diff options
author | Andreas Öman <andreas@lonelycoder.com> | 2011-03-03 09:31:34 +0100 |
---|---|---|
committer | Mashiat Sarker Shakkhar <shahriman_ams@yahoo.com> | 2011-11-20 14:51:38 +0600 |
commit | 4d9d9a443f825d407b17faca1d7d8329bad21031 (patch) | |
tree | bc01c8f5d6061479c1495e39706cd8c371678f0b | |
parent | c40e1757a1a6c36a9a58f4a9eb365926497c2963 (diff) | |
download | ffmpeg-streaming-4d9d9a443f825d407b17faca1d7d8329bad21031.zip ffmpeg-streaming-4d9d9a443f825d407b17faca1d7d8329bad21031.tar.gz |
wmall: Working bitstream parser
-rw-r--r-- | libavcodec/Makefile | 1 | ||||
-rw-r--r-- | libavcodec/allcodecs.c | 1 | ||||
-rw-r--r-- | libavcodec/wmalosslessdec.c | 1170 |
3 files changed, 1172 insertions, 0 deletions
diff --git a/libavcodec/Makefile b/libavcodec/Makefile index b9ed8db..fdaea8f 100644 --- a/libavcodec/Makefile +++ b/libavcodec/Makefile @@ -408,6 +408,7 @@ OBJS-$(CONFIG_VP6_DECODER) += vp6.o vp56.o vp56data.o vp56dsp.o \ OBJS-$(CONFIG_VP8_DECODER) += vp8.o vp8dsp.o vp56rac.o OBJS-$(CONFIG_VQA_DECODER) += vqavideo.o OBJS-$(CONFIG_WAVPACK_DECODER) += wavpack.o +OBJS-$(CONFIG_WMALOSSLESS_DECODER) += wmalosslessdec.o wma.o OBJS-$(CONFIG_WMAPRO_DECODER) += wmaprodec.o wma.o OBJS-$(CONFIG_WMAV1_DECODER) += wmadec.o wma.o aactab.o OBJS-$(CONFIG_WMAV1_ENCODER) += wmaenc.o wma.o aactab.o diff --git a/libavcodec/allcodecs.c b/libavcodec/allcodecs.c index db213a1..8c9c979 100644 --- a/libavcodec/allcodecs.c +++ b/libavcodec/allcodecs.c @@ -284,6 +284,7 @@ void avcodec_register_all(void) REGISTER_DECODER (VMDAUDIO, vmdaudio); REGISTER_ENCDEC (VORBIS, vorbis); REGISTER_DECODER (WAVPACK, wavpack); + REGISTER_DECODER (WMALOSSLESS, wmalossless); REGISTER_DECODER (WMAPRO, wmapro); REGISTER_ENCDEC (WMAV1, wmav1); REGISTER_ENCDEC (WMAV2, wmav2); diff --git a/libavcodec/wmalosslessdec.c b/libavcodec/wmalosslessdec.c new file mode 100644 index 0000000..bddb12f --- /dev/null +++ b/libavcodec/wmalosslessdec.c @@ -0,0 +1,1170 @@ +/* + * Wmall compatible decoder + * Copyright (c) 2007 Baptiste Coudurier, Benjamin Larsson, Ulion + * Copyright (c) 2008 - 2011 Sascha Sommer, Benjamin Larsson + * Copyright (c) 2011 Andreas Öman + * + * This file is part of FFmpeg. + * + * FFmpeg is free software; you can redistribute it and/or + * modify it under the terms of the GNU Lesser General Public + * License as published by the Free Software Foundation; either + * version 2.1 of the License, or (at your option) any later version. + * + * FFmpeg is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + * Lesser General Public License for more details. + * + * You should have received a copy of the GNU Lesser General Public + * License along with FFmpeg; if not, write to the Free Software + * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA + */ + +/** + * @file + * @brief wmall decoder implementation + * Wmall is an MDCT based codec comparable to wma standard or AAC. + * The decoding therefore consists of the following steps: + * - bitstream decoding + * - reconstruction of per-channel data + * - rescaling and inverse quantization + * - IMDCT + * - windowing and overlapp-add + * + * The compressed wmall bitstream is split into individual packets. + * Every such packet contains one or more wma frames. + * The compressed frames may have a variable length and frames may + * cross packet boundaries. + * Common to all wmall frames is the number of samples that are stored in + * a frame. + * The number of samples and a few other decode flags are stored + * as extradata that has to be passed to the decoder. + * + * The wmall frames themselves are again split into a variable number of + * subframes. Every subframe contains the data for 2^N time domain samples + * where N varies between 7 and 12. + * + * Example wmall bitstream (in samples): + * + * || packet 0 || packet 1 || packet 2 packets + * --------------------------------------------------- + * || frame 0 || frame 1 || frame 2 || frames + * --------------------------------------------------- + * || | | || | | | || || subframes of channel 0 + * --------------------------------------------------- + * || | | || | | | || || subframes of channel 1 + * --------------------------------------------------- + * + * The frame layouts for the individual channels of a wma frame does not need + * to be the same. + * + * However, if the offsets and lengths of several subframes of a frame are the + * same, the subframes of the channels can be grouped. + * Every group may then use special coding techniques like M/S stereo coding + * to improve the compression ratio. These channel transformations do not + * need to be applied to a whole subframe. Instead, they can also work on + * individual scale factor bands (see below). + * The coefficients that carry the audio signal in the frequency domain + * are transmitted as huffman-coded vectors with 4, 2 and 1 elements. + * In addition to that, the encoder can switch to a runlevel coding scheme + * by transmitting subframe_length / 128 zero coefficients. + * + * Before the audio signal can be converted to the time domain, the + * coefficients have to be rescaled and inverse quantized. + * A subframe is therefore split into several scale factor bands that get + * scaled individually. + * Scale factors are submitted for every frame but they might be shared + * between the subframes of a channel. Scale factors are initially DPCM-coded. + * Once scale factors are shared, the differences are transmitted as runlevel + * codes. + * Every subframe length and offset combination in the frame layout shares a + * common quantization factor that can be adjusted for every channel by a + * modifier. + * After the inverse quantization, the coefficients get processed by an IMDCT. + * The resulting values are then windowed with a sine window and the first half + * of the values are added to the second half of the output from the previous + * subframe in order to reconstruct the output samples. + */ + +#include "avcodec.h" +#include "internal.h" +#include "get_bits.h" +#include "put_bits.h" +#include "dsputil.h" +#include "wma.h" + +/** current decoder limitations */ +#define WMALL_MAX_CHANNELS 8 ///< max number of handled channels +#define MAX_SUBFRAMES 32 ///< max number of subframes per channel +#define MAX_BANDS 29 ///< max number of scale factor bands +#define MAX_FRAMESIZE 32768 ///< maximum compressed frame size + +#define WMALL_BLOCK_MIN_BITS 6 ///< log2 of min block size +#define WMALL_BLOCK_MAX_BITS 12 ///< log2 of max block size +#define WMALL_BLOCK_MAX_SIZE (1 << WMALL_BLOCK_MAX_BITS) ///< maximum block size +#define WMALL_BLOCK_SIZES (WMALL_BLOCK_MAX_BITS - WMALL_BLOCK_MIN_BITS + 1) ///< possible block sizes + + +#define VLCBITS 9 +#define SCALEVLCBITS 8 +#define VEC4MAXDEPTH ((HUFF_VEC4_MAXBITS+VLCBITS-1)/VLCBITS) +#define VEC2MAXDEPTH ((HUFF_VEC2_MAXBITS+VLCBITS-1)/VLCBITS) +#define VEC1MAXDEPTH ((HUFF_VEC1_MAXBITS+VLCBITS-1)/VLCBITS) +#define SCALEMAXDEPTH ((HUFF_SCALE_MAXBITS+SCALEVLCBITS-1)/SCALEVLCBITS) +#define SCALERLMAXDEPTH ((HUFF_SCALE_RL_MAXBITS+VLCBITS-1)/VLCBITS) + +static float sin64[33]; ///< sinus table for decorrelation + +/** + * @brief frame specific decoder context for a single channel + */ +typedef struct { + int16_t prev_block_len; ///< length of the previous block + uint8_t transmit_coefs; + uint8_t num_subframes; + uint16_t subframe_len[MAX_SUBFRAMES]; ///< subframe length in samples + uint16_t subframe_offset[MAX_SUBFRAMES]; ///< subframe positions in the current frame + uint8_t cur_subframe; ///< current subframe number + uint16_t decoded_samples; ///< number of already processed samples + uint8_t grouped; ///< channel is part of a group + int quant_step; ///< quantization step for the current subframe + int8_t reuse_sf; ///< share scale factors between subframes + int8_t scale_factor_step; ///< scaling step for the current subframe + int max_scale_factor; ///< maximum scale factor for the current subframe + int saved_scale_factors[2][MAX_BANDS]; ///< resampled and (previously) transmitted scale factor values + int8_t scale_factor_idx; ///< index for the transmitted scale factor values (used for resampling) + int* scale_factors; ///< pointer to the scale factor values used for decoding + uint8_t table_idx; ///< index in sf_offsets for the scale factor reference block + float* coeffs; ///< pointer to the subframe decode buffer + uint16_t num_vec_coeffs; ///< number of vector coded coefficients + DECLARE_ALIGNED(16, float, out)[WMALL_BLOCK_MAX_SIZE + WMALL_BLOCK_MAX_SIZE / 2]; ///< output buffer +} WmallChannelCtx; + +/** + * @brief channel group for channel transformations + */ +typedef struct { + uint8_t num_channels; ///< number of channels in the group + int8_t transform; ///< transform on / off + int8_t transform_band[MAX_BANDS]; ///< controls if the transform is enabled for a certain band + float decorrelation_matrix[WMALL_MAX_CHANNELS*WMALL_MAX_CHANNELS]; + float* channel_data[WMALL_MAX_CHANNELS]; ///< transformation coefficients +} WmallChannelGrp; + +/** + * @brief main decoder context + */ +typedef struct WmallDecodeCtx { + /* generic decoder variables */ + AVCodecContext* avctx; ///< codec context for av_log + DSPContext dsp; ///< accelerated DSP functions + uint8_t frame_data[MAX_FRAMESIZE + + FF_INPUT_BUFFER_PADDING_SIZE];///< compressed frame data + PutBitContext pb; ///< context for filling the frame_data buffer + FFTContext mdct_ctx[WMALL_BLOCK_SIZES]; ///< MDCT context per block size + DECLARE_ALIGNED(16, float, tmp)[WMALL_BLOCK_MAX_SIZE]; ///< IMDCT output buffer + float* windows[WMALL_BLOCK_SIZES]; ///< windows for the different block sizes + + /* frame size dependent frame information (set during initialization) */ + uint32_t decode_flags; ///< used compression features + uint8_t len_prefix; ///< frame is prefixed with its length + uint8_t dynamic_range_compression; ///< frame contains DRC data + uint8_t bits_per_sample; ///< integer audio sample size for the unscaled IMDCT output (used to scale to [-1.0, 1.0]) + uint16_t samples_per_frame; ///< number of samples to output + uint16_t log2_frame_size; + int8_t num_channels; ///< number of channels in the stream (same as AVCodecContext.num_channels) + int8_t lfe_channel; ///< lfe channel index + uint8_t max_num_subframes; + uint8_t subframe_len_bits; ///< number of bits used for the subframe length + uint8_t max_subframe_len_bit; ///< flag indicating that the subframe is of maximum size when the first subframe length bit is 1 + uint16_t min_samples_per_subframe; + int8_t num_sfb[WMALL_BLOCK_SIZES]; ///< scale factor bands per block size + int16_t sfb_offsets[WMALL_BLOCK_SIZES][MAX_BANDS]; ///< scale factor band offsets (multiples of 4) + int8_t sf_offsets[WMALL_BLOCK_SIZES][WMALL_BLOCK_SIZES][MAX_BANDS]; ///< scale factor resample matrix + int16_t subwoofer_cutoffs[WMALL_BLOCK_SIZES]; ///< subwoofer cutoff values + + /* packet decode state */ + GetBitContext pgb; ///< bitstream reader context for the packet + int next_packet_start; ///< start offset of the next wma packet in the demuxer packet + uint8_t packet_offset; ///< frame offset in the packet + uint8_t packet_sequence_number; ///< current packet number + int num_saved_bits; ///< saved number of bits + int frame_offset; ///< frame offset in the bit reservoir + int subframe_offset; ///< subframe offset in the bit reservoir + uint8_t packet_loss; ///< set in case of bitstream error + uint8_t packet_done; ///< set when a packet is fully decoded + + /* frame decode state */ + uint32_t frame_num; ///< current frame number (not used for decoding) + GetBitContext gb; ///< bitstream reader context + int buf_bit_size; ///< buffer size in bits + float* samples; ///< current samplebuffer pointer + float* samples_end; ///< maximum samplebuffer pointer + uint8_t drc_gain; ///< gain for the DRC tool + int8_t skip_frame; ///< skip output step + int8_t parsed_all_subframes; ///< all subframes decoded? + + /* subframe/block decode state */ + int16_t subframe_len; ///< current subframe length + int8_t channels_for_cur_subframe; ///< number of channels that contain the subframe + int8_t channel_indexes_for_cur_subframe[WMALL_MAX_CHANNELS]; + int8_t num_bands; ///< number of scale factor bands + int8_t transmit_num_vec_coeffs; ///< number of vector coded coefficients is part of the bitstream + int16_t* cur_sfb_offsets; ///< sfb offsets for the current block + uint8_t table_idx; ///< index for the num_sfb, sfb_offsets, sf_offsets and subwoofer_cutoffs tables + int8_t esc_len; ///< length of escaped coefficients + + uint8_t num_chgroups; ///< number of channel groups + WmallChannelGrp chgroup[WMALL_MAX_CHANNELS]; ///< channel group information + + WmallChannelCtx channel[WMALL_MAX_CHANNELS]; ///< per channel data + + // WMA lossless + + uint8_t do_arith_coding; + uint8_t do_ac_filter; + uint8_t do_inter_ch_decorr; + uint8_t do_mclms; + uint8_t do_lpc; + + int8_t acfilter_order; + int8_t acfilter_scaling; + int acfilter_coeffs[16]; + + int8_t mclms_order; + int8_t mclms_scaling; + int16_t mclms_coeffs[128]; + int16_t mclms_coeffs_cur[4]; + + int movave_scaling; + int quant_stepsize; + + struct { + int order; + int scaling; + int coefsend; + int bitsend; + int16_t coefs[256]; + } cdlms[2][9]; + + + int cdlms_ttl[2]; + + int bV3RTM; + + int is_channel_coded[2]; + + int transient[2]; + int transient_pos[2]; + int seekable_tile; + + int ave_sum[2]; + + int channel_residues[2][2048]; + + + int lpc_coefs[2][40]; + int lpc_order; + int lpc_scaling; + int lpc_intbits; + + int channel_coeffs[2][2048]; + +} WmallDecodeCtx; + + +#undef dprintf +#define dprintf(pctx, ...) av_log(pctx, AV_LOG_DEBUG, __VA_ARGS__) + + +/** + *@brief helper function to print the most important members of the context + *@param s context + */ +static void av_cold dump_context(WmallDecodeCtx *s) +{ +#define PRINT(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %d\n", a, b); +#define PRINT_HEX(a, b) av_log(s->avctx, AV_LOG_DEBUG, " %s = %x\n", a, b); + + PRINT("ed sample bit depth", s->bits_per_sample); + PRINT_HEX("ed decode flags", s->decode_flags); + PRINT("samples per frame", s->samples_per_frame); + PRINT("log2 frame size", s->log2_frame_size); + PRINT("max num subframes", s->max_num_subframes); + PRINT("len prefix", s->len_prefix); + PRINT("num channels", s->num_channels); +} + +/** + *@brief Uninitialize the decoder and free all resources. + *@param avctx codec context + *@return 0 on success, < 0 otherwise + */ +static av_cold int decode_end(AVCodecContext *avctx) +{ + WmallDecodeCtx *s = avctx->priv_data; + int i; + + for (i = 0; i < WMALL_BLOCK_SIZES; i++) + ff_mdct_end(&s->mdct_ctx[i]); + + return 0; +} + +/** + *@brief Initialize the decoder. + *@param avctx codec context + *@return 0 on success, -1 otherwise + */ +static av_cold int decode_init(AVCodecContext *avctx) +{ + WmallDecodeCtx *s = avctx->priv_data; + uint8_t *edata_ptr = avctx->extradata; + unsigned int channel_mask; + int i; + int log2_max_num_subframes; + int num_possible_block_sizes; + + s->avctx = avctx; + dsputil_init(&s->dsp, avctx); + init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); + + avctx->sample_fmt = AV_SAMPLE_FMT_FLT; + + if (avctx->extradata_size >= 18) { + s->decode_flags = AV_RL16(edata_ptr+14); + channel_mask = AV_RL32(edata_ptr+2); + s->bits_per_sample = AV_RL16(edata_ptr); + /** dump the extradata */ + for (i = 0; i < avctx->extradata_size; i++) + dprintf(avctx, "[%x] ", avctx->extradata[i]); + dprintf(avctx, "\n"); + + } else { + av_log_ask_for_sample(avctx, "Unknown extradata size\n"); + return AVERROR_INVALIDDATA; + } + + /** generic init */ + s->log2_frame_size = av_log2(avctx->block_align) + 4; + + /** frame info */ + s->skip_frame = 1; /* skip first frame */ + s->packet_loss = 1; + s->len_prefix = (s->decode_flags & 0x40); + + /** get frame len */ + s->samples_per_frame = 1 << ff_wma_get_frame_len_bits(avctx->sample_rate, + 3, s->decode_flags); + + /** init previous block len */ + for (i = 0; i < avctx->channels; i++) + s->channel[i].prev_block_len = s->samples_per_frame; + + /** subframe info */ + log2_max_num_subframes = ((s->decode_flags & 0x38) >> 3); + s->max_num_subframes = 1 << log2_max_num_subframes; + s->max_subframe_len_bit = 0; + s->subframe_len_bits = av_log2(log2_max_num_subframes) + 1; + + num_possible_block_sizes = log2_max_num_subframes + 1; + s->min_samples_per_subframe = s->samples_per_frame / s->max_num_subframes; + s->dynamic_range_compression = (s->decode_flags & 0x80); + + s->bV3RTM = s->decode_flags & 0x100; + + if (s->max_num_subframes > MAX_SUBFRAMES) { + av_log(avctx, AV_LOG_ERROR, "invalid number of subframes %i\n", + s->max_num_subframes); + return AVERROR_INVALIDDATA; + } + + s->num_channels = avctx->channels; + + /** extract lfe channel position */ + s->lfe_channel = -1; + + if (channel_mask & 8) { + unsigned int mask; + for (mask = 1; mask < 16; mask <<= 1) { + if (channel_mask & mask) + ++s->lfe_channel; + } + } + + if (s->num_channels < 0) { + av_log(avctx, AV_LOG_ERROR, "invalid number of channels %d\n", s->num_channels); + return AVERROR_INVALIDDATA; + } else if (s->num_channels > WMALL_MAX_CHANNELS) { + av_log_ask_for_sample(avctx, "unsupported number of channels\n"); + return AVERROR_PATCHWELCOME; + } + + avctx->channel_layout = channel_mask; + return 0; +} + +/** + *@brief Decode the subframe length. + *@param s context + *@param offset sample offset in the frame + *@return decoded subframe length on success, < 0 in case of an error + */ +static int decode_subframe_length(WmallDecodeCtx *s, int offset) +{ + int frame_len_ratio; + int subframe_len, len; + + /** no need to read from the bitstream when only one length is possible */ + if (offset == s->samples_per_frame - s->min_samples_per_subframe) + return s->min_samples_per_subframe; + + len = av_log2(s->max_num_subframes - 1) + 1; + frame_len_ratio = get_bits(&s->gb, len); + + subframe_len = s->min_samples_per_subframe * (frame_len_ratio + 1); + + /** sanity check the length */ + if (subframe_len < s->min_samples_per_subframe || + subframe_len > s->samples_per_frame) { + av_log(s->avctx, AV_LOG_ERROR, "broken frame: subframe_len %i\n", + subframe_len); + return AVERROR_INVALIDDATA; + } + return subframe_len; +} + +/** + *@brief Decode how the data in the frame is split into subframes. + * Every WMA frame contains the encoded data for a fixed number of + * samples per channel. The data for every channel might be split + * into several subframes. This function will reconstruct the list of + * subframes for every channel. + * + * If the subframes are not evenly split, the algorithm estimates the + * channels with the lowest number of total samples. + * Afterwards, for each of these channels a bit is read from the + * bitstream that indicates if the channel contains a subframe with the + * next subframe size that is going to be read from the bitstream or not. + * If a channel contains such a subframe, the subframe size gets added to + * the channel's subframe list. + * The algorithm repeats these steps until the frame is properly divided + * between the individual channels. + * + *@param s context + *@return 0 on success, < 0 in case of an error + */ +static int decode_tilehdr(WmallDecodeCtx *s) +{ + uint16_t num_samples[WMALL_MAX_CHANNELS]; /**< sum of samples for all currently known subframes of a channel */ + uint8_t contains_subframe[WMALL_MAX_CHANNELS]; /**< flag indicating if a channel contains the current subframe */ + int channels_for_cur_subframe = s->num_channels; /**< number of channels that contain the current subframe */ + int fixed_channel_layout = 0; /**< flag indicating that all channels use the same subfra2me offsets and sizes */ + int min_channel_len = 0; /**< smallest sum of samples (channels with this length will be processed first) */ + int c; + + /* Should never consume more than 3073 bits (256 iterations for the + * while loop when always the minimum amount of 128 samples is substracted + * from missing samples in the 8 channel case). + * 1 + BLOCK_MAX_SIZE * MAX_CHANNELS / BLOCK_MIN_SIZE * (MAX_CHANNELS + 4) + */ + + /** reset tiling information */ + for (c = 0; c < s->num_channels; c++) + s->channel[c].num_subframes = 0; + + memset(num_samples, 0, sizeof(num_samples)); + + if (s->max_num_subframes == 1 || get_bits1(&s->gb)) + fixed_channel_layout = 1; + + /** loop until the frame data is split between the subframes */ + do { + int subframe_len; + + /** check which channels contain the subframe */ + for (c = 0; c < s->num_channels; c++) { + if (num_samples[c] == min_channel_len) { + if (fixed_channel_layout || channels_for_cur_subframe == 1 || + (min_channel_len == s->samples_per_frame - s->min_samples_per_subframe)) { + contains_subframe[c] = 1; + } + else { + contains_subframe[c] = get_bits1(&s->gb); + } + } else + contains_subframe[c] = 0; + } + + /** get subframe length, subframe_len == 0 is not allowed */ + if ((subframe_len = decode_subframe_length(s, min_channel_len)) <= 0) + return AVERROR_INVALIDDATA; + /** add subframes to the individual channels and find new min_channel_len */ + min_channel_len += subframe_len; + for (c = 0; c < s->num_channels; c++) { + WmallChannelCtx* chan = &s->channel[c]; + + if (contains_subframe[c]) { + if (chan->num_subframes >= MAX_SUBFRAMES) { + av_log(s->avctx, AV_LOG_ERROR, + "broken frame: num subframes > 31\n"); + return AVERROR_INVALIDDATA; + } + chan->subframe_len[chan->num_subframes] = subframe_len; + num_samples[c] += subframe_len; + ++chan->num_subframes; + if (num_samples[c] > s->samples_per_frame) { + av_log(s->avctx, AV_LOG_ERROR, "broken frame: " + "channel len(%d) > samples_per_frame(%d)\n", + num_samples[c], s->samples_per_frame); + return AVERROR_INVALIDDATA; + } + } else if (num_samples[c] <= min_channel_len) { + if (num_samples[c] < min_channel_len) { + channels_for_cur_subframe = 0; + min_channel_len = num_samples[c]; + } + ++channels_for_cur_subframe; + } + } + } while (min_channel_len < s->samples_per_frame); + + for (c = 0; c < s->num_channels; c++) { + int i; + int offset = 0; + for (i = 0; i < s->channel[c].num_subframes; i++) { + s->channel[c].subframe_offset[i] = offset; + offset += s->channel[c].subframe_len[i]; + } + } + + return 0; +} + + +static int my_log2(unsigned int i) +{ + unsigned int iLog2 = 0; + while ((i >> iLog2) > 1) + iLog2++; + return iLog2; +} + + +/** + * + */ +static void decode_ac_filter(WmallDecodeCtx *s) +{ + int i; + s->acfilter_order = get_bits(&s->gb, 4) + 1; + s->acfilter_scaling = get_bits(&s->gb, 4); + + for(i = 0; i < s->acfilter_order; i++) { + s->acfilter_coeffs[i] = get_bits(&s->gb, s->acfilter_scaling) + 1; + } +} + + +/** + * + */ +static void decode_mclms(WmallDecodeCtx *s) +{ + s->mclms_order = (get_bits(&s->gb, 4) + 1) * 2; + s->mclms_scaling = get_bits(&s->gb, 4); + if(get_bits1(&s->gb)) { + // mclms_send_coef + int i; + int send_coef_bits; + int cbits = av_log2(s->mclms_scaling + 1); + assert(cbits == my_log2(s->mclms_scaling + 1)); + if(1 << cbits < s->mclms_scaling + 1) + cbits++; + + send_coef_bits = (cbits ? get_bits(&s->gb, cbits) : 0) + 2; + + for(i = 0; i < s->mclms_order * s->num_channels * s->num_channels; i++) { + s->mclms_coeffs[i] = get_bits(&s->gb, send_coef_bits); + } + + for(i = 0; i < s->num_channels; i++) { + int c; + for(c = 0; c < i; c++) { + s->mclms_coeffs_cur[i * s->num_channels + c] = get_bits(&s->gb, send_coef_bits); + } + } + } +} + + +/** + * + */ +static void decode_cdlms(WmallDecodeCtx *s) +{ + int c, i; + int cdlms_send_coef = get_bits1(&s->gb); + + for(c = 0; c < s->num_channels; c++) { + s->cdlms_ttl[c] = get_bits(&s->gb, 3) + 1; + for(i = 0; i < s->cdlms_ttl[c]; i++) { + s->cdlms[c][i].order = (get_bits(&s->gb, 7) + 1) * 8; + } + + for(i = 0; i < s->cdlms_ttl[c]; i++) { + s->cdlms[c][i].scaling = get_bits(&s->gb, 4); + } + + if(cdlms_send_coef) { + for(i = 0; i < s->cdlms_ttl[c]; i++) { + int cbits, shift_l, shift_r, j; + cbits = av_log2(s->cdlms[c][i].order); + if(1 << cbits < s->cdlms[c][i].order) + cbits++; + s->cdlms[c][i].coefsend = get_bits(&s->gb, cbits) + 1; + + cbits = av_log2(s->cdlms[c][i].scaling + 1); + if(1 << cbits < s->cdlms[c][i].scaling + 1) + cbits++; + + s->cdlms[c][i].bitsend = get_bits(&s->gb, cbits) + 2; + shift_l = 32 - s->cdlms[c][i].bitsend; + shift_r = 32 - 2 - s->cdlms[c][i].scaling; + for(j = 0; j < s->cdlms[c][i].coefsend; j++) { + s->cdlms[c][i].coefs[j] = + (get_bits(&s->gb, s->cdlms[c][i].bitsend) << shift_l) >> shift_r; + } + } + } + } +} + +/** + * + */ +static int decode_channel_residues(WmallDecodeCtx *s, int ch, int tile_size) +{ + int i = 0; + unsigned int ave_mean; + s->transient[ch] = get_bits1(&s->gb); + if(s->transient[ch]) + s->transient_pos[ch] = get_bits(&s->gb, av_log2(tile_size)); + + if(s->seekable_tile) { + ave_mean = get_bits(&s->gb, s->bits_per_sample); + s->ave_sum[ch] = ave_mean << (s->movave_scaling + 1); +// s->ave_sum[ch] *= 2; + } + + if(s->seekable_tile) { + if(s->do_inter_ch_decorr) + s->channel_residues[ch][0] = get_sbits(&s->gb, s->bits_per_sample + 1); + else + s->channel_residues[ch][0] = get_sbits(&s->gb, s->bits_per_sample); + i++; + } + for(; i < tile_size; i++) { + int quo = 0, rem, rem_bits, residue; + while(get_bits1(&s->gb)) + quo++; + if(quo >= 32) + quo += get_bits_long(&s->gb, get_bits(&s->gb, 5) + 1); + + ave_mean = (s->ave_sum[ch] + (1 << s->movave_scaling)) >> (s->movave_scaling + 1); + rem_bits = av_ceil_log2(ave_mean); + rem = rem_bits ? get_bits(&s->gb, rem_bits) : 0; + residue = (quo << rem_bits) + rem; + + s->ave_sum[ch] = residue + s->ave_sum[ch] - (s->ave_sum[ch] >> s->movave_scaling); + + if(residue & 1) + residue = -(residue >> 1) - 1; + else + residue = residue >> 1; + s->channel_residues[ch][i] = residue; + +// dprintf(s->avctx, "%5d: %5d %10d %12d %12d %5d %-16d %04x\n",i, quo, ave_mean, s->ave_sum[ch], rem, rem_bits, s->channel_residues[ch][i], show_bits(&s->gb, 16)); + } + + return 0; + +} + + +/** + * + */ +static void +decode_lpc(WmallDecodeCtx *s) +{ + int ch, i, cbits; + s->lpc_order = get_bits(&s->gb, 5) + 1; + s->lpc_scaling = get_bits(&s->gb, 4); + s->lpc_intbits = get_bits(&s->gb, 3) + 1; + cbits = s->lpc_scaling + s->lpc_intbits; + for(ch = 0; ch < s->num_channels; ch++) { + for(i = 0; i < s->lpc_order; i++) { + s->lpc_coefs[ch][i] = get_sbits(&s->gb, cbits); + } + } +} + + + +/** + *@brief Decode a single subframe (block). + *@param s codec context + *@return 0 on success, < 0 when decoding failed + */ +static int decode_subframe(WmallDecodeCtx *s) +{ + int offset = s->samples_per_frame; + int subframe_len = s->samples_per_frame; + int i; + int total_samples = s->samples_per_frame * s->num_channels; + int rawpcm_tile; + int padding_zeroes; + + s->subframe_offset = get_bits_count(&s->gb); + + /** reset channel context and find the next block offset and size + == the next block of the channel with the smallest number of + decoded samples + */ + for (i = 0; i < s->num_channels; i++) { + s->channel[i].grouped = 0; + if (offset > s->channel[i].decoded_samples) { + offset = s->channel[i].decoded_samples; + subframe_len = + s->channel[i].subframe_len[s->channel[i].cur_subframe]; + } + } + + /** get a list of all channels that contain the estimated block */ + s->channels_for_cur_subframe = 0; + for (i = 0; i < s->num_channels; i++) { + const int cur_subframe = s->channel[i].cur_subframe; + /** substract already processed samples */ + total_samples -= s->channel[i].decoded_samples; + + /** and count if there are multiple subframes that match our profile */ + if (offset == s->channel[i].decoded_samples && + subframe_len == s->channel[i].subframe_len[cur_subframe]) { + total_samples -= s->channel[i].subframe_len[cur_subframe]; + s->channel[i].decoded_samples += + s->channel[i].subframe_len[cur_subframe]; + s->channel_indexes_for_cur_subframe[s->channels_for_cur_subframe] = i; + ++s->channels_for_cur_subframe; + } + } + + /** check if the frame will be complete after processing the + estimated block */ + if (!total_samples) + s->parsed_all_subframes = 1; + + + s->seekable_tile = get_bits1(&s->gb); + if(s->seekable_tile) { + s->do_arith_coding = get_bits1(&s->gb); + if(s->do_arith_coding) { + dprintf(s->avctx, "do_arith_coding == 1"); + abort(); + } + s->do_ac_filter = get_bits1(&s->gb); + s->do_inter_ch_decorr = get_bits1(&s->gb); + s->do_mclms = get_bits1(&s->gb); + + if(s->do_ac_filter) + decode_ac_filter(s); + + if(s->do_mclms) + decode_mclms(s); + + decode_cdlms(s); + s->movave_scaling = get_bits(&s->gb, 3); + s->quant_stepsize = get_bits(&s->gb, 8) + 1; + } + + rawpcm_tile = get_bits1(&s->gb); + + for(i = 0; i < s->num_channels; i++) { + s->is_channel_coded[i] = 1; + } + + if(!rawpcm_tile) { + + for(i = 0; i < s->num_channels; i++) { + s->is_channel_coded[i] = get_bits1(&s->gb); + } + + if(s->bV3RTM) { + // LPC + s->do_lpc = get_bits1(&s->gb); + if(s->do_lpc) { + decode_lpc(s); + } + } else { + s->do_lpc = 0; + } + } + + + if(get_bits1(&s->gb)) { + padding_zeroes = get_bits(&s->gb, 5); + } else { + padding_zeroes = 0; + } + + if(rawpcm_tile) { + + int bits = s->bits_per_sample - padding_zeroes; + int j; + dprintf(s->avctx, "RAWPCM %d bits per sample. total %d bits, remain=%d\n", bits, + bits * s->num_channels * subframe_len, get_bits_count(&s->gb)); + for(i = 0; i < s->num_channels; i++) { + for(j = 0; j < subframe_len; j++) { + s->channel_coeffs[i][j] = get_sbits(&s->gb, bits); +// dprintf(s->avctx, "PCM[%d][%d] = 0x%04x\n", i, j, s->channel_coeffs[i][j]); + } + } + } else { + for(i = 0; i < s->num_channels; i++) + if(s->is_channel_coded[i]) + decode_channel_residues(s, i, subframe_len); + } + + /** handled one subframe */ + + for (i = 0; i < s->channels_for_cur_subframe; i++) { + int c = s->channel_indexes_for_cur_subframe[i]; + if (s->channel[c].cur_subframe >= s->channel[c].num_subframes) { + av_log(s->avctx, AV_LOG_ERROR, "broken subframe\n"); + return AVERROR_INVALIDDATA; + } + ++s->channel[c].cur_subframe; + } + return 0; +} + +/** + *@brief Decode one WMA frame. + *@param s codec context + *@return 0 if the trailer bit indicates that this is the last frame, + * 1 if there are additional frames + */ +static int decode_frame(WmallDecodeCtx *s) +{ + GetBitContext* gb = &s->gb; + int more_frames = 0; + int len = 0; + int i; + + /** check for potential output buffer overflow */ + if (s->num_channels * s->samples_per_frame > s->samples_end - s->samples) { + /** return an error if no frame could be decoded at all */ + av_log(s->avctx, AV_LOG_ERROR, + "not enough space for the output samples\n"); + s->packet_loss = 1; + return 0; + } + + /** get frame length */ + if (s->len_prefix) + len = get_bits(gb, s->log2_frame_size); + + /** decode tile information */ + if (decode_tilehdr(s)) { + s->packet_loss = 1; + return 0; + } + + /** read drc info */ + if (s->dynamic_range_compression) { + s->drc_gain = get_bits(gb, 8); + } + + /** no idea what these are for, might be the number of samples + that need to be skipped at the beginning or end of a stream */ + if (get_bits1(gb)) { + int skip; + + /** usually true for the first frame */ + if (get_bits1(gb)) { + skip = get_bits(gb, av_log2(s->samples_per_frame * 2)); + dprintf(s->avctx, "start skip: %i\n", skip); + } + + /** sometimes true for the last frame */ + if (get_bits1(gb)) { + skip = get_bits(gb, av_log2(s->samples_per_frame * 2)); + dprintf(s->avctx, "end skip: %i\n", skip); + } + + } + + /** reset subframe states */ + s->parsed_all_subframes = 0; + for (i = 0; i < s->num_channels; i++) { + s->channel[i].decoded_samples = 0; + s->channel[i].cur_subframe = 0; + s->channel[i].reuse_sf = 0; + } + + /** decode all subframes */ + while (!s->parsed_all_subframes) { + if (decode_subframe(s) < 0) { + s->packet_loss = 1; + return 0; + } + } + + dprintf(s->avctx, "Frame done\n"); + + if (s->skip_frame) { + s->skip_frame = 0; + } else + s->samples += s->num_channels * s->samples_per_frame; + + if (s->len_prefix) { + if (len != (get_bits_count(gb) - s->frame_offset) + 2) { + /** FIXME: not sure if this is always an error */ + av_log(s->avctx, AV_LOG_ERROR, + "frame[%i] would have to skip %i bits\n", s->frame_num, + len - (get_bits_count(gb) - s->frame_offset) - 1); + s->packet_loss = 1; + return 0; + } + + /** skip the rest of the frame data */ + skip_bits_long(gb, len - (get_bits_count(gb) - s->frame_offset) - 1); + } else { +/* + while (get_bits_count(gb) < s->num_saved_bits && get_bits1(gb) == 0) { + dprintf(s->avctx, "skip1\n"); + } +*/ + } + + /** decode trailer bit */ + more_frames = get_bits1(gb); + ++s->frame_num; + return more_frames; +} + +/** + *@brief Calculate remaining input buffer length. + *@param s codec context + *@param gb bitstream reader context + *@return remaining size in bits + */ +static int remaining_bits(WmallDecodeCtx *s, GetBitContext *gb) +{ + return s->buf_bit_size - get_bits_count(gb); +} + +/** + *@brief Fill the bit reservoir with a (partial) frame. + *@param s codec context + *@param gb bitstream reader context + *@param len length of the partial frame + *@param append decides wether to reset the buffer or not + */ +static void save_bits(WmallDecodeCtx *s, GetBitContext* gb, int len, + int append) +{ + int buflen; + + /** when the frame data does not need to be concatenated, the input buffer + is resetted and additional bits from the previous frame are copyed + and skipped later so that a fast byte copy is possible */ + + if (!append) { + s->frame_offset = get_bits_count(gb) & 7; + s->num_saved_bits = s->frame_offset; + init_put_bits(&s->pb, s->frame_data, MAX_FRAMESIZE); + } + + buflen = (s->num_saved_bits + len + 8) >> 3; + + if (len <= 0 || buflen > MAX_FRAMESIZE) { + av_log_ask_for_sample(s->avctx, "input buffer too small\n"); + s->packet_loss = 1; + return; + } + + s->num_saved_bits += len; + if (!append) { + ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), + s->num_saved_bits); + } else { + int align = 8 - (get_bits_count(gb) & 7); + align = FFMIN(align, len); + put_bits(&s->pb, align, get_bits(gb, align)); + len -= align; + ff_copy_bits(&s->pb, gb->buffer + (get_bits_count(gb) >> 3), len); + } + skip_bits_long(gb, len); + + { + PutBitContext tmp = s->pb; + flush_put_bits(&tmp); + } + + init_get_bits(&s->gb, s->frame_data, s->num_saved_bits); + skip_bits(&s->gb, s->frame_offset); +} + +/** + *@brief Decode a single WMA packet. + *@param avctx codec context + *@param data the output buffer + *@param data_size number of bytes that were written to the output buffer + *@param avpkt input packet + *@return number of bytes that were read from the input buffer + */ +static int decode_packet(AVCodecContext *avctx, + void *data, int *data_size, AVPacket* avpkt) +{ + WmallDecodeCtx *s = avctx->priv_data; + GetBitContext* gb = &s->pgb; + const uint8_t* buf = avpkt->data; + int buf_size = avpkt->size; + int num_bits_prev_frame; + int packet_sequence_number; + + s->samples = data; + s->samples_end = (float*)((int8_t*)data + *data_size); + *data_size = 0; + + if (s->packet_done || s->packet_loss) { + s->packet_done = 0; + + /** sanity check for the buffer length */ + if (buf_size < avctx->block_align) + return 0; + + s->next_packet_start = buf_size - avctx->block_align; + buf_size = avctx->block_align; + s->buf_bit_size = buf_size << 3; + + /** parse packet header */ + init_get_bits(gb, buf, s->buf_bit_size); + packet_sequence_number = get_bits(gb, 4); + int seekable_frame_in_packet = get_bits1(gb); + int spliced_packet = get_bits1(gb); + + /** get number of bits that need to be added to the previous frame */ + num_bits_prev_frame = get_bits(gb, s->log2_frame_size); + + /** check for packet loss */ + if (!s->packet_loss && + ((s->packet_sequence_number + 1) & 0xF) != packet_sequence_number) { + s->packet_loss = 1; + av_log(avctx, AV_LOG_ERROR, "Packet loss detected! seq %x vs %x\n", + s->packet_sequence_number, packet_sequence_number); + } + s->packet_sequence_number = packet_sequence_number; + + if (num_bits_prev_frame > 0) { + int remaining_packet_bits = s->buf_bit_size - get_bits_count(gb); + if (num_bits_prev_frame >= remaining_packet_bits) { + num_bits_prev_frame = remaining_packet_bits; + s->packet_done = 1; + } + + /** append the previous frame data to the remaining data from the + previous packet to create a full frame */ + save_bits(s, gb, num_bits_prev_frame, 1); + + /** decode the cross packet frame if it is valid */ + if (!s->packet_loss) + decode_frame(s); + } else if (s->num_saved_bits - s->frame_offset) { + dprintf(avctx, "ignoring %x previously saved bits\n", + s->num_saved_bits - s->frame_offset); + } + + if (s->packet_loss) { + /** reset number of saved bits so that the decoder + does not start to decode incomplete frames in the + s->len_prefix == 0 case */ + s->num_saved_bits = 0; + s->packet_loss = 0; + } + + } else { + int frame_size; + + s->buf_bit_size = (avpkt->size - s->next_packet_start) << 3; + init_get_bits(gb, avpkt->data, s->buf_bit_size); + skip_bits(gb, s->packet_offset); + + if (s->len_prefix && remaining_bits(s, gb) > s->log2_frame_size && + (frame_size = show_bits(gb, s->log2_frame_size)) && + frame_size <= remaining_bits(s, gb)) { + save_bits(s, gb, frame_size, 0); + s->packet_done = !decode_frame(s); + } else if (!s->len_prefix + && s->num_saved_bits > get_bits_count(&s->gb)) { + /** when the frames do not have a length prefix, we don't know + the compressed length of the individual frames + however, we know what part of a new packet belongs to the + previous frame + therefore we save the incoming packet first, then we append + the "previous frame" data from the next packet so that + we get a buffer that only contains full frames */ + s->packet_done = !decode_frame(s); + } else { + s->packet_done = 1; + } + } + + if (s->packet_done && !s->packet_loss && + remaining_bits(s, gb) > 0) { + /** save the rest of the data so that it can be decoded + with the next packet */ + save_bits(s, gb, remaining_bits(s, gb), 0); + } + + *data_size = 0; // (int8_t *)s->samples - (int8_t *)data; + s->packet_offset = get_bits_count(gb) & 7; + + return (s->packet_loss) ? AVERROR_INVALIDDATA : get_bits_count(gb) >> 3; +} + +/** + *@brief Clear decoder buffers (for seeking). + *@param avctx codec context + */ +static void flush(AVCodecContext *avctx) +{ + WmallDecodeCtx *s = avctx->priv_data; + int i; + /** reset output buffer as a part of it is used during the windowing of a + new frame */ + for (i = 0; i < s->num_channels; i++) + memset(s->channel[i].out, 0, s->samples_per_frame * + sizeof(*s->channel[i].out)); + s->packet_loss = 1; +} + + +/** + *@brief wmall decoder + */ +AVCodec wmalossless_decoder = { + "wmalossless", + AVMEDIA_TYPE_AUDIO, + CODEC_ID_WMALOSSLESS, + sizeof(WmallDecodeCtx), + decode_init, + NULL, + decode_end, + decode_packet, + .capabilities = CODEC_CAP_SUBFRAMES, + .flush= flush, + .long_name = NULL_IF_CONFIG_SMALL("Windows Media Audio 9 Lossless"), +}; |