summaryrefslogtreecommitdiffstats
path: root/libavcodec/atrac1.c
blob: 0ba2cf6bddea09f3494c79c94be732cb199f65f8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/*
 * Atrac 1 compatible decoder
 * Copyright (c) 2009 Maxim Poliakovski
 * Copyright (c) 2009 Benjamin Larsson
 *
 * This file is part of Libav.
 *
 * Libav is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License as published by the Free Software Foundation; either
 * version 2.1 of the License, or (at your option) any later version.
 *
 * Libav is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 * Lesser General Public License for more details.
 *
 * You should have received a copy of the GNU Lesser General Public
 * License along with Libav; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
 */

/**
 * @file
 * Atrac 1 compatible decoder.
 * This decoder handles raw ATRAC1 data and probably SDDS data.
 */

/* Many thanks to Tim Craig for all the help! */

#include <math.h>
#include <stddef.h>
#include <stdio.h>

#include "avcodec.h"
#include "get_bits.h"
#include "dsputil.h"
#include "fft.h"
#include "sinewin.h"

#include "atrac.h"
#include "atrac1data.h"

#define AT1_MAX_BFU      52                 ///< max number of block floating units in a sound unit
#define AT1_SU_SIZE      212                ///< number of bytes in a sound unit
#define AT1_SU_SAMPLES   512                ///< number of samples in a sound unit
#define AT1_FRAME_SIZE   AT1_SU_SIZE * 2
#define AT1_SU_MAX_BITS  AT1_SU_SIZE * 8
#define AT1_MAX_CHANNELS 2

#define AT1_QMF_BANDS    3
#define IDX_LOW_BAND     0
#define IDX_MID_BAND     1
#define IDX_HIGH_BAND    2

/**
 * Sound unit struct, one unit is used per channel
 */
typedef struct {
    int                 log2_block_count[AT1_QMF_BANDS];    ///< log2 number of blocks in a band
    int                 num_bfus;                           ///< number of Block Floating Units
    float*              spectrum[2];
    DECLARE_ALIGNED(32, float, spec1)[AT1_SU_SAMPLES];     ///< mdct buffer
    DECLARE_ALIGNED(32, float, spec2)[AT1_SU_SAMPLES];     ///< mdct buffer
    DECLARE_ALIGNED(32, float, fst_qmf_delay)[46];         ///< delay line for the 1st stacked QMF filter
    DECLARE_ALIGNED(32, float, snd_qmf_delay)[46];         ///< delay line for the 2nd stacked QMF filter
    DECLARE_ALIGNED(32, float, last_qmf_delay)[256+23];    ///< delay line for the last stacked QMF filter
} AT1SUCtx;

/**
 * The atrac1 context, holds all needed parameters for decoding
 */
typedef struct {
    AT1SUCtx            SUs[AT1_MAX_CHANNELS];              ///< channel sound unit
    DECLARE_ALIGNED(32, float, spec)[AT1_SU_SAMPLES];      ///< the mdct spectrum buffer

    DECLARE_ALIGNED(32, float,  low)[256];
    DECLARE_ALIGNED(32, float,  mid)[256];
    DECLARE_ALIGNED(32, float, high)[512];
    float*              bands[3];
    DECLARE_ALIGNED(32, float, out_samples)[AT1_MAX_CHANNELS][AT1_SU_SAMPLES];
    FFTContext          mdct_ctx[3];
    int                 channels;
    DSPContext          dsp;
} AT1Ctx;

/** size of the transform in samples in the long mode for each QMF band */
static const uint16_t samples_per_band[3] = {128, 128, 256};
static const uint8_t   mdct_long_nbits[3] = {7, 7, 8};


static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
                      int rev_spec)
{
    FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)];
    int transf_size = 1 << nbits;

    if (rev_spec) {
        int i;
        for (i = 0; i < transf_size / 2; i++)
            FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
    }
    mdct_context->imdct_half(mdct_context, out, spec);
}


static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
{
    int          band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
    unsigned int start_pos, ref_pos = 0, pos = 0;

    for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
        float *prev_buf;
        int j;

        band_samples = samples_per_band[band_num];
        log2_block_count = su->log2_block_count[band_num];

        /* number of mdct blocks in the current QMF band: 1 - for long mode */
        /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
        num_blocks = 1 << log2_block_count;

        if (num_blocks == 1) {
            /* mdct block size in samples: 128 (long mode, low & mid bands), */
            /* 256 (long mode, high band) and 32 (short mode, all bands) */
            block_size = band_samples >> log2_block_count;

            /* calc transform size in bits according to the block_size_mode */
            nbits = mdct_long_nbits[band_num] - log2_block_count;

            if (nbits != 5 && nbits != 7 && nbits != 8)
                return -1;
        } else {
            block_size = 32;
            nbits = 5;
        }

        start_pos = 0;
        prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
        for (j=0; j < num_blocks; j++) {
            at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);

            /* overlap and window */
            q->dsp.vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
                                      &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 16);

            prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
            start_pos += block_size;
            pos += block_size;
        }

        if (num_blocks == 1)
            memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));

        ref_pos += band_samples;
    }

    /* Swap buffers so the mdct overlap works */
    FFSWAP(float*, su->spectrum[0], su->spectrum[1]);

    return 0;
}

/**
 * Parse the block size mode byte
 */

static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
{
    int log2_block_count_tmp, i;

    for (i = 0; i < 2; i++) {
        /* low and mid band */
        log2_block_count_tmp = get_bits(gb, 2);
        if (log2_block_count_tmp & 1)
            return -1;
        log2_block_cnt[i] = 2 - log2_block_count_tmp;
    }

    /* high band */
    log2_block_count_tmp = get_bits(gb, 2);
    if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
        return -1;
    log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;

    skip_bits(gb, 2);
    return 0;
}


static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
                              float spec[AT1_SU_SAMPLES])
{
    int bits_used, band_num, bfu_num, i;
    uint8_t idwls[AT1_MAX_BFU];                 ///< the word length indexes for each BFU
    uint8_t idsfs[AT1_MAX_BFU];                 ///< the scalefactor indexes for each BFU

    /* parse the info byte (2nd byte) telling how much BFUs were coded */
    su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];

    /* calc number of consumed bits:
        num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
        + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
    bits_used = su->num_bfus * 10 + 32 +
                bfu_amount_tab2[get_bits(gb, 2)] +
                (bfu_amount_tab3[get_bits(gb, 3)] << 1);

    /* get word length index (idwl) for each BFU */
    for (i = 0; i < su->num_bfus; i++)
        idwls[i] = get_bits(gb, 4);

    /* get scalefactor index (idsf) for each BFU */
    for (i = 0; i < su->num_bfus; i++)
        idsfs[i] = get_bits(gb, 6);

    /* zero idwl/idsf for empty BFUs */
    for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
        idwls[i] = idsfs[i] = 0;

    /* read in the spectral data and reconstruct MDCT spectrum of this channel */
    for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
        for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
            int pos;

            int num_specs = specs_per_bfu[bfu_num];
            int word_len  = !!idwls[bfu_num] + idwls[bfu_num];
            float scale_factor = ff_atrac_sf_table[idsfs[bfu_num]];
            bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */

            /* check for bitstream overflow */
            if (bits_used > AT1_SU_MAX_BITS)
                return -1;

            /* get the position of the 1st spec according to the block size mode */
            pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];

            if (word_len) {
                float   max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);

                for (i = 0; i < num_specs; i++) {
                    /* read in a quantized spec and convert it to
                     * signed int and then inverse quantization
                     */
                    spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
                }
            } else { /* word_len = 0 -> empty BFU, zero all specs in the emty BFU */
                memset(&spec[pos], 0, num_specs * sizeof(float));
            }
        }
    }

    return 0;
}


static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
{
    float temp[256];
    float iqmf_temp[512 + 46];

    /* combine low and middle bands */
    atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);

    /* delay the signal of the high band by 23 samples */
    memcpy( su->last_qmf_delay,    &su->last_qmf_delay[256], sizeof(float) *  23);
    memcpy(&su->last_qmf_delay[23], q->bands[2],             sizeof(float) * 256);

    /* combine (low + middle) and high bands */
    atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
}


static int atrac1_decode_frame(AVCodecContext *avctx, void *data,
                               int *data_size, AVPacket *avpkt)
{
    const uint8_t *buf = avpkt->data;
    int buf_size       = avpkt->size;
    AT1Ctx *q          = avctx->priv_data;
    int ch, ret, i;
    GetBitContext gb;
    float* samples = data;


    if (buf_size < 212 * q->channels) {
        av_log(q,AV_LOG_ERROR,"Not enought data to decode!\n");
        return -1;
    }

    for (ch = 0; ch < q->channels; ch++) {
        AT1SUCtx* su = &q->SUs[ch];

        init_get_bits(&gb, &buf[212 * ch], 212 * 8);

        /* parse block_size_mode, 1st byte */
        ret = at1_parse_bsm(&gb, su->log2_block_count);
        if (ret < 0)
            return ret;

        ret = at1_unpack_dequant(&gb, su, q->spec);
        if (ret < 0)
            return ret;

        ret = at1_imdct_block(su, q);
        if (ret < 0)
            return ret;
        at1_subband_synthesis(q, su, q->out_samples[ch]);
    }

    /* interleave; FIXME, should create/use a DSP function */
    if (q->channels == 1) {
        /* mono */
        memcpy(samples, q->out_samples[0], AT1_SU_SAMPLES * 4);
    } else {
        /* stereo */
        for (i = 0; i < AT1_SU_SAMPLES; i++) {
            samples[i * 2]     = q->out_samples[0][i];
            samples[i * 2 + 1] = q->out_samples[1][i];
        }
    }

    *data_size = q->channels * AT1_SU_SAMPLES * sizeof(*samples);
    return avctx->block_align;
}


static av_cold int atrac1_decode_init(AVCodecContext *avctx)
{
    AT1Ctx *q = avctx->priv_data;

    avctx->sample_fmt = AV_SAMPLE_FMT_FLT;

    q->channels = avctx->channels;

    /* Init the mdct transforms */
    ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15));
    ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15));
    ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15));

    ff_init_ff_sine_windows(5);

    atrac_generate_tables();

    dsputil_init(&q->dsp, avctx);

    q->bands[0] = q->low;
    q->bands[1] = q->mid;
    q->bands[2] = q->high;

    /* Prepare the mdct overlap buffers */
    q->SUs[0].spectrum[0] = q->SUs[0].spec1;
    q->SUs[0].spectrum[1] = q->SUs[0].spec2;
    q->SUs[1].spectrum[0] = q->SUs[1].spec1;
    q->SUs[1].spectrum[1] = q->SUs[1].spec2;

    return 0;
}


static av_cold int atrac1_decode_end(AVCodecContext * avctx) {
    AT1Ctx *q = avctx->priv_data;

    ff_mdct_end(&q->mdct_ctx[0]);
    ff_mdct_end(&q->mdct_ctx[1]);
    ff_mdct_end(&q->mdct_ctx[2]);
    return 0;
}


AVCodec ff_atrac1_decoder = {
    .name = "atrac1",
    .type = AVMEDIA_TYPE_AUDIO,
    .id = CODEC_ID_ATRAC1,
    .priv_data_size = sizeof(AT1Ctx),
    .init = atrac1_decode_init,
    .close = atrac1_decode_end,
    .decode = atrac1_decode_frame,
    .long_name = NULL_IF_CONFIG_SMALL("Atrac 1 (Adaptive TRansform Acoustic Coding)"),
};
OpenPOWER on IntegriCloud