summaryrefslogtreecommitdiffstats
path: root/libavcodec/aaccoder.c
diff options
context:
space:
mode:
authorRostislav Pehlivanov <atomnuker@gmail.com>2015-09-06 15:13:18 +0100
committerRostislav Pehlivanov <atomnuker@gmail.com>2015-09-06 15:30:26 +0100
commit033e58941e684ac7190d6d1b06f31a677be4539f (patch)
tree2784b994d97fe8320e8dcc30d2f6bc7c7ecc7f87 /libavcodec/aaccoder.c
parent8848c8440eb5816d5a9c3d38e0e20342867ef2cc (diff)
downloadffmpeg-streaming-033e58941e684ac7190d6d1b06f31a677be4539f.zip
ffmpeg-streaming-033e58941e684ac7190d6d1b06f31a677be4539f.tar.gz
aaccoder: rewrite PNS implementation
This commit rewrites the PNS implementation and significantly improves sonic quality. The previous implementation marked an incredibly big amount of SFBs to predict when there was no need for this and this resulted in quite a large amount of artifacts. Also the quantization was incorrect (av_clip(4+log2f(...))) which led to 3x the intensity for PNS values leading to even more artifacts. This commit rewrites the PNS search function and introduces a major change: the PNS values are synthesized and are compared to the current coefficients in addition to passing through the revised checks to see whether PNS can be used. This decreases distortions and makes the current PNS implementation mainly focused on replacing any low-power non-zero bands as well as adding any zeroed bands back. The current encoder's performance is enough (especially with IS) so PNS isn't really required except to fill in the occasional few bands as well as extend any zeroed high frequency, so this combination which is already enabled by default works to get as much quality as it can within the bits allowed. Signed-off-by: Rostislav Pehlivanov <atomnuker@gmail.com>
Diffstat (limited to 'libavcodec/aaccoder.c')
-rw-r--r--libavcodec/aaccoder.c101
1 files changed, 76 insertions, 25 deletions
diff --git a/libavcodec/aaccoder.c b/libavcodec/aaccoder.c
index f265103..8a241d2 100644
--- a/libavcodec/aaccoder.c
+++ b/libavcodec/aaccoder.c
@@ -49,16 +49,15 @@
#include "aacenc_pred.h"
/** Frequency in Hz for lower limit of noise substitution **/
-#define NOISE_LOW_LIMIT 4500
+#define NOISE_LOW_LIMIT 4000
-/* Energy spread threshold value below which no PNS is used, this corresponds to
- * typically around 17Khz, after which PNS usage decays ending at 19Khz */
-#define NOISE_SPREAD_THRESHOLD 0.5f
+/* Parameter of f(x) = a*(lambda/100), defines the maximum fourier spread
+ * beyond which no PNS is used (since the SFBs contain tone rather than noise) */
+#define NOISE_SPREAD_THRESHOLD 0.9673f
-/* This constant gets divided by lambda to return ~1.65 which when multiplied
- * by the band->threshold and compared to band->energy is the boundary between
- * excessive PNS and little PNS usage. */
-#define NOISE_LAMBDA_NUMERATOR 252.1f
+/* Parameter of f(x) = a*(100/lambda), defines how much PNS is allowed to
+ * replace low energy non zero bands */
+#define NOISE_LAMBDA_REPLACE 1.948f
/**
* structure used in optimal codebook search
@@ -863,30 +862,82 @@ static void search_for_quantizers_fast(AVCodecContext *avctx, AACEncContext *s,
static void search_for_pns(AACEncContext *s, AVCodecContext *avctx, SingleChannelElement *sce)
{
- int start = 0, w, w2, g;
+ FFPsyBand *band;
+ int w, g, w2, i, start, count = 0;
+ float *PNS = &s->scoefs[0*128], *PNS34 = &s->scoefs[1*128];
+ float *NOR34 = &s->scoefs[3*128];
const float lambda = s->lambda;
const float freq_mult = avctx->sample_rate/(1024.0f/sce->ics.num_windows)/2.0f;
- const float spread_threshold = NOISE_SPREAD_THRESHOLD*(lambda/120.f);
- const float thr_mult = NOISE_LAMBDA_NUMERATOR/lambda;
+ const float thr_mult = NOISE_LAMBDA_REPLACE*(100.0f/lambda);
+ const float spread_threshold = NOISE_SPREAD_THRESHOLD*(lambda/100.f);
for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
start = 0;
for (g = 0; g < sce->ics.num_swb; g++) {
- if (start*freq_mult > NOISE_LOW_LIMIT*(lambda/170.0f)) {
- float energy = 0.0f, threshold = 0.0f, spread = 0.0f;
- for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
- FFPsyBand *band = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
- energy += band->energy;
- threshold += band->threshold;
- spread += band->spread;
- }
- if (spread > spread_threshold*sce->ics.group_len[w] &&
- ((sce->zeroes[w*16+g] && energy >= threshold) ||
- energy < threshold*thr_mult*sce->ics.group_len[w])) {
- sce->band_type[w*16+g] = NOISE_BT;
- sce->pns_ener[w*16+g] = energy / sce->ics.group_len[w];
- sce->zeroes[w*16+g] = 0;
+ int noise_sfi, try_pns = 0;
+ float dist1 = 0.0f, dist2 = 0.0f, noise_amp;
+ float energy = 0.0f, threshold = 0.0f, spread = 0.0f;
+ if (start*freq_mult < NOISE_LOW_LIMIT) {
+ start += sce->ics.swb_sizes[g];
+ continue;
+ }
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
+ band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
+ energy += band->energy;
+ spread += band->spread;
+ threshold += band->threshold;
+ }
+ sce->pns_ener[w*16+g] = energy;
+
+ if (sce->zeroes[w*16+g]) {
+ try_pns = 1;
+ } else if (energy < threshold) {
+ try_pns = 1;
+ } else if (spread > spread_threshold) {
+ try_pns = 0;
+ } else if (energy < threshold*thr_mult) {
+ try_pns = 1;
+ }
+
+ if (!try_pns || !energy) {
+ start += sce->ics.swb_sizes[g];
+ continue;
+ }
+
+ noise_sfi = av_clip(roundf(log2f(energy)*2), -100, 155); /* Quantize */
+ noise_amp = -ff_aac_pow2sf_tab[noise_sfi + POW_SF2_ZERO]; /* Dequantize */
+ for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
+ float band_energy, scale;
+ band = &s->psy.ch[s->cur_channel+0].psy_bands[(w+w2)*16+g];
+ for (i = 0; i < sce->ics.swb_sizes[g]; i++)
+ PNS[i] = s->random_state = lcg_random(s->random_state);
+ band_energy = s->fdsp->scalarproduct_float(PNS, PNS, sce->ics.swb_sizes[g]);
+ scale = noise_amp/sqrtf(band_energy);
+ s->fdsp->vector_fmul_scalar(PNS, PNS, scale, sce->ics.swb_sizes[g]);
+ abs_pow34_v(NOR34, &sce->coeffs[start+(w+w2)*128], sce->ics.swb_sizes[g]);
+ abs_pow34_v(PNS34, PNS, sce->ics.swb_sizes[g]);
+ dist1 += quantize_band_cost(s, &sce->coeffs[start + (w+w2)*128],
+ NOR34,
+ sce->ics.swb_sizes[g],
+ sce->sf_idx[(w+w2)*16+g],
+ sce->band_alt[(w+w2)*16+g],
+ lambda/band->threshold, INFINITY, NULL, 0);
+ dist2 += quantize_band_cost(s, PNS,
+ PNS34,
+ sce->ics.swb_sizes[g],
+ noise_sfi,
+ NOISE_BT,
+ lambda/band->threshold, INFINITY, NULL, 0);
+ }
+ if (dist2 < dist1) {
+ sce->band_type[w*16+g] = NOISE_BT;
+ sce->zeroes[w*16+g] = 0;
+ if (sce->band_type[w*16+g-1] != NOISE_BT && /* Prevent holes */
+ sce->band_type[w*16+g-2] == NOISE_BT) {
+ sce->band_type[w*16+g-1] = NOISE_BT;
+ sce->zeroes[w*16+g-1] = 0;
}
+ count++;
}
start += sce->ics.swb_sizes[g];
}
OpenPOWER on IntegriCloud