbl16[] =
{ 116, 365, 365, 116 };
static int W_tbl16[] =
{ -22, 439, 439, -22 };
static int F_tbl16[] =
{ 0, 7, 7, 0 };
static int quant_tbl24[] = /**< 24kbit/s 3bits per sample */
{ 7, 217, 330, INT_MAX };
static int iquant_tbl24[] =
{ INT_MIN, 135, 273, 373, 373, 273, 135, INT_MIN };
static int W_tbl24[] =
{ -4, 30, 137, 582, 582, 137, 30, -4 };
static int F_tbl24[] =
{ 0, 1, 2, 7, 7, 2, 1, 0 };
static int quant_tbl32[] = /**< 32kbit/s 4bits per sample */
{ -125, 79, 177, 245, 299, 348, 399, INT_MAX };
static int iquant_tbl32[] =
{ INT_MIN, 4, 135, 213, 273, 323, 373, 425,
425, 373, 323, 273, 213, 135, 4, INT_MIN };
static int W_tbl32[] =
{ -12, 18, 41, 64, 112, 198, 355, 1122,
1122, 355, 198, 112, 64, 41, 18, -12};
static int F_tbl32[] =
{ 0, 0, 0, 1, 1, 1, 3, 7, 7, 3, 1, 1, 1, 0, 0, 0 };
static int quant_tbl40[] = /**< 40kbit/s 5bits per sample */
{ -122, -16, 67, 138, 197, 249, 297, 338,
377, 412, 444, 474, 501, 527, 552, INT_MAX };
static int iquant_tbl40[] =
{ INT_MIN, -66, 28, 104, 169, 224, 274, 318,
358, 395, 429, 459, 488, 514, 539, 566,
566, 539, 514, 488, 459, 429, 395, 358,
318, 274, 224, 169, 104, 28, -66, INT_MIN };
static int W_tbl40[] =
{ 14, 14, 24, 39, 40, 41, 58, 100,
141, 179, 219, 280, 358, 440, 529, 696,
696, 529, 440, 358, 280, 219, 179, 141,
100, 58, 41, 40, 39, 24, 14, 14 };
static int F_tbl40[] =
{ 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 6,
6, 6, 5, 4, 3, 2, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0 };
static G726Tables G726Tables_pool[] =
{{ 2, quant_tbl16, iquant_tbl16, W_tbl16, F_tbl16 },
{ 3, quant_tbl24, iquant_tbl24, W_tbl24, F_tbl24 },
{ 4, quant_tbl32, iquant_tbl32, W_tbl32, F_tbl32 },
{ 5, quant_tbl40, iquant_tbl40, W_tbl40, F_tbl40 }};
/**
* Para 4.2.2 page 18: Adaptive quantizer.
*/
static inline uint8_t quant(G726Context* c, int d)
{
int sign, exp, i, dln;
sign = i = 0;
if (d < 0) {
sign = 1;
d = -d;
}
exp = av_log2_16bit(d);
dln = ((exp<<7) + (((d<<7)>>exp)&0x7f)) - (c->y>>2);
while (c->tbls->quant[i] < INT_MAX && c->tbls->quant[i] < dln)
++i;
if (sign)
i = ~i;
if (c->tbls->bits != 2 && i == 0) /* I'm not sure this is a good idea */
i = 0xff;
return i;
}
/**
* Para 4.2.3 page 22: Inverse adaptive quantizer.
*/
static inline int16_t inverse_quant(G726Context* c, int i)
{
int dql, dex, dqt;
dql = c->tbls->iquant[i] + (c->y >> 2);
dex = (dql>>7) & 0xf; /* 4bit exponent */
dqt = (1<<7) + (dql & 0x7f); /* log2 -> linear */
return (dql < 0) ? 0 : ((dqt<<7) >> (14-dex));
}
static inline int16_t g726_iterate(G726Context* c, int16_t I)
{
int dq, re_signal, pk0, fa1, i, tr, ylint, ylfrac, thr2, al, dq0;
Float11 f;
dq = inverse_quant(c, I);
if (I >> (c->tbls->bits - 1)) /* get the sign */
dq = -dq;
re_signal = c->se + dq;
/* Transition detect */
ylint = (c->yl >> 15);
ylfrac = (c->yl >> 10) & 0x1f;
thr2 = (ylint > 9) ? 0x1f << 10 : (0x20 + ylfrac) << ylint;
if (c->td == 1 && abs(dq) > ((thr2+(thr2>>1))>>1))
tr = 1;
else
tr = 0;
/* Update second order predictor coefficient A2 and A1 */
pk0 = (c->sez + dq) ? sgn(c->sez + dq) : 0;
dq0 = dq ? sgn(dq) : 0;
if (tr) {
c->a[0] = 0;
c->a[1] = 0;
for (i=0; i<6; i++)
c->b[i] = 0;
} else {
/* This is a bit crazy, but it really is +255 not +256 */
fa1 = av_clip((-c->a[0]*c->pk[0]*pk0)>>5, -256, 255);
c->a[1] += 128*pk0*c->pk[1] + fa1 - (c->a[1]>>7);
c->a[1] = av_clip(c->a[1], -12288, 12288);
c->a[0] += 64*3*pk0*c->pk[0] - (c->a[0] >> 8);
c->a[0] = av_clip(c->a[0], -(15360 - c->a[1]), 15360 - c->a[1]);
for (i=0; i<6; i++)
c->b[i] += 128*dq0*sgn(-c->dq[i].sign) - (c->b[i]>>8);
}
/* Update Dq and Sr and Pk */
c->pk[1] = c->pk[0];
c->pk[0] = pk0 ? pk0 : 1;
c->sr[1] = c->sr[0];
i2f(re_signal, &c->sr[0]);
for (i=5; i>0; i--)
c->dq[i] = c->dq[i-1];
i2f(dq, &c->dq[0]);
c->dq[0].sign = I >> (c->tbls->bits - 1); /* Isn't it crazy ?!?! */
/* Update tone detect [I'm not sure 'tr == 0' is really needed] */
c->td = (tr == 0 && c->a[1] < -11776);
/* Update Ap */
c->dms += ((c->tbls->F[I]<<9) - c->dms) >> 5;
c->dml += ((c->tbls->F[I]<<11) - c->dml) >> 7;
if (tr)
c->ap = 256;
else if (c->y > 1535 && !c->td && (abs((c->dms << 2) - c->dml) < (c->dml >> 3)))
c->ap += (-c->ap) >> 4;
else
c->ap += (0x200 - c->ap) >> 4;
/* Update Yu and Yl */
c->yu = av_clip(c->y + (((c->tbls->W[I] << 5) - c->y) >> 5), 544, 5120);
c->yl += c->yu + ((-c->yl)>>6);
/* Next iteration for Y */
al = (c->ap >= 256) ? 1<<6 : c->ap >> 2;
c->y = (c->yl + (c->yu - (c->yl>>6))*al) >> 6;
/* Next iteration for SE and SEZ */
c->se = 0;
for (i=0; i<6; i++)
c->se += mult(i2f(c->b[i] >> 2, &f), &c->dq[i]);
c->sez = c->se >> 1;
for (i=0; i<2; i++)
c->se += mult(i2f(c->a[i] >> 2, &f), &c->sr[i]);
c->se >>= 1;
return av_clip(re_signal << 2, -0xffff, 0xffff);
}
static int g726_reset(G726Context* c, int bit_rate)
{
int i;
c->tbls = &G726Tables_pool[bit_rate/8000 - 2];
for (i=0; i<2; i++) {
i2f(0, &c->sr[i]);
c->a[i] = 0;
c->pk[i] = 1;
}
for (i=0; i<6; i++) {
i2f(0, &c->dq[i]);
c->b[i] = 0;
}
c->ap = 0;
c->dms = 0;
c->dml = 0;
c->yu = 544;
c->yl = 34816;
c->td = 0;
c->se = 0;
c->sez = 0;
c->y = 544;
return 0;
}
static int16_t g726_decode(G726Context* c, int16_t i)
{
return g726_iterate(c, i);
}
#ifdef CONFIG_ENCODERS
static int16_t g726_encode(G726Context* c, int16_t sig)
{
uint8_t i;
i = quant(c, sig/4 - c->se) & ((1<<c->tbls->bits) - 1);
g726_iterate(c, i);
return i;
}
#endif
/* Interfacing to the libavcodec */
typedef struct AVG726Context {
G726Context c;
int bits_left;
int bit_buffer;
int code_size;
} AVG726Context;
static int g726_init(AVCodecContext * avctx)
{
AVG726Context* c = (AVG726Context*)avctx->priv_data;
if (avctx->channels != 1 ||
(avctx->bit_rate != 16000 && avctx->bit_rate != 24000 &&
avctx->bit_rate != 32000 && avctx->bit_rate != 40000)) {
av_log(avctx, AV_LOG_ERROR, "G726: unsupported audio format\n");
return -1;
}
if (avctx->sample_rate != 8000 && avctx->strict_std_compliance>FF_COMPLIANCE_INOFFICIAL) {
av_log(avctx, AV_LOG_ERROR, "G726: unsupported audio format\n");
return -1;
}
g726_reset(&c->c, avctx->bit_rate);
c->code_size = c->c.tbls->bits;
c->bit_buffer = 0;
c->bits_left = 0;
avctx->coded_frame = avcodec_alloc_frame();
if (!avctx->coded_frame)
return AVERROR(ENOMEM);
avctx->coded_frame->key_frame = 1;
return 0;
}
static int g726_close(AVCodecContext *avctx)
{
av_freep(&avctx->coded_frame);
return 0;
}
#ifdef CONFIG_ENCODERS
static int g726_encode_frame(AVCodecContext *avctx,
uint8_t *dst, int buf_size, void *data)
{
AVG726Context *c = avctx->priv_data;
short *samples = data;
PutBitContext pb;
init_put_bits(&pb, dst, 1024*1024);
for (; buf_size; buf_size--)
put_bits(&pb, c->code_size, g726_encode(&c->c, *samples++));
flush_put_bits(&pb);
return put_bits_count(&pb)>>3;
}
#endif
static int g726_decode_frame(AVCodecContext *avctx,
void *data, int *data_size,
uint8_t *buf, int buf_size)
{
AVG726Context *c = avctx->priv_data;
short *samples = data;
uint8_t code;
uint8_t mask;
GetBitContext gb;
if (!buf_size)
goto out;
mask = (1<<c->code_size) - 1;
init_get_bits(&gb, buf, buf_size * 8);
if (c->bits_left) {
int s = c->code_size - c->bits_left;;
code = (c->bit_buffer << s) | get_bits(&gb, s);
*samples++ = g726_decode(&c->c, code & mask);
}
while (get_bits_count(&gb) + c->code_size <= buf_size*8)
*samples++ = g726_decode(&c->c, get_bits(&gb, c->code_size) & mask);
c->bits_left = buf_size*8 - get_bits_count(&gb);
c->bit_buffer = get_bits(&gb, c->bits_left);
out:
*data_size = (uint8_t*)samples - (uint8_t*)data;
return buf_size;
}
#ifdef CONFIG_ENCODERS
AVCodec adpcm_g726_encoder = {
"g726",
CODEC_TYPE_AUDIO,
CODEC_ID_ADPCM_G726,
sizeof(AVG726Context),
g726_init,
g726_encode_frame,
g726_close,
NULL,
};
#endif //CONFIG_ENCODERS
AVCodec adpcm_g726_decoder = {
"g726",
CODEC_TYPE_AUDIO,
CODEC_ID_ADPCM_G726,
sizeof(AVG726Context),
g726_init,
NULL,
g726_close,
g726_decode_frame,
};
|