summaryrefslogtreecommitdiffstats
path: root/libavcodec/eac3dec.c
blob: 3a5c7989b93bee7673c607afc2d45b82b9a28ab4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
/*
 * E-AC-3 decoder
 * Copyright (c) 2007 Bartlomiej Wolowiec <bartek.wolowiec@gmail.com>
 * Copyright (c) 2008 Justin Ruggles
 *
 * This file is part of FFmpeg.
 *
 * FFmpeg is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * FFmpeg is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with FFmpeg; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/*
 * There are several features of E-AC-3 that this decoder does not yet support.
 *
 * Enhanced Coupling
 *     No known samples exist.  If any ever surface, this feature should not be
 *     too difficult to implement.
 *
 * Reduced Sample Rates
 *     No known samples exist.  The spec also does not give clear information
 *     on how this is to be implemented.
 *
 * Transient Pre-noise Processing
 *     This is side information which a decoder should use to reduce artifacts
 *     caused by transients.  There are samples which are known to have this
 *     information, but this decoder currently ignores it.
 */


#include "avcodec.h"
#include "internal.h"
#include "aac_ac3_parser.h"
#include "ac3.h"
#include "ac3dec.h"
#include "ac3dec_data.h"
#include "eac3_data.h"

/** gain adaptive quantization mode */
typedef enum {
    EAC3_GAQ_NO =0,
    EAC3_GAQ_12,
    EAC3_GAQ_14,
    EAC3_GAQ_124
} EAC3GaqMode;

#define EAC3_SR_CODE_REDUCED  3

static void ff_eac3_apply_spectral_extension(AC3DecodeContext *s)
{
    int bin, bnd, ch, i;
    uint8_t wrapflag[SPX_MAX_BANDS]={1,0,}, num_copy_sections, copy_sizes[SPX_MAX_BANDS];
    float rms_energy[SPX_MAX_BANDS];

    /* Set copy index mapping table. Set wrap flags to apply a notch filter at
       wrap points later on. */
    bin = s->spx_dst_start_freq;
    num_copy_sections = 0;
    for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
        int copysize;
        int bandsize = s->spx_band_sizes[bnd];
        if (bin + bandsize > s->spx_src_start_freq) {
            copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
            bin = s->spx_dst_start_freq;
            wrapflag[bnd] = 1;
        }
        for (i = 0; i < bandsize; i += copysize) {
            if (bin == s->spx_src_start_freq) {
                copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;
                bin = s->spx_dst_start_freq;
            }
            copysize = FFMIN(bandsize - i, s->spx_src_start_freq - bin);
            bin += copysize;
        }
    }
    copy_sizes[num_copy_sections++] = bin - s->spx_dst_start_freq;

    for (ch = 1; ch <= s->fbw_channels; ch++) {
        if (!s->channel_uses_spx[ch])
            continue;

        /* Copy coeffs from normal bands to extension bands */
        bin = s->spx_src_start_freq;
        for (i = 0; i < num_copy_sections; i++) {
            memcpy(&s->transform_coeffs[ch][bin],
                   &s->transform_coeffs[ch][s->spx_dst_start_freq],
                   copy_sizes[i]*sizeof(INTFLOAT));
            bin += copy_sizes[i];
        }

        /* Calculate RMS energy for each SPX band. */
        bin = s->spx_src_start_freq;
        for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
            int bandsize = s->spx_band_sizes[bnd];
            float accum = 0.0f;
            for (i = 0; i < bandsize; i++) {
                float coeff = s->transform_coeffs[ch][bin++];
                accum += coeff * coeff;
            }
            rms_energy[bnd] = sqrtf(accum / bandsize);
        }

        /* Apply a notch filter at transitions between normal and extension
           bands and at all wrap points. */
        if (s->spx_atten_code[ch] >= 0) {
            const float *atten_tab = ff_eac3_spx_atten_tab[s->spx_atten_code[ch]];
            bin = s->spx_src_start_freq - 2;
            for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
                if (wrapflag[bnd]) {
                    INTFLOAT *coeffs = &s->transform_coeffs[ch][bin];
                    coeffs[0] *= atten_tab[0];
                    coeffs[1] *= atten_tab[1];
                    coeffs[2] *= atten_tab[2];
                    coeffs[3] *= atten_tab[1];
                    coeffs[4] *= atten_tab[0];
                }
                bin += s->spx_band_sizes[bnd];
            }
        }

        /* Apply noise-blended coefficient scaling based on previously
           calculated RMS energy, blending factors, and SPX coordinates for
           each band. */
        bin = s->spx_src_start_freq;
        for (bnd = 0; bnd < s->num_spx_bands; bnd++) {
            float nscale = s->spx_noise_blend[ch][bnd] * rms_energy[bnd] * (1.0f / INT32_MIN);
            float sscale = s->spx_signal_blend[ch][bnd];
#if USE_FIXED
            // spx_noise_blend and spx_signal_blend are both FP.23
            nscale *= 1.0 / (1<<23);
            sscale *= 1.0 / (1<<23);
#endif
            for (i = 0; i < s->spx_band_sizes[bnd]; i++) {
                float noise  = nscale * (int32_t)av_lfg_get(&s->dith_state);
                s->transform_coeffs[ch][bin]   *= sscale;
                s->transform_coeffs[ch][bin++] += noise;
            }
        }
    }
}


/** lrint(M_SQRT2*cos(2*M_PI/12)*(1<<23)) */
#define COEFF_0 10273905LL

/** lrint(M_SQRT2*cos(0*M_PI/12)*(1<<23)) = lrint(M_SQRT2*(1<<23)) */
#define COEFF_1 11863283LL

/** lrint(M_SQRT2*cos(5*M_PI/12)*(1<<23)) */
#define COEFF_2  3070444LL

/**
 * Calculate 6-point IDCT of the pre-mantissas.
 * All calculations are 24-bit fixed-point.
 */
static void idct6(int pre_mant[6])
{
    int tmp;
    int even0, even1, even2, odd0, odd1, odd2;

    odd1 = pre_mant[1] - pre_mant[3] - pre_mant[5];

    even2 = ( pre_mant[2]                * COEFF_0) >> 23;
    tmp   = ( pre_mant[4]                * COEFF_1) >> 23;
    odd0  = ((pre_mant[1] + pre_mant[5]) * COEFF_2) >> 23;

    even0 = pre_mant[0] + (tmp >> 1);
    even1 = pre_mant[0] - tmp;

    tmp = even0;
    even0 = tmp + even2;
    even2 = tmp - even2;

    tmp = odd0;
    odd0 = tmp + pre_mant[1] + pre_mant[3];
    odd2 = tmp + pre_mant[5] - pre_mant[3];

    pre_mant[0] = even0 + odd0;
    pre_mant[1] = even1 + odd1;
    pre_mant[2] = even2 + odd2;
    pre_mant[3] = even2 - odd2;
    pre_mant[4] = even1 - odd1;
    pre_mant[5] = even0 - odd0;
}

static void ff_eac3_decode_transform_coeffs_aht_ch(AC3DecodeContext *s, int ch)
{
    int bin, blk, gs;
    int end_bap, gaq_mode;
    GetBitContext *gbc = &s->gbc;
    int gaq_gain[AC3_MAX_COEFS];

    gaq_mode = get_bits(gbc, 2);
    end_bap = (gaq_mode < 2) ? 12 : 17;

    /* if GAQ gain is used, decode gain codes for bins with hebap between
       8 and end_bap */
    gs = 0;
    if (gaq_mode == EAC3_GAQ_12 || gaq_mode == EAC3_GAQ_14) {
        /* read 1-bit GAQ gain codes */
        for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
            if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < end_bap)
                gaq_gain[gs++] = get_bits1(gbc) << (gaq_mode-1);
        }
    } else if (gaq_mode == EAC3_GAQ_124) {
        /* read 1.67-bit GAQ gain codes (3 codes in 5 bits) */
        int gc = 2;
        for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
            if (s->bap[ch][bin] > 7 && s->bap[ch][bin] < 17) {
                if (gc++ == 2) {
                    int group_code = get_bits(gbc, 5);
                    if (group_code > 26) {
                        av_log(s->avctx, AV_LOG_WARNING, "GAQ gain group code out-of-range\n");
                        group_code = 26;
                    }
                    gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][0];
                    gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][1];
                    gaq_gain[gs++] = ff_ac3_ungroup_3_in_5_bits_tab[group_code][2];
                    gc = 0;
                }
            }
        }
    }

    gs=0;
    for (bin = s->start_freq[ch]; bin < s->end_freq[ch]; bin++) {
        int hebap = s->bap[ch][bin];
        int bits = ff_eac3_bits_vs_hebap[hebap];
        if (!hebap) {
            /* zero-mantissa dithering */
            for (blk = 0; blk < 6; blk++) {
                s->pre_mantissa[ch][bin][blk] = (av_lfg_get(&s->dith_state) & 0x7FFFFF) - 0x400000;
            }
        } else if (hebap < 8) {
            /* Vector Quantization */
            int v = get_bits(gbc, bits);
            for (blk = 0; blk < 6; blk++) {
                s->pre_mantissa[ch][bin][blk] = ff_eac3_mantissa_vq[hebap][v][blk] * (1 << 8);
            }
        } else {
            /* Gain Adaptive Quantization */
            int gbits, log_gain;
            if (gaq_mode != EAC3_GAQ_NO && hebap < end_bap) {
                log_gain = gaq_gain[gs++];
            } else {
                log_gain = 0;
            }
            gbits = bits - log_gain;

            for (blk = 0; blk < 6; blk++) {
                int mant = get_sbits(gbc, gbits);
                if (log_gain && mant == -(1 << (gbits-1))) {
                    /* large mantissa */
                    int b;
                    int mbits = bits - (2 - log_gain);
                    mant = get_sbits(gbc, mbits);
                    mant = ((unsigned)mant) << (23 - (mbits - 1));
                    /* remap mantissa value to correct for asymmetric quantization */
                    if (mant >= 0)
                        b = 1 << (23 - log_gain);
                    else
                        b = ff_eac3_gaq_remap_2_4_b[hebap-8][log_gain-1] * (1 << 8);
                    mant += ((ff_eac3_gaq_remap_2_4_a[hebap-8][log_gain-1] * (int64_t)mant) >> 15) + b;
                } else {
                    /* small mantissa, no GAQ, or Gk=1 */
                    mant *= (1 << 24 - bits);
                    if (!log_gain) {
                        /* remap mantissa value for no GAQ or Gk=1 */
                        mant += (ff_eac3_gaq_remap_1[hebap-8] * (int64_t)mant) >> 15;
                    }
                }
                s->pre_mantissa[ch][bin][blk] = mant;
            }
        }
        idct6(s->pre_mantissa[ch][bin]);
    }
}

static int ff_eac3_parse_header(AC3DecodeContext *s)
{
    int i, blk, ch;
    int ac3_exponent_strategy, parse_aht_info, parse_spx_atten_data;
    int parse_transient_proc_info;
    int num_cpl_blocks;
    GetBitContext *gbc = &s->gbc;

    /* An E-AC-3 stream can have multiple independent streams which the
       application can select from. each independent stream can also contain
       dependent streams which are used to add or replace channels. */
    if (s->frame_type == EAC3_FRAME_TYPE_RESERVED) {
        av_log(s->avctx, AV_LOG_ERROR, "Reserved frame type\n");
        return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
    }

    /* The substream id indicates which substream this frame belongs to. each
       independent stream has its own substream id, and the dependent streams
       associated to an independent stream have matching substream id's. */
    if (s->substreamid) {
        /* only decode substream with id=0. skip any additional substreams. */
        if (!s->eac3_subsbtreamid_found) {
            s->eac3_subsbtreamid_found = 1;
            avpriv_request_sample(s->avctx, "Additional substreams");
        }
        return AAC_AC3_PARSE_ERROR_FRAME_TYPE;
    }

    if (s->bit_alloc_params.sr_code == EAC3_SR_CODE_REDUCED) {
        /* The E-AC-3 specification does not tell how to handle reduced sample
           rates in bit allocation.  The best assumption would be that it is
           handled like AC-3 DolbyNet, but we cannot be sure until we have a
           sample which utilizes this feature. */
        avpriv_request_sample(s->avctx, "Reduced sampling rate");
        return AVERROR_PATCHWELCOME;
    }
    skip_bits(gbc, 5); // skip bitstream id

    /* volume control params */
    for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
        s->dialog_normalization[i] = -get_bits(gbc, 5);
        if (s->dialog_normalization[i] == 0) {
            s->dialog_normalization[i] = -31;
        }
        if (s->target_level != 0) {
            s->level_gain[i] = powf(2.0f,
                (float)(s->target_level - s->dialog_normalization[i])/6.0f);
        }
        s->compression_exists[i] = get_bits1(gbc);
        if (s->compression_exists[i]) {
            s->heavy_dynamic_range[i] = AC3_HEAVY_RANGE(get_bits(gbc, 8));
        }
    }

    /* dependent stream channel map */
    if (s->frame_type == EAC3_FRAME_TYPE_DEPENDENT) {
        if (get_bits1(gbc)) {
            int64_t channel_layout = 0;
            int channel_map = get_bits(gbc, 16);
            av_log(s->avctx, AV_LOG_DEBUG, "channel_map: %0X\n", channel_map);

            for (i = 0; i < 16; i++)
                if (channel_map & (1 << (EAC3_MAX_CHANNELS - i - 1)))
                    channel_layout |= ff_eac3_custom_channel_map_locations[i][1];

            if (av_popcount64(channel_layout) > EAC3_MAX_CHANNELS) {
                return AVERROR_INVALIDDATA;
            }
            s->channel_map = channel_map;
        }
    }

    /* mixing metadata */
    if (get_bits1(gbc)) {
        /* center and surround mix levels */
        if (s->channel_mode > AC3_CHMODE_STEREO) {
            s->preferred_downmix = get_bits(gbc, 2);
            if (s->channel_mode & 1) {
                /* if three front channels exist */
                s->center_mix_level_ltrt = get_bits(gbc, 3);
                s->center_mix_level      = get_bits(gbc, 3);
            }
            if (s->channel_mode & 4) {
                /* if a surround channel exists */
                s->surround_mix_level_ltrt = av_clip(get_bits(gbc, 3), 3, 7);
                s->surround_mix_level      = av_clip(get_bits(gbc, 3), 3, 7);
            }
        }

        /* lfe mix level */
        if (s->lfe_on && (s->lfe_mix_level_exists = get_bits1(gbc))) {
            s->lfe_mix_level = get_bits(gbc, 5);
        }

        /* info for mixing with other streams and substreams */
        if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT) {
            for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
                // TODO: apply program scale factor
                if (get_bits1(gbc)) {
                    skip_bits(gbc, 6);  // skip program scale factor
                }
            }
            if (get_bits1(gbc)) {
                skip_bits(gbc, 6);  // skip external program scale factor
            }
            /* skip mixing parameter data */
            switch(get_bits(gbc, 2)) {
                case 1: skip_bits(gbc, 5);  break;
                case 2: skip_bits(gbc, 12); break;
                case 3: {
                    int mix_data_size = (get_bits(gbc, 5) + 2) << 3;
                    skip_bits_long(gbc, mix_data_size);
                    break;
                }
            }
            /* skip pan information for mono or dual mono source */
            if (s->channel_mode < AC3_CHMODE_STEREO) {
                for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
                    if (get_bits1(gbc)) {
                        /* note: this is not in the ATSC A/52B specification
                           reference: ETSI TS 102 366 V1.1.1
                                      section: E.1.3.1.25 */
                        skip_bits(gbc, 8);  // skip pan mean direction index
                        skip_bits(gbc, 6);  // skip reserved paninfo bits
                    }
                }
            }
            /* skip mixing configuration information */
            if (get_bits1(gbc)) {
                for (blk = 0; blk < s->num_blocks; blk++) {
                    if (s->num_blocks == 1 || get_bits1(gbc)) {
                        skip_bits(gbc, 5);
                    }
                }
            }
        }
    }

    /* informational metadata */
    if (get_bits1(gbc)) {
        s->bitstream_mode = get_bits(gbc, 3);
        skip_bits(gbc, 2); // skip copyright bit and original bitstream bit
        if (s->channel_mode == AC3_CHMODE_STEREO) {
            s->dolby_surround_mode  = get_bits(gbc, 2);
            s->dolby_headphone_mode = get_bits(gbc, 2);
        }
        if (s->channel_mode >= AC3_CHMODE_2F2R) {
            s->dolby_surround_ex_mode = get_bits(gbc, 2);
        }
        for (i = 0; i < (s->channel_mode ? 1 : 2); i++) {
            if (get_bits1(gbc)) {
                skip_bits(gbc, 8); // skip mix level, room type, and A/D converter type
            }
        }
        if (s->bit_alloc_params.sr_code != EAC3_SR_CODE_REDUCED) {
            skip_bits1(gbc); // skip source sample rate code
        }
    }

    /* converter synchronization flag
       If frames are less than six blocks, this bit should be turned on
       once every 6 blocks to indicate the start of a frame set.
       reference: RFC 4598, Section 2.1.3  Frame Sets */
    if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT && s->num_blocks != 6) {
        skip_bits1(gbc); // skip converter synchronization flag
    }

    /* original frame size code if this stream was converted from AC-3 */
    if (s->frame_type == EAC3_FRAME_TYPE_AC3_CONVERT &&
            (s->num_blocks == 6 || get_bits1(gbc))) {
        skip_bits(gbc, 6); // skip frame size code
    }

    /* additional bitstream info */
    if (get_bits1(gbc)) {
        int addbsil = get_bits(gbc, 6);
        for (i = 0; i < addbsil + 1; i++) {
            skip_bits(gbc, 8); // skip additional bit stream info
        }
    }

    /* audio frame syntax flags, strategy data, and per-frame data */

    if (s->num_blocks == 6) {
        ac3_exponent_strategy = get_bits1(gbc);
        parse_aht_info        = get_bits1(gbc);
    } else {
        /* less than 6 blocks, so use AC-3-style exponent strategy syntax, and
           do not use AHT */
        ac3_exponent_strategy = 1;
        parse_aht_info = 0;
    }

    s->snr_offset_strategy    = get_bits(gbc, 2);
    parse_transient_proc_info = get_bits1(gbc);

    s->block_switch_syntax = get_bits1(gbc);
    if (!s->block_switch_syntax)
        memset(s->block_switch, 0, sizeof(s->block_switch));

    s->dither_flag_syntax = get_bits1(gbc);
    if (!s->dither_flag_syntax) {
        for (ch = 1; ch <= s->fbw_channels; ch++)
            s->dither_flag[ch] = 1;
    }
    s->dither_flag[CPL_CH] = s->dither_flag[s->lfe_ch] = 0;

    s->bit_allocation_syntax = get_bits1(gbc);
    if (!s->bit_allocation_syntax) {
        /* set default bit allocation parameters */
        s->bit_alloc_params.slow_decay = ff_ac3_slow_decay_tab[2];
        s->bit_alloc_params.fast_decay = ff_ac3_fast_decay_tab[1];
        s->bit_alloc_params.slow_gain  = ff_ac3_slow_gain_tab [1];
        s->bit_alloc_params.db_per_bit = ff_ac3_db_per_bit_tab[2];
        s->bit_alloc_params.floor      = ff_ac3_floor_tab     [7];
    }

    s->fast_gain_syntax  = get_bits1(gbc);
    s->dba_syntax        = get_bits1(gbc);
    s->skip_syntax       = get_bits1(gbc);
    parse_spx_atten_data = get_bits1(gbc);

    /* coupling strategy occurrence and coupling use per block */
    num_cpl_blocks = 0;
    if (s->channel_mode > 1) {
        for (blk = 0; blk < s->num_blocks; blk++) {
            s->cpl_strategy_exists[blk] = (!blk || get_bits1(gbc));
            if (s->cpl_strategy_exists[blk]) {
                s->cpl_in_use[blk] = get_bits1(gbc);
            } else {
                s->cpl_in_use[blk] = s->cpl_in_use[blk-1];
            }
            num_cpl_blocks += s->cpl_in_use[blk];
        }
    } else {
        memset(s->cpl_in_use, 0, sizeof(s->cpl_in_use));
    }

    /* exponent strategy data */
    if (ac3_exponent_strategy) {
        /* AC-3-style exponent strategy syntax */
        for (blk = 0; blk < s->num_blocks; blk++) {
            for (ch = !s->cpl_in_use[blk]; ch <= s->fbw_channels; ch++) {
                s->exp_strategy[blk][ch] = get_bits(gbc, 2);
            }
        }
    } else {
        /* LUT-based exponent strategy syntax */
        for (ch = !((s->channel_mode > 1) && num_cpl_blocks); ch <= s->fbw_channels; ch++) {
            int frmchexpstr = get_bits(gbc, 5);
            for (blk = 0; blk < 6; blk++) {
                s->exp_strategy[blk][ch] = ff_eac3_frm_expstr[frmchexpstr][blk];
            }
        }
    }
    /* LFE exponent strategy */
    if (s->lfe_on) {
        for (blk = 0; blk < s->num_blocks; blk++) {
            s->exp_strategy[blk][s->lfe_ch] = get_bits1(gbc);
        }
    }
    /* original exponent strategies if this stream was converted from AC-3 */
    if (s->frame_type == EAC3_FRAME_TYPE_INDEPENDENT &&
            (s->num_blocks == 6 || get_bits1(gbc))) {
        skip_bits(gbc, 5 * s->fbw_channels); // skip converter channel exponent strategy
    }

    /* determine which channels use AHT */
    if (parse_aht_info) {
        /* For AHT to be used, all non-zero blocks must reuse exponents from
           the first block.  Furthermore, for AHT to be used in the coupling
           channel, all blocks must use coupling and use the same coupling
           strategy. */
        s->channel_uses_aht[CPL_CH]=0;
        for (ch = (num_cpl_blocks != 6); ch <= s->channels; ch++) {
            int use_aht = 1;
            for (blk = 1; blk < 6; blk++) {
                if ((s->exp_strategy[blk][ch] != EXP_REUSE) ||
                        (!ch && s->cpl_strategy_exists[blk])) {
                    use_aht = 0;
                    break;
                }
            }
            s->channel_uses_aht[ch] = use_aht && get_bits1(gbc);
        }
    } else {
        memset(s->channel_uses_aht, 0, sizeof(s->channel_uses_aht));
    }

    /* per-frame SNR offset */
    if (!s->snr_offset_strategy) {
        int csnroffst = (get_bits(gbc, 6) - 15) << 4;
        int snroffst = (csnroffst + get_bits(gbc, 4)) << 2;
        for (ch = 0; ch <= s->channels; ch++)
            s->snr_offset[ch] = snroffst;
    }

    /* transient pre-noise processing data */
    if (parse_transient_proc_info) {
        for (ch = 1; ch <= s->fbw_channels; ch++) {
            if (get_bits1(gbc)) { // channel in transient processing
                skip_bits(gbc, 10); // skip transient processing location
                skip_bits(gbc, 8);  // skip transient processing length
            }
        }
    }

    /* spectral extension attenuation data */
    for (ch = 1; ch <= s->fbw_channels; ch++) {
        if (parse_spx_atten_data && get_bits1(gbc)) {
            s->spx_atten_code[ch] = get_bits(gbc, 5);
        } else {
            s->spx_atten_code[ch] = -1;
        }
    }

    /* block start information */
    if (s->num_blocks > 1 && get_bits1(gbc)) {
        /* reference: Section E2.3.2.27
           nblkstrtbits = (numblks - 1) * (4 + ceiling(log2(words_per_frame)))
           The spec does not say what this data is or what it's used for.
           It is likely the offset of each block within the frame. */
        int block_start_bits = (s->num_blocks-1) * (4 + av_log2(s->frame_size-2));
        skip_bits_long(gbc, block_start_bits);
        avpriv_request_sample(s->avctx, "Block start info");
    }

    /* syntax state initialization */
    for (ch = 1; ch <= s->fbw_channels; ch++) {
        s->first_spx_coords[ch] = 1;
        s->first_cpl_coords[ch] = 1;
    }
    s->first_cpl_leak = 1;

    return 0;
}
OpenPOWER on IntegriCloud