diff options
Diffstat (limited to 'tinySIGCOMP/src/tcomp_udvm.instructions.c')
-rw-r--r-- | tinySIGCOMP/src/tcomp_udvm.instructions.c | 2010 |
1 files changed, 2010 insertions, 0 deletions
diff --git a/tinySIGCOMP/src/tcomp_udvm.instructions.c b/tinySIGCOMP/src/tcomp_udvm.instructions.c new file mode 100644 index 0000000..64b20b5 --- /dev/null +++ b/tinySIGCOMP/src/tcomp_udvm.instructions.c @@ -0,0 +1,2010 @@ +/* +* Copyright (C) 2010-2011 Mamadou Diop. +* +* Contact: Mamadou Diop <diopmamadou(at)doubango[dot]org> +* +* This file is part of Open Source Doubango Framework. +* +* DOUBANGO is free software: you can redistribute it and/or modify +* it under the terms of the GNU General Public License as published by +* the Free Software Foundation, either version 3 of the License, or +* (at your option) any later version. +* +* DOUBANGO is distributed in the hope that it will be useful, +* but WITHOUT ANY WARRANTY; without even the implied warranty of +* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the +* GNU General Public License for more details. +* +* You should have received a copy of the GNU General Public License +* along with DOUBANGO. +* +*/ + +/**@file tcomp_udvm.instructions.c + * @brief SigComp UDVM machine (Instructions). + * + * @author Mamadou Diop <diopmamadou(at)yahoo.fr> + * + + */ +#include "tcomp_udvm.h" + +#include "tsk_memory.h" +#include "tsk_debug.h" +#include "tsk_ppfcs16.h" + +#include <string.h> /* memcpy */ +#include <stdlib.h> /* qsort */ +#include <math.h> /* ceil, log ... */ + +/* +* IMPORTANT: MSBs are stored before LSBs in the UDVM memory --> BIG ENDIAN +*/ + +#define F_BIT_MSB_TO_LSB 0 +#define F_BIT_LSB_TO_MSB 1 +#define H_BIT_MSB_TO_LSB F_BIT_MSB_TO_LSB +#define H_BIT_LSB_TO_MSB F_BIT_LSB_TO_MSB + +#define CEILLINGLOG2(x) ceil( (log((double)x)/log(2.0)) ) + +/* +* Consume cycles +*/ +#define CONSUME_CYCLES(cycles) \ + udvm->consumed_cycles += (uint64_t)(cycles); \ + if( udvm->consumed_cycles > udvm->maximum_UDVM_cycles ) \ + { \ + TSK_DEBUG_ERROR("%s (%llu > %llu)", TCOMP_NACK_DESCRIPTIONS[NACK_CYCLES_EXHAUSTED].desc, udvm->consumed_cycles, udvm->maximum_UDVM_cycles); \ + tcomp_udvm_createNackInfo2(udvm, NACK_CYCLES_EXHAUSTED); \ + return tsk_false; \ + } + +#define SET_2BYTES_VAL(position, value) \ + if(((position) + 1) >= TCOMP_UDVM_GET_SIZE()) \ + { \ + TSK_DEBUG_ERROR("%s (%u > %u)", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc, ((position) + 1), TCOMP_UDVM_GET_SIZE()); \ + tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); \ + return tsk_false; \ + }\ + TCOMP_UDVM_SET_2BYTES_VAL(position, value);\ + +#define GET_2BYTES_VAL(position, ret_val) \ + if(((position) + 1) >= TCOMP_UDVM_GET_SIZE()) \ + { \ + TSK_DEBUG_ERROR("%s (%u > %u)", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc, ((position) + 1), TCOMP_UDVM_GET_SIZE()); \ + tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); \ + return tsk_false; \ + }\ + ret_val = TCOMP_UDVM_GET_2BYTES_VAL((position)); + + +/** + This structure is used to keep index-value pairs after sorting. +*/ +typedef struct IndexValuePair_s +{ + uint16_t index; + uint16_t value; +} +IndexValuePair_t; + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// @brief Predicate to sort integers in ascending order. +/// +/// @param [in,out] a First integer. +/// @param [in,out] b Second integer. +/// +/// @retval Zero if @a a == @a b; negative if @a a < @a b and positive otherwise.. +//////////////////////////////////////////////////////////////////////////////////////////////////// + +static int SortAscendingPredicate(const void *a, const void *b) +{ + const IndexValuePair_t *el1 = a; + const IndexValuePair_t *el2 = b; + + /* If values are equal the original ordering of the integers must be preserved + * ==> We cannot use normal comparaison because the ANSI C implementation of qsort could swap values even if they are equal. + */ + return (el2->value == el1->value) ? (el1->index - el2->index) : (el1->value - el2->value); +} + +/** +* Sort Descending predicate. +*/ + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// @brief Predicate to sort integers in descending order. +/// @param [in,out] a First integer. +/// @param [in,out] b Second integer. +/// +/// @retval Zero if @a a == @a b; negative if @a a > @a b and positive otherwise. +//////////////////////////////////////////////////////////////////////////////////////////////////// +static int SortDescendingPredicate(const void *a, const void *b) +{ + const IndexValuePair_t *el1 = a; + const IndexValuePair_t *el2 = b; + + /* If values are equal the original ordering of the integers must be preserved. + * ==> We cannot use normal comparaison because the ANSI C implementation of qsort could swap values even if they are equal. + */ + return (el2->value == el1->value) ? (el1->index - el2->index) : (el2->value - el1->value); +}; + + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief DECOMPRESSION-FAILURE +/// Reference: RFC3320 Section 9.4.1 +/// This instruction triggers a manual decompression failure. This is useful if the UDVM bytecode discovers that it +/// cannot successfully decompress the message (e.g., by using the CRC instruction). + + +/// @param [in,out] udvm The udvm state machine entity. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__DECOMPRESSION_FAILURE(tcomp_udvm_t *udvm) +{ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_USER_REQUESTED].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_USER_REQUESTED); + return tsk_false; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief AND ($operand_1, %operand_2) +/// Reference: RFC3320 Section 9.1.1 +/// Formula: [operand_1 := operand_1 & operand_2]. + +/// @param [in,out] udvm The udvm state machine entity. +/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by +/// this operand is overwritten with the result. +/// @param operand_2 The second operand. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// + +tsk_bool_t TCOMP_UDVM_EXEC_INST__AND(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2) +{ + uint16_t _2bytes; + + CONSUME_CYCLES(1); + + GET_2BYTES_VAL(operand_1, _2bytes); + SET_2BYTES_VAL( operand_1, (_2bytes & operand_2) ); + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief OR ($operand_1, %operand_2) +/// Reference: RFC3320 Section 9.1.1 +/// Formula: [operand_1 := operand_1 | operand_2]. + +/// @param [in,out] udvm The udvm state machine entity. +/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by +/// this operand is overwritten with the result. +/// @param operand_2 The second operand. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// + +tsk_bool_t TCOMP_UDVM_EXEC_INST__OR(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2) +{ + uint16_t _2bytes; + + CONSUME_CYCLES(1); + + GET_2BYTES_VAL(operand_1, _2bytes); + SET_2BYTES_VAL( operand_1, (_2bytes | operand_2) ); + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>NOT ($operand_1)</i><br><br> +/// Reference: RFC3320 Section 9.1.1<br> +/// Formula: [operand_1 := ~operand_1]. <br> + +/// @param [in,out] udvm The udvm state machine entity. +/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by +/// this operand is overwritten with the result. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// + +tsk_bool_t TCOMP_UDVM_EXEC_INST__NOT(tcomp_udvm_t *udvm, uint32_t operand_1) +{ + uint16_t _2bytes; + + CONSUME_CYCLES(1); + + GET_2BYTES_VAL(operand_1, _2bytes); + SET_2BYTES_VAL( operand_1, ~( _2bytes ) ); + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>LSHIFT ($operand_1, %operand_2)</i><br><br> +/// Reference: RFC3320 Section 9.1.1<br> +/// Formula: [LSHIFT (m, n) := m * 2^n (modulo 2^16)]. <br> + +/// @param [in,out] udvm The udvm state machine entity. +/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by +/// this operand is overwritten with the result. +/// @param operand_2 2-byte value encoded by the operand. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// + +tsk_bool_t TCOMP_UDVM_EXEC_INST__LSHIFT(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2) +{ + uint16_t _2bytes; + + CONSUME_CYCLES(1); + + // (m * 2^n) == (m<<n) + // (2^16) === 65536 + + GET_2BYTES_VAL(operand_1, _2bytes); + SET_2BYTES_VAL( operand_1, (_2bytes << operand_2) ); + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>RSHIFT ($operand_1, %operand_2)</i><br><br> +/// Reference: RFC3320 Section 9.1.1<br> +/// Formula: [RSHIFT (m, n) := floor(m / 2^n)]. <br> + +/// @param [in,out] udvm The udvm state machine entity. +/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by +// this operand is overwritten with the result. +/// @param operand_2 2-byte value encoded by the operand. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// + +tsk_bool_t TCOMP_UDVM_EXEC_INST__RSHIFT(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2) +{ + uint16_t _2bytes; + + CONSUME_CYCLES(1); + + // floor(m / 2^n) == (m>>n) + GET_2BYTES_VAL(operand_1, _2bytes); + SET_2BYTES_VAL(operand_1, (_2bytes >> operand_2) ); + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>ADD ($operand_1, %operand_2)</i><br><br> +/// Reference: RFC3320 Section 9.1.2<br> +/// Formula: [ADD (m, n) := m + n (modulo 2^16)]<br> +/// +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by +/// this operand is overwritten with the result. +/// @param operand_2 2-byte value encoded by the operand. +/// +/// @retval True if succeed, otherwise return false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__ADD(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2) +{ + uint16_t _2bytes; + + CONSUME_CYCLES(1); + + GET_2BYTES_VAL(operand_1, _2bytes); + SET_2BYTES_VAL(operand_1, (_2bytes + operand_2) ); + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>SUBTRACT ($operand_1, %operand_2)</i><br><br> +/// Reference: RFC3320 Section 9.1.2<br> +/// Formula: [SUBTRACT (m, n) := m - n (modulo 2^16)]<br> +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by +/// this operand is overwritten with the result. +/// @param operand_2 2-byte value encoded by the operand. +/// +/// @retval 1 if succeed, otherwise returns 0. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__SUBTRACT(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2) +{ + uint16_t _2bytes; + + CONSUME_CYCLES(1); + + GET_2BYTES_VAL(operand_1, _2bytes); + SET_2BYTES_VAL(operand_1, (_2bytes - operand_2) ); + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>MULTIPLY ($operand_1, %operand_2)</i><br><br> +/// Reference: RFC3320 Section 9.1.2<br> +/// Formula: [MULTIPLY (m, n) := m * n (modulo 2^16)]<br> +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by +/// this operand is overwritten with the result. +/// @param operand_2 2-byte value encoded by the operand. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__MULTIPLY(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2) +{ + uint16_t _2bytes; + + CONSUME_CYCLES(1); + + GET_2BYTES_VAL(operand_1, _2bytes); + SET_2BYTES_VAL(operand_1, (_2bytes * operand_2) ); + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>DIVIDE ($operand_1, %operand_2)</i><br><br> +/// Reference: RFC3320 Section 9.1.2<br> +/// Formula: [DIVIDE (m, n) := floor(m / n)]<br> +/// +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by +/// this operand is overwritten with the result. +/// @param operand_2 2-byte value encoded by the operand. Decompression failure occurs if this operand is zero. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__DIVIDE(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2) +{ + uint16_t _2bytes; + + CONSUME_CYCLES(1); + + if(!operand_2){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_DIV_BY_ZERO].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_DIV_BY_ZERO); + return tsk_false; + } + + GET_2BYTES_VAL(operand_1, _2bytes); + SET_2BYTES_VAL(operand_1, (_2bytes / operand_2) ); + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>REMAINDER ($operand_1, %operand_2)</i><br><br> +/// Reference: RFC3320 Section 9.1.2<br> +/// Formula: [REMAINDER (m, n) := m - n * floor(m / n)]<br> +/// +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by +/// this operand is overwritten with the result. +/// @param operand_2 2-byte value encoded by the operand. Decompression failure occurs if this operand is zero. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__REMAINDER(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2) +{ + uint16_t _2bytes; + CONSUME_CYCLES(1); + + if(!operand_2){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_DIV_BY_ZERO].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_DIV_BY_ZERO); + return tsk_false; + } + + GET_2BYTES_VAL(operand_1, _2bytes); + SET_2BYTES_VAL(operand_1, (_2bytes % operand_2) ); + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>SORT-ASCENDING (%start, %n, %k)</i><br><br> +/// Reference: RFC3320 Section 9.1.3<br> +/// +/// This instruction sort lists of 2-byte words in ascending order. +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param start The starting memory address of the block of data to be sorted. +/// @param n Number of lists. +/// @param k Lists length (2-byte words). +/// +/// @retval True if succeed, otherwise return false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__SORT_ASCENDING(tcomp_udvm_t *udvm, uint32_t start, uint32_t n, uint32_t k) +{ + tsk_bool_t segfault = tsk_false; + uint16_t* list_temp = tsk_null; + IndexValuePair_t *list1_values = tsk_null; + uint32_t list_index, list_el; + uint32_t j, pos; + + CONSUME_CYCLES(( 1 + k *(CEILLINGLOG2(k) + n) )); /* 1 + k * (ceiling(log2(k)) + n) */ + + if(TCOMP_UDVM_GET_SIZE() <= (tsk_size_t)(start+(n*k*2)) ){ + segfault = tsk_true; + goto __SEGFAULT; + }; + + // + // Create FirstList with key-value pairs + // + list1_values = (IndexValuePair_t*)tsk_calloc(k, sizeof(IndexValuePair_t)); + if(!list1_values) { segfault = tsk_true; goto __SEGFAULT; }; + for(j=0, pos=0; pos<k; j+=2,pos++){ + list1_values[pos].index = pos; + GET_2BYTES_VAL((start+j), list1_values[pos].value); + } + + /* + * Sort Fisrt List Values + */ + qsort(list1_values, k, sizeof(IndexValuePair_t), SortAscendingPredicate); + + /* Sort all lists */ + list_temp = tsk_calloc(k, sizeof(uint32_t)); + if(!list1_values) { segfault = tsk_true; goto __SEGFAULT; }; + for(list_index = 0; list_index < n; list_index++){ + uint16_t* list_start = (uint16_t*)TCOMP_UDVM_GET_BUFFER_AT( start + (list_index*k*2) ); + memcpy(list_temp, list_start, k*2); + for(list_el=0; list_el<k; list_el++){ + list_start[(list_el)] = list_temp[ list1_values[list_el].index ]; + } + } + +__SEGFAULT: + TSK_FREE(list_temp); + TSK_FREE(list1_values); + + if(segfault) + { + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); + return tsk_false; + } + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>SORT-DESCENDING (%start, %n, %k)</i><br><br> +/// Reference: RFC3320 Section 9.1.3<br> +/// +/// This instruction sort lists of 2-byte words in descending order. +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param start The starting memory address of the block of data to be sorted. +/// @param n Number of lists. +/// @param k Lists length (2-byte words). +/// +/// @retval True if succeed, otherwise return false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__SORT_DESCENDING(tcomp_udvm_t *udvm, uint32_t start, uint32_t n, uint32_t k) +{ + tsk_bool_t segfault = tsk_false; + uint16_t* list_temp = tsk_null; + IndexValuePair_t *list1_values = tsk_null; + uint32_t list_index, list_el; + uint32_t j, pos; + + CONSUME_CYCLES(( 1 + k *(CEILLINGLOG2(k) + n) )); // 1 + k * (ceiling(log2(k)) + n) + + if(TCOMP_UDVM_GET_SIZE() <= (tsk_size_t)(start+(n*k*2)) ){ segfault = tsk_true; goto __SEGFAULT; }; + + // + // Create FirstList with key-value pairs. + // + list1_values = (IndexValuePair_t*)tsk_calloc(k, sizeof(IndexValuePair_t)); + if(!list1_values) { segfault = tsk_true; goto __SEGFAULT; }; + for(j=0, pos=0; pos<k; j+=2,pos++){ + list1_values[pos].index = pos; + GET_2BYTES_VAL((start+j), list1_values[pos].value); + } + + // Sort Fisrt List Values. + qsort(list1_values, k, sizeof(IndexValuePair_t), SortDescendingPredicate); + + + // Sort all lists + list_temp = tsk_calloc(k, sizeof(uint16_t)); + if(!list1_values) { segfault = tsk_true; goto __SEGFAULT; }; + for(list_index = 0; list_index < n; list_index++){ + uint16_t* list_start = (uint16_t*)TCOMP_UDVM_GET_BUFFER_AT(start + (list_index*k*2)); + memcpy(list_temp, list_start, k*2); + for(list_el=0; list_el<k; list_el++){ + list_start[(list_el)] = list_temp[ list1_values[list_el].index ]; + } + } + +__SEGFAULT: + TSK_FREE(list_temp); + TSK_FREE(list1_values); + + if(segfault){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); + return tsk_false; + } + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>SHA-1 (%position, %length, %destination)</i><br><br> +/// Reference: RFC3320 Section 9.1.4<br> +/// This instruction calculates a 20-byte SHA-1 hash [RFC-3174] over the specified area of UDVM memory. +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param position The starting memory address. +/// @param length The length of the byte string over which the SHA-1 hash is calculated. +/// @param destination The starting address to which the resulting 20-byte hash will be copied. +/// +/// @retval True if succeed, otherwise return false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__SHA_1(tcomp_udvm_t *udvm, uint32_t position, uint32_t length, uint32_t destination) +{ + tsk_bool_t ok = tsk_false; + tsk_sha1context_t sha; + int32_t err; + uint8_t Message_Digest[TSK_SHA1_DIGEST_SIZE]; + + // only check length + // (destination + length) could be > sizeof(udvm_memory) as copying is done byte by byte and could wrap + if(!length){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); + goto bail; + } + + CONSUME_CYCLES(1 + length); + + // The SHA-1 instruction calculates a 20-byte SHA-1 hash [RFC-3174] over the specified area of UDVM memory + if(udvm->tmp_buff.size < length){ + if(!(udvm->tmp_buff.ptr = tsk_realloc(udvm->tmp_buff.ptr, length))){ + udvm->tmp_buff.size = 0; + goto bail; + } + udvm->tmp_buff.size = length; + } + + if(!(ok = tcomp_udvm_bytecopy_from(udvm, udvm->tmp_buff.ptr, position, length))){ + goto bail; + } + + // Compute SHA-1 + if(!(ok = ((err = tsk_sha1reset(&sha)) == 0))){ + TSK_DEBUG_ERROR("%s: %d", TCOMP_NACK_DESCRIPTIONS[NACK_INTERNAL_ERROR].desc, err); + tcomp_udvm_createNackInfo2(udvm, NACK_INTERNAL_ERROR); + goto bail; + } + if(!(ok = ((err = tsk_sha1input(&sha, udvm->tmp_buff.ptr, length)) == 0))){ + TSK_DEBUG_ERROR("%s : %d", TCOMP_NACK_DESCRIPTIONS[NACK_INTERNAL_ERROR].desc, err); + tcomp_udvm_createNackInfo2(udvm, NACK_INTERNAL_ERROR); + goto bail; + } + if(!(ok = ((err = tsk_sha1result(&sha, (uint8_t*)Message_Digest)) == 0))){ + TSK_DEBUG_ERROR("%s : %d", TCOMP_NACK_DESCRIPTIONS[NACK_INTERNAL_ERROR].desc, ok); + tcomp_udvm_createNackInfo2(udvm, NACK_INTERNAL_ERROR); + goto bail; + } + + //Copy sha1 result to udvm memory + ok &= tcomp_udvm_bytecopy_to(udvm, destination, Message_Digest, TSK_SHA1_DIGEST_SIZE); + +bail: + return ok; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>LOAD(%address, %value)</i><br><br> +/// Reference: RFC3320 Section 9.2.1<br> +/// This instruction sets a 2-byte word to a certain specified value +/// As usual, MSBs are stored before LSBs in the UDVM memory. +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param address Specifies the starting address of a 2-byte word. +/// @param value Specifies the value to be loaded into this word. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__LOAD(tcomp_udvm_t *udvm, uint32_t address, uint32_t value) +{ + CONSUME_CYCLES(1); + + if( address >= TCOMP_UDVM_GET_SIZE() ){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); + return tsk_false; + } + + SET_2BYTES_VAL(address, value); + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>MULTILOAD(%address, \#n, %value_0, ..., %value_n-1)</i><br><br> +/// Reference: RFC3320 Section 9.2.2<br> +/// This instruction sets a contiguous block of 2-byte words in the UDVM memory to specified values. +/// value_0 through to value_n-1 specify the values to load into these words (in the same order as +/// they appear in the instruction). +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param address Starting address of the contiguous 2-byte words. +/// @param n Number of 2-bytes values to load. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__MULTILOAD(tcomp_udvm_t *udvm, uint32_t address, uint32_t n) +{ + uint32_t index, _address; + uint32_t overlap_start = udvm->last_memory_address_of_instruction; + #define overlap_end udvm->executionPointer + uint32_t write_start = address; + uint32_t write_end = (address + (n << 1)); + + CONSUME_CYCLES(1 + n); + +#define CHECK_MULTILOAD_OVERWRITTEN(__start, __address, __end) \ + if(( (__start) <= (__address) && (__address) <= (__end) ) || ( (__start) <= ((__address) + 1) && ((__address) + 1) <= (__end) )){ \ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_MULTILOAD_OVERWRITTEN].desc); \ + tcomp_udvm_createNackInfo2(udvm, NACK_MULTILOAD_OVERWRITTEN); \ + return tsk_false; \ + } + + // tcomp_udvm_opget_multitype_param() will move the execPtr => make the test before the for loop + CHECK_MULTILOAD_OVERWRITTEN(overlap_start, address, overlap_end); + CHECK_MULTILOAD_OVERWRITTEN(write_start, udvm->executionPointer, write_end); + + for(index = 0, _address = address; index < n; index++ , _address += 2){ + uint32_t value_n = tcomp_udvm_opget_multitype_param(udvm); + CHECK_MULTILOAD_OVERWRITTEN(overlap_start, _address, overlap_end); + CHECK_MULTILOAD_OVERWRITTEN(write_start, udvm->executionPointer, write_end); + SET_2BYTES_VAL(_address, value_n); + } + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>PUSH (%value)</i><br><br> +/// Reference: RFC3320 Section 9.2.3<br> +/// This instruction pushes the value specified by its operand on the stack.. +/// + +/// @date 11/27/2009 +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param value 2-byte word to push. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__PUSH(tcomp_udvm_t *udvm, int16_t value) +{ + tsk_bool_t callback = (value>=0); + uint32_t stack_location, stack_fill; + if(!callback){ + value = tcomp_udvm_opget_multitype_param(udvm); + } + + CONSUME_CYCLES(callback ? 0 : 1); + + + + GET_2BYTES_VAL(TCOMP_UDVM_HEADER_STACK_LOCATION_INDEX, stack_location); + GET_2BYTES_VAL(stack_location, stack_fill); + + /* + * copying the value to stack[stack_fill] + * stack[n] = stack_location+2*n+2 + */ + SET_2BYTES_VAL((stack_location+(2*stack_fill)+2), value); + + /* increasing stack_fill by 1*/ + SET_2BYTES_VAL(stack_location, (stack_fill+1)); + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>POP (%address)</i><br><br> +/// Reference: RFC3320 Section 9.2.3<br> +/// This instruction pops a value from the stack and then copies the value to the specified memory address.. +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param [in,out] value 2-byte word to pop from the stack. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__POP(tcomp_udvm_t *udvm, uint32_t* value) +{ + uint32_t address; + uint32_t stack_location, stack_fill, _value = 0; + + tsk_bool_t callback = (value != 0); + + CONSUME_CYCLES(callback?0:1); + + address = callback ? 0 : tcomp_udvm_opget_multitype_param(udvm); + + GET_2BYTES_VAL(TCOMP_UDVM_HEADER_STACK_LOCATION_INDEX, stack_location); + GET_2BYTES_VAL(stack_location, stack_fill); + + /* + * Decompression failure occurs if stack_fill is + * zero at the commencement of a popping operation. POP and RETURN pop + * values from the stack. + */ + if(stack_fill == 0){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); + _value = 0; + goto end; + } + + /* + * "Popping" a value from the stack is an abbreviation for decreasing + * stack_fill by 1, and then using the value stored in stack[stack_fill]. + */ + --stack_fill; + SET_2BYTES_VAL(stack_location, stack_fill); + /* stack[n] = stack_location+2*n+2 */ + GET_2BYTES_VAL((stack_location + (2*stack_fill) + 2), _value); + +end: + if(callback){ + *value = _value; + } + else{ + SET_2BYTES_VAL(address, _value); + } + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>COPY(%position, %length, %destination)</i><br><br> +/// Reference: RFC3320 Section 9.2.4<br> +/// This instruction is used to copy a string of bytes from one part of the UDVM memory to another. +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param position Specifies the memory address of the first byte in the string to be copied. +/// @param length Specifies the number of bytes to be copied. +/// @param destination Gives the address to which the first byte in the string will be copied. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__COPY(tcomp_udvm_t *udvm, uint32_t position, uint32_t length, uint32_t destination) +{ + tsk_bool_t ok = tsk_true; + + CONSUME_CYCLES(1+length); + + if( (position + length) > (int32_t)TCOMP_UDVM_GET_SIZE() || (destination + length) > (int32_t)TCOMP_UDVM_GET_SIZE() ){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); + return tsk_false; + } + + /* + * The COPY instruction is used to copy a string of bytes from one part + * of the UDVM memory to another. + */ + ok &= tcomp_udvm_bytecopy_self(udvm, &destination, position, length); + + return ok; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>COPY-LITERAL(%position, %length, $destination)</i><br><br> +/// Reference: RFC3320 Section 9.2.5<br> +/// The COPY-LITERAL instruction behaves as a COPY instruction except +/// that after copying is completed, the value of the destination operand +/// is replaced by the address to which the next byte of data would be copied.. +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param position Specifies the memory address of the first byte in the string to be copied. +/// @param length Specifies the number of bytes to be copied. +/// @param destination Gives the address to which the first byte in the string will be copied. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__COPY_LITERAL(tcomp_udvm_t *udvm, uint32_t position, uint32_t length, uint32_t destination) +{ + tsk_bool_t ok; + uint32_t destination_index; + + CONSUME_CYCLES(1+length); + + GET_2BYTES_VAL(destination, destination_index); + ok = tcomp_udvm_bytecopy_self(udvm, &destination_index, position, length); + if(ok){ + /* set next byte */ + SET_2BYTES_VAL(destination, destination_index); + } + + return ok; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>COPY-OFFSET(%offset, %length, $destination)</i><br><br> +/// Reference: RFC3320 Section 9.2.6<br> +/// This instruction behaves as a COPY-LITERAL instruction +/// except that an offset operand is given instead of a position operand.. +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param offset The offset value. +/// @param length Specifies the number of bytes to be copied. +/// @param destination Gives the address to which the first byte in the string will be copied. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__COPY_OFFSET(tcomp_udvm_t *udvm, uint32_t offset, uint32_t length, uint32_t destination) +{ + uint32_t DEST, LEFT, RIGTH; + int32_t position = -1; + uint32_t destination_index; + + int32_t D, T; + int32_t O; + + CONSUME_CYCLES(1+length); + + GET_2BYTES_VAL(destination, DEST); + GET_2BYTES_VAL(TCOMP_UDVM_HEADER_BYTE_COPY_LEFT_INDEX, LEFT); + GET_2BYTES_VAL(TCOMP_UDVM_HEADER_BYTE_COPY_RIGHT_INDEX, RIGTH); + + /* + DEST: ses + D: distance between LEFT and DEST + O: offset + T: total size between LEFT and RIGTH + + [***** + case 1: + -----LEFT--------DEST------------RIGTH---- + <-----D----> + <--O-> + <---------------T------------> + ****] + [***** + case 2: + -----LEFT--------DEST------------RIGTH---- + <-----D----> + <--------O--------> + <---------------T------------> + ****] + [***** + case 3: + -------DEST-----LEFT-------------RIGTH---- + ****] + */ + D = (DEST - LEFT); + T = (RIGTH - LEFT); + O = offset; + + if( D>=0 && O<=D ){ + /* case 1: easy case */ + position = (DEST-O); + } + else if( D>=0 && O>D ){ + /* case 2: */ + double PAD = (D + ((ceil(((double)O-(double)D)/(double)T))*T))-O; + position = LEFT+(int32_t)PAD; + } + else if( D<0 ){ + /* case 3: */ + position = DEST-O; + } + + /* Check position */ + if(position<0){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); + return tsk_false; + } + + /* EXEC_INST__COPY_LITERAL */ + GET_2BYTES_VAL(destination, destination_index); + if(tcomp_udvm_bytecopy_self(udvm, &destination_index, position, length) == tsk_true){ + SET_2BYTES_VAL(destination, destination_index); + } + else{ + return tsk_false; + } + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>MEMSET(%address, %length, %start_value, %offset)</i><br><br> +/// Reference: RFC3320 Section 9.2.7<br> +/// Formula: Seq[n] := (start_value + n * offset) modulo 256<br> +/// This instruction initializes an area of UDVM memory to a specified sequence of values. +/// + +/// @date 11/27/2009 +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param address The destination address. +/// @param length The number of 1-byte values to set. +/// @param start_value The starting value. +/// @param offset The offset used for computation. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__MEMSET(tcomp_udvm_t *udvm, uint32_t address, uint32_t length, uint32_t start_value, uint32_t offset) +{ + uint8_t* seqs_temp; + uint32_t n; + tsk_bool_t ok; + + CONSUME_CYCLES(1+length); + + /* + * The values Seq[0] to Seq[length - 1] inclusive are each interpreted + * as a single byte, and then concatenated to form a byte string where + * the first byte has value Seq[0], the second byte has value Seq[1] and + * so on up to the last byte which has value Seq[length - 1]. + */ + seqs_temp = tsk_calloc(length, sizeof(uint8_t)); + if(!seqs_temp){ + return tsk_false; + } + + for(n=0; n < length; n++){ + seqs_temp[n] = (start_value + n * offset)%256; + } + /* + * The string is then byte copied into the UDVM memory beginning at the + * memory address specified as an operand to the MEMSET instruction, + * obeying the rules of Section 8.4. + */ + ok = tcomp_udvm_bytecopy_to(udvm, address, seqs_temp, length); + + TSK_FREE(seqs_temp); + + return ok; +} + +/** +* @brief <i>JUMP (\@address)</i><br><br> +* Reference: RFC3320 Section 9.3.1<br> +* This instruction moves program execution to the specified memory address. +* Decompression failure occurs if the value of the address operand lies +* beyond the overall UDVM memory size. +* @param [in,out] udvm The udvm state machine entity. +* @param address defines the address to jump to +* @retval 1 if succeed, otherwise returns 0 +*/ +tsk_bool_t TCOMP_UDVM_EXEC_INST__JUMP(tcomp_udvm_t *udvm, int16_t address) +{ + int callback = (address >=0 ); + CONSUME_CYCLES(callback?0:1); + + if(!callback){ + address = tcomp_udvm_opget_address_param(udvm, udvm->last_memory_address_of_instruction); + } + + if(address > (int32_t)TCOMP_UDVM_GET_SIZE()){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); + return tsk_false; + } + udvm->executionPointer = address; + + return tsk_true; +} + + +/** + * + * @brief <i>COMPARE(%value_1, %value_2, \@address_1, \@address_2, \@address_3)</i><br><br> + * Reference: RFC3320 Section 9.3.2<br> + * + * This instruction compares two operands and then jumps to one of three specified + * memory addresses depending on the result.<br> + * if(value_1 < value_2) --> address_1<br> + * elif(value_1 = value_2) --> address_2<br> + * elif(value_1 > value_2) --> address_3. <br> + * + * + * @param [in,out] udvm The udvm state machine entity. + * @param value_1 The first value to compare. + * @param value_2 The second value to compare. + * @param address_1 The address to jump to if (value_1 < value_2). + * @param address_2 The address to jump to if (value_1 = value_2). + * @param address_3 address to jump to if (value_1 > value_2). + * @retval 1 if succeed, otherwise returns 0. +**/ +tsk_bool_t TCOMP_UDVM_EXEC_INST__COMPARE(tcomp_udvm_t *udvm, uint32_t value_1, uint32_t value_2, uint32_t address_1, uint32_t address_2, uint32_t address_3) +{ + tsk_bool_t ok = 1; + + CONSUME_CYCLES(1); + + if(value_1 < value_2){ + ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address_1); + goto end; + } + + if(value_1 == value_2){ + ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address_2); + goto end; + } + + if(value_1 > value_2){ + ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address_3); + goto end; + } + +end: + return ok; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>CALL(\@address)</i><br><br> +/// Reference: RFC3320 Section 9.3.3<br> +/// This instruction finds the memory address of the instruction immediately following +/// the CALL instruction and pushes this 2-byte value on the stack, ready for later retrieval. +/// It then continues instruction execution at the memory address specified by the address operand.. +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param address The next address. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__CALL(tcomp_udvm_t *udvm, uint32_t address) +{ + CONSUME_CYCLES(1); + + return TCOMP_UDVM_EXEC_INST__PUSH(udvm, udvm->executionPointer) + && TCOMP_UDVM_EXEC_INST__JUMP(udvm, address); +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>RETURN</i><br><br> +/// Reference: RFC3320 Section 9.3.3<br> +/// This instruction pops a value from the stack and then continues instruction +/// execution at the memory address just popped.. +/// +/// @param [in,out] udvm The udvm state machine entity. +/// +/// @retval True if succeed, otherwise return false . +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__RETURN(tcomp_udvm_t *udvm) +{ + uint32_t value = 0; + tsk_bool_t ok = tsk_true; + + CONSUME_CYCLES(1); + + if( (ok = TCOMP_UDVM_EXEC_INST__POP(udvm, &value)) ){ + ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, value); + } + + return ok; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>SWITCH(\#n, %j, \@address_0, \@address_1, ... , \@address_n-1)</i><br><br> +/// Reference: RFC3320 Section 9.3.4<br> +/// This instruction performs a conditional jump based on the value of one of its operands. +/// Decompression failure occurs if j specifies a value of n or more, or +/// if the address lies beyond the overall UDVM memory size.. + +/// @param [in,out] udvm The udvm state machine entity. +/// @param n The number of possibilities. +/// @param j The possibility. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__SWITCH(tcomp_udvm_t *udvm, uint32_t n, uint32_t j) +{ + uint32_t next = 0; + tsk_bool_t ok = tsk_true; + + CONSUME_CYCLES(1+n); + + /* Decompression failure occurs if j specifies a value of n or more. */ + if(j >= n){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SWITCH_VALUE_TOO_HIGH].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_SWITCH_VALUE_TOO_HIGH); + ok = tsk_false; + goto end; + } + + do{ + next = tcomp_udvm_opget_address_param(udvm, udvm->last_memory_address_of_instruction); + } + while(j--); + +end: + if(ok){ + ok = TCOMP_UDVM_EXEC_INST__JUMP(udvm, next); + } + + return ok; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>CRC(%value, %position, %length, \@address)</i><br><br> +/// Reference: RFC3320 Section 9.3.5<br> +/// This instruction verifies a string of bytes using a 2-byte CRC. +/// The CRC value is computed exactly as defined for the 16-bit FCS calculation in [RFC-1662].. +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param value Contains the expected integer value of the 2-byte CRC. +/// @param position Defines the position of the string of bytes over which the CRC is evaluated. +/// @param length Defines the length of the string of bytes over which the CRC is evaluated. +/// @param address The address to jump to if the calculated CRC value do not match. +/// +/// @retval True if succeed, otherwise return false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__CRC(tcomp_udvm_t *udvm, uint32_t value, uint32_t position, uint32_t length, uint32_t address) +{ + uint32_t crc_value; + + CONSUME_CYCLES(1 + length); + + if(udvm->tmp_buff.size < length){ + if(!(udvm->tmp_buff.ptr = tsk_realloc(udvm->tmp_buff.ptr, length))){ + udvm->tmp_buff.size = 0; + tcomp_udvm_createNackInfo2(udvm, NACK_INTERNAL_ERROR); + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INTERNAL_ERROR].desc); + return tsk_false; + } + udvm->tmp_buff.size = length; + } + + /* copy data */ + if(!tcomp_udvm_bytecopy_from(udvm, udvm->tmp_buff.ptr, position, length)){ + return tsk_false; + } + + /* + * The CRC value is computed exactly as defined for the 16-bit FCS + * calculation in [RFC-1662] + */ + crc_value = tsk_pppfcs16(TSK_PPPINITFCS16, udvm->tmp_buff.ptr, length); + + /* + * If the calculated CRC matches the expected value then the UDVM + * continues instruction execution at the following instruction. + * Otherwise the UDVM jumps to the memory address specified by the + * address operand. + */ + if(value != crc_value){ + TCOMP_UDVM_EXEC_INST__JUMP(udvm, address); + } + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>INPUT-BYTES (%length, %destination, \@address)</i><br><br> +/// Reference: RFC3320 Section 9.4.2<br> +/// This instruction requests a certain number of bytes of compressed data from the decompressor dispatcher. +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param length Indicates the requested number of bytes of compressed data. +/// @param destination Specifies the starting memory address to which they should be copied. +/// @param address Defines the address to jump to if the instruction requests data that lies beyond the end of the SigComp message. +/// +/// @retval True if succeed, otherwise return false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__INPUT_BYTES(tcomp_udvm_t *udvm, uint32_t length, uint32_t destination, uint32_t address) +{ + tsk_bool_t ok = tsk_true; + const uint8_t* compressedDataAddress; + uint8_t* destinationAddress; + + CONSUME_CYCLES(1+length); + + /* + * If the INPUT-BYTES is encountered after an INPUT-BITS or an INPUT- + * HUFFMAN instruction has been used, and the dispatcher currently holds + * a fraction of a byte, then the fraction MUST be discarded before any + * data is passed to the UDVM. The first byte to be passed is the byte + * immediately following the discarded data. + */ + tcomp_buffer_discardBits(udvm->sigCompMessage->remaining_sigcomp_buffer); + + compressedDataAddress = tcomp_buffer_readBytes(udvm->sigCompMessage->remaining_sigcomp_buffer, length); + destinationAddress = TCOMP_UDVM_GET_BUFFER_AT(destination); + if(compressedDataAddress){ + ok &= tcomp_udvm_bytecopy_to(udvm, destination, compressedDataAddress, length); + if(ok){ + /* FIXME: (8 * n + 1000) * cycles_per_bit */ + udvm->maximum_UDVM_cycles += ((8 * length /*+ 1000*/) * udvm->stateHandler->sigcomp_parameters->cpbValue); + } + } + else{ + /* + * If the instruction requests data that lies beyond the end of the + * SigComp message, no data is returned. Instead the UDVM moves program + * execution to the address specified by the address operand. + */ + ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address); + } + + return ok; +} + +/** + * + * @brief <i>INPUT-BITS (%length, %destination, \@address)</i><br><br> + * Reference: RFC3320 Section 9.4.3<br> + * The INPUT-BITS instruction requests a certain number of bits of + * compressed data from the decompressor dispatcher. + * + * + * @param [in,out] udvm The udvm state machine entity. + * @param length The length operand indicates the requested number of bits. + Decompression failure occurs if this operand does not lie between 0 + and 16 inclusive. + * @param destination The destination operand specifies the memory address to which the + compressed data should be copied. Note that the requested bits are + interpreted as a 2-byte integer ranging from 0 to 2^length - 1, as + explained in Section 8.2. + + * @param address The address of the destination. + * + * @retval 1 if succeed, otherwise returns 0. +**/ +tsk_bool_t TCOMP_UDVM_EXEC_INST__INPUT_BITS(tcomp_udvm_t *udvm, uint32_t length, uint32_t destination, uint32_t address) +{ + tsk_bool_t ok = tsk_true; + uint32_t input_bit_order, reserved; + uint8_t F_BIT, P_BIT; + uint8_t* old_P_BIT; + + /* + The input_bit_order register contains the following three flags: + 0 7 8 15 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | reserved |F|H|P| 68 - 69 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + */ + + CONSUME_CYCLES(1); + + GET_2BYTES_VAL(TCOMP_UDVM_HEADER_INPUT_BIT_ORDER_INDEX, input_bit_order); + reserved = (input_bit_order & 0xf8); + /* + * Decompression failure occurs if an INPUT-BITS or an INPUT-HUFFMAN + * instruction is encountered and the input_bit_order register does not + * lie between 0 and 7 inclusive. + */ + if(reserved){ + /* MUST BE ZEROS --> Only 3bits --> [0-7] */ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_BAD_INPUT_BITORDER].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_BAD_INPUT_BITORDER); + return tsk_false; + } + + /* F and P BITS */ + F_BIT = (input_bit_order & 0x0004) ? 1 : 0; + P_BIT = (input_bit_order & 0x0001); + + /* + * Decompression failure occurs if this operand (length) does not lie between 0 + * and 16 inclusive. + */ + if(/*length<0 ||*/ length>16){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INVALID_OPERAND].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_OPERAND); + return tsk_false; + } + + /* + * P:The P-bit controls the order in which bits are passed from the + * dispatcher to the INPUT instructions + * P=0 --> MSB_TO_LSB + * P=1 --> LSB_TO_MSB + */ + old_P_BIT = tcomp_buffer_getP_BIT(udvm->sigCompMessage->remaining_sigcomp_buffer); + if(*old_P_BIT != P_BIT){ + /* + * If the P-bit has changed since the last INPUT instruction, any fraction of a + * byte still held by the dispatcher MUST be discarded (even if the + * INPUT instruction requests zero bits) + */ + tcomp_buffer_discardBits(udvm->sigCompMessage->remaining_sigcomp_buffer); + *old_P_BIT = P_BIT; + } + + /* + * If the instruction requests data that lies beyond the end of the + * SigComp message, no data is returned. Instead the UDVM moves program + * execution to the address specified by the address operand. + */ + if( (length) > tcomp_buffer_getRemainingBits(udvm->sigCompMessage->remaining_sigcomp_buffer) ){ + ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address); + goto end; + } + + /* + * If the F-bit is set to 0, the INPUT-BITS instruction interprets the + * received bits as arriving MSBs first, and if it is set to 1, it interprets the bits as arriving LSBs first. + * F=0 --> MSB_TO_LSB + * F=1 --> LSB_TO_MSB + */ + if(P_BIT == TCOMP_P_BIT_MSB_TO_LSB){ + /* MSB_TO_LSB */ + uint32_t value = tcomp_buffer_readMsbToLsb(udvm->sigCompMessage->remaining_sigcomp_buffer, length); + if(F_BIT == F_BIT_LSB_TO_MSB){ + value = (TSK_BINARY_REVERSE_2BYTE(value)>>(16-length)); + } + SET_2BYTES_VAL(destination, value); + } + else{ + /* LSB_TO_MSB */ + uint32_t value = tcomp_buffer_readLsbToMsb(udvm->sigCompMessage->remaining_sigcomp_buffer, length); + if(F_BIT == F_BIT_LSB_TO_MSB) { + value = (TSK_BINARY_REVERSE_2BYTE(value)>>(16-length)); + } + SET_2BYTES_VAL(destination, value); + } + +end: + + udvm->maximum_UDVM_cycles += (length * udvm->stateHandler->sigcomp_parameters->cpbValue); + return ok; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>INPUT-HUFFMAN(%destination, \@address, \#n, %bits_1, %lower_bound_1, %upper_bound_1, %uncompressed_1, ... , %bits_n, %lower_bound_n, %upper_bound_n, %uncompressed_n)</i><br><br> +/// Reference: RFC3320 Section 9.4.4<br> +/// +/// This instruction requests a variable number of bits of compressed data from the decompressor dispatcher. The instruction +/// initially requests a small number of bits and compares the result against a certain criterion; if the criterion is not met, then +/// additional bits are requested until the criterion is achieved. +/// +/// @param [in,out] udvm The udvm state machine entity. +/// @param destination The udvm destination address. +/// @param address Address to jump to if data is requested that lies beyond the end of the SigComp message. +/// @param n Additional sets of operands count. +/// +/// @retval True if succeed, otherwise return false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__INPUT_HUFFMAN(tcomp_udvm_t *udvm, uint32_t destination, uint32_t address, uint32_t n) +{ + /* + The input_bit_order register contains the following three flags: + 0 7 8 15 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + | reserved |F|H|P| 68 - 69 + +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ + */ + tsk_bool_t ok = tsk_true; + uint32_t input_bit_order, reserved; + uint8_t H_BIT, P_BIT, *old_P_BIT; + + uint32_t bits_j, lower_bound_j, upper_bound_j, uncompressed_j; + uint32_t bits_total = 0, k = 0, H, J; + tsk_bool_t criterion_ok = tsk_false; + + CONSUME_CYCLES(1+n); + + /*Note that if n = 0 then the INPUT-HUFFMAN instruction is ignored and + program execution resumes at the following instruction.*/ + if(n == 0){ + //goto end; + return ok; + } + + GET_2BYTES_VAL(TCOMP_UDVM_HEADER_INPUT_BIT_ORDER_INDEX, input_bit_order); + reserved = (input_bit_order & 0xf8); + /* + * Decompression failure occurs if an INPUT-BITS or an INPUT-HUFFMAN + * instruction is encountered and the input_bit_order register does not + * lie between 0 and 7 inclusive. + */ + if(reserved){ + /* MUST BE ZEROS --> Only 3bits --> [0-7] */ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_BAD_INPUT_BITORDER].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_BAD_INPUT_BITORDER); + return tsk_false; + } + + /* H and P */ + H_BIT = (input_bit_order & 0x0002)?1:0; + P_BIT = (input_bit_order & 0x0001); + + /* + * P:The P-bit controls the order in which bits are passed from the + * dispatcher to the INPUT instructions + * P=0 --> MSB_TO_LSB + * P=1 --> LSB_TO_MSB + */ + old_P_BIT = tcomp_buffer_getP_BIT(udvm->sigCompMessage->remaining_sigcomp_buffer); + if( *old_P_BIT != P_BIT ){ + /* + * If the P-bit has changed since the last INPUT instruction, any fraction of a + * byte still held by the dispatcher MUST be discarded (even if the + * INPUT instruction requests zero bits) + */ + tcomp_buffer_discardBits(udvm->sigCompMessage->remaining_sigcomp_buffer); + *old_P_BIT = P_BIT; + } + + /* + * HUFFMAN COMPUTATION + */ + + /* 1. Set j := 1 and set H := 0. */ + for(J = 1, H = 0; J<=n; J++){ + /* + * Request bits_j compressed bits. Interpret the returned bits as an + * integer k from 0 to 2^bits_j - 1, as explained in Section 8.2. + */ + bits_j = tcomp_udvm_opget_multitype_param(udvm); + lower_bound_j = tcomp_udvm_opget_multitype_param(udvm); + upper_bound_j = tcomp_udvm_opget_multitype_param(udvm); + uncompressed_j = tcomp_udvm_opget_multitype_param(udvm); + bits_total += bits_j; + + /*Decompression failure occurs if (bits_1 + ... + bits_n) > 16.*/ + if(bits_total > 16){ + ok = tsk_false; + // FIXME: DECOMPRESSION failure TOO_MANY_BITS_REQUESTED + goto end; + } + + if(criterion_ok){ + continue; + } + +//==step_4: + /* + * 4.If data is requested that lies beyond the end of the SigComp + * message, terminate the INPUT-HUFFMAN instruction and move program + * execution to the memory address specified by the address operand. + */ + if( (bits_j) > tcomp_buffer_getRemainingBits(udvm->sigCompMessage->remaining_sigcomp_buffer) ){ + ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address); + goto end; + } + +//==step_2: + /* + * 2. Request bits_j compressed bits. Interpret the returned bits as an + * integer k from 0 to 2^bits_j - 1, as explained in Section 8.2. + */ + if(P_BIT == TCOMP_P_BIT_MSB_TO_LSB){ + k = tcomp_buffer_readMsbToLsb(udvm->sigCompMessage->remaining_sigcomp_buffer, bits_j); + if(H_BIT == H_BIT_LSB_TO_MSB) { + k = (TSK_BINARY_REVERSE_2BYTE(k)>>(16-bits_j)); + } + } + else{ + k = tcomp_buffer_readLsbToMsb(udvm->sigCompMessage->remaining_sigcomp_buffer, bits_j); + if(H_BIT == H_BIT_LSB_TO_MSB){ + k = (TSK_BINARY_REVERSE_2BYTE(k)>>(16-bits_j)); + } + } +//==step_3: + /* 3. Set H := H * 2^bits_j + k */ + H = H * (uint32_t)pow(2.0, bits_j) + k; + +//==step_5: + /* + * 5. If (H < lower_bound_j) or (H > upper_bound_j) then set j := j + 1. + * Then go back to Step 2, unless j > n in which case decompression + * failure occurs. + */ + if( (H < lower_bound_j) || (H > upper_bound_j) ){ + continue; + //goto step_2; + } + else{ + /* + * Copy (H + uncompressed_j - lower_bound_j) modulo 2^16 to the + * memory address specified by the destination operand. + */ + H = (H + uncompressed_j - lower_bound_j) % 65536; + criterion_ok = 1; + } + } + + if(!criterion_ok){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_HUFFMAN_NO_MATCH].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_HUFFMAN_NO_MATCH); + ok = tsk_false; + goto end; + } + else if(ok){ + SET_2BYTES_VAL(destination, H); + udvm->maximum_UDVM_cycles += (bits_total * udvm->stateHandler->sigcomp_parameters->cpbValue); + } +end: + return ok; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>STATE-ACCESS(%partial_identifier_start, %partial_identifier_length, %state_begin, %state_length, %state_address, %state_instruction)</i><br><br> +/// Reference: RFC3320 Section 9.4.5<br> +/// This instruction retrieves some previously stored state information.. + +/// @param [in,out] udvm If non-null, the udvm. +/// @param partial_identifier_start Specifies the location of the partial state identifier used to retrieve the state information. +/// @param partial_identifier_length Specifies the length of the partial state identifier used to retrieve the state information. +/// @param state_begin Defines the starting byte to copy from the state_value contained in the returned item of state. +/// @param state_length Defines the number of bytes to copy from the state_value contained in the returned item of state. +/// @param state_address Contains a UDVM memory address. +/// @param state_instruction Next instruction to jump to. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__STATE_ACCESS(tcomp_udvm_t *udvm, uint32_t partial_identifier_start, uint32_t partial_identifier_length, uint32_t state_begin, uint32_t state_length, uint32_t state_address, uint32_t state_instruction) +{ + tcomp_state_t* lpState = NULL; + tcomp_buffer_handle_t* partial_id; + uint32_t match_count; + + /* + * Decompression failure occurs if partial_identifier_length does not + * lie between 6 and 20 inclusive. + */ + if(partial_identifier_length<6 || partial_identifier_length>20){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INVALID_STATE_ID_LENGTH].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_STATE_ID_LENGTH); + return tsk_false; + } + /* + * decompression failure will always occur if the state_length operand + * is set to 0 but the state_begin operand is non-zero. + */ + if(!state_length && state_begin){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INVALID_STATE_PROBE].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_STATE_PROBE); + return tsk_false; + } + + /* + * Find matching state + */ + partial_id = tcomp_buffer_create_null(); + tcomp_buffer_referenceBuff(partial_id, TCOMP_UDVM_GET_BUFFER_AT(partial_identifier_start), partial_identifier_length); + match_count = tcomp_statehandler_findState(udvm->stateHandler, partial_id, &lpState); + + /* + * Decompression failure occurs if no state item matching the partial state identifier can be found, if + * more than one state item matches the partial identifier. + */ + if(!lpState || match_count != 1){ + int32_t nack_code = (match_count > 1) ? NACK_ID_NOT_UNIQUE : NACK_STATE_NOT_FOUND; + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[nack_code].desc); + tcomp_udvm_createNackInfo3(udvm, nack_code, partial_id); + TSK_OBJECT_SAFE_FREE(partial_id); + return tsk_false; + } + else if(partial_identifier_length < lpState->minimum_access_length){ + /* + * Decompression failure occurs if partial_identifier_length is less than the minimum_access_length of + * the matched state item. + */ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_STATE_NOT_FOUND].desc); + tcomp_udvm_createNackInfo3(udvm, NACK_STATE_NOT_FOUND, partial_id); + TSK_OBJECT_SAFE_FREE(partial_id); + return tsk_false; + } + TSK_OBJECT_SAFE_FREE(partial_id); + + /* + * If any of the operands state_address, state_instruction or + * state_length is set to 0 then its value is taken from the returned + * item of state instead. + */ + if(!state_address) { + state_address = lpState->address; + } + if(!state_instruction) { + state_instruction = lpState->instruction; + } + if(!state_length) { + state_length = lpState->length; + } + + CONSUME_CYCLES(1+state_length); + + /* Decompression failure occurs if bytes are copied from beyond the end of the state_value. */ + if((tsk_size_t)(state_begin + state_length) > tcomp_buffer_getSize(lpState->value)){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_STATE_TOO_SHORT].desc); + tcomp_udvm_createNackInfo3(udvm, NACK_STATE_TOO_SHORT, partial_id); + return tsk_false; + } + + /* + * The state_address operand contains a UDVM memory address. The + * requested portion of the state_value is byte copied to this memory + * address using the rules of Section 8.4. + */ + if(tcomp_udvm_bytecopy_to(udvm, state_address, tcomp_buffer_getBufferAtPos(lpState->value, state_begin), state_length) != tsk_true){ + return tsk_false; + } + + /* + * Program execution then resumes at the memory address specified by + * state_instruction, unless this address is 0 in which case program + * execution resumes at the next instruction following the STATE-ACCESS + * instruction. + */ + if(state_instruction){ + if(!TCOMP_UDVM_EXEC_INST__JUMP(udvm, state_instruction)){ + return tsk_false; + } + } + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>STATE-CREATE (%state_length, %state_address, %state_instruction, %minimum_access_length, %state_retention_priority)</i><br><br> +/// Reference: RFC3320 Section 9.4.6<br> +/// This instruction requests the creation of a state item at the receiving endpoint.. + +/// @param [in,out] udvm If non-null, the udvm. +/// @param state_length Defines the length of the state to create. +/// @param state_address Defines the udvm address of the state to create. +/// @param state_instruction Defines the state instruction. +/// @param minimum_access_length Defines the minimun access length. +/// @param state_retention_priority Defines the state retenion priority. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__STATE_CREATE(tcomp_udvm_t *udvm, uint32_t state_length, uint32_t state_address, uint32_t state_instruction, uint32_t minimum_access_length, uint32_t state_retention_priority) +{ + CONSUME_CYCLES(1 + state_length); + + /* + * Create temporary state? + */ + if(!tcomp_udvm_createTempState(udvm, state_length, state_address, state_instruction, + minimum_access_length, state_retention_priority, 0)){ + return tsk_false; + } + + return tsk_true; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i>STATE-FREE(%partial_identifier_start, %partial_identifier_length)</i><br><br> +/// Reference: RFC3320 Section 9.4.7<br> +/// This instruction informs the receiving endpoint that the sender no longer wishes to use a particular state item.. + +/// @param [in,out] udvm If non-null, the udvm. +/// @param partial_identifier_start Defines the first byte address of partial start identifier. +/// @param partial_identifier_length Defines the partial identifier length. +/// +/// @retval True if succeed, otherwise return false . +//////////////////////////////////////////////////////////////////////////////////////////////////// +tsk_bool_t TCOMP_UDVM_EXEC_INST__STATE_FREE(tcomp_udvm_t *udvm, uint32_t partial_identifier_start, uint32_t partial_identifier_length) +{ + tcomp_tempstate_to_free_t *lpDesc; + + CONSUME_CYCLES(1); + + /* + * Decompression failure MUST occur if more than four state free + * requests are made before the END-MESSAGE instruction is encountered. + */ + if(tcomp_result_getTempStatesToFreeSize(udvm->lpResult) >=4){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_TOO_MANY_STATE_REQUESTS].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_TOO_MANY_STATE_REQUESTS); + return tsk_false; + } + + /* + * Decompression failure also occurs if partial_identifier_length does + * not lie between 6 and 20 inclusive. + */ + if(partial_identifier_length<6 || partial_identifier_length>20){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INVALID_STATE_ID_LENGTH].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_STATE_ID_LENGTH); + return tsk_false; + } + + lpDesc = tcomp_tempstate_to_free_create(); + lpDesc->partial_identifier_length = partial_identifier_length; + lpDesc->partial_identifier_start = partial_identifier_start; + tcomp_result_addTempStateToFree(udvm->lpResult, lpDesc); + + /*** Do not ByteCopy data, wait for END_MESSAGE --> see RFC 3320 subclause 9.4.9 **/ + + return tsk_true; +} + +/** +* @brief <i>OUTPUT (%output_start, %output_length)</i><br><br> +* Reference: RFC3320 Section 9.4.8<br> +* This instruction provides successfully decompressed data to the dispatcher. +* @param [in,out] udvm The udvm state machine entity. +* @param output_start defines the starting memory address of the byte string to be provided to the dispatcher +* @param output_length defines the length of the byte string to be provided to the dispatcher +* @retval 1 if succeed, otherwise returns 0 +*/ +tsk_bool_t TCOMP_UDVM_EXEC_INST__OUTPUT(tcomp_udvm_t *udvm, uint32_t output_start, uint32_t output_length) +{ + tsk_bool_t ok; + tsk_size_t *outputbuffer_size; + + CONSUME_CYCLES(1+output_length); + + outputbuffer_size = tcomp_buffer_getIndexBytes(udvm->lpResult->output_buffer); + if( (*outputbuffer_size + output_length) > 65536 ){ + /* + * Decompression failure occurs if the cumulative number of bytes + * provided to the dispatcher exceeds 65536 bytes. + */ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_OUTPUT_OVERFLOW].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_OUTPUT_OVERFLOW); + return tsk_false; + } + + // FIXME: do it once? + if((ok = tcomp_udvm_bytecopy_from(udvm, tcomp_buffer_getBufferAtPos(udvm->lpResult->output_buffer, *outputbuffer_size), output_start, output_length))){ + *outputbuffer_size += output_length; + } + +#if DEBUG || _DEBUG + //tcomp_buffer_nprint(udvm->lpResult->output_buffer, *outputbuffer_size); +#endif + return ok; +} + +//////////////////////////////////////////////////////////////////////////////////////////////////// +/// +/// +/// @brief <i> END-MESSAGE (%requested_feedback_location, %returned_parameters_location, %state_length, %state_address, %state_instruction, %minimum_access_length, %state_retention_priority)</i><br><br> +/// Reference: RFC3320 Section 9.4.9<br> +/// This instruction successfully terminates the UDVM and forwards the state creation and state free requests to the state +/// handler together with any supplied feedback data. +/// +/// @param [in,out] udvm Defines the requested feedback location. +/// @param requested_feedback_location The requested feedback location. +/// @param returned_parameters_location Defines the returned parameters location which contains remote party capabilities. +/// @param state_length Length of the state to create. +/// @param state_address UDVM memory address of the state to create. +/// @param state_instruction Defines the state instruction. +/// @param minimum_access_length Defines the state's minimum access length. +/// @param state_retention_priority Determines the order in which state will be deleted when the compartment exceeds its allocated state memory. +/// +/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false. +//////////////////////////////////////////////////////////////////////////////////////////////////// + +tsk_bool_t TCOMP_UDVM_EXEC_INST__END_MESSAGE(tcomp_udvm_t *udvm, uint32_t requested_feedback_location, uint32_t returned_parameters_location, uint32_t state_length, uint32_t state_address, uint32_t state_instruction, uint32_t minimum_access_length, uint32_t state_retention_priority) +{ + tsk_size_t udvm_size; + + CONSUME_CYCLES(1+state_length); + + udvm_size = TCOMP_UDVM_GET_SIZE(); + + /* + * Create temporary state provided by END_MESSAGE? + */ + if(!tcomp_udvm_createTempState(udvm, state_length, state_address, state_instruction, minimum_access_length, state_retention_priority, 1)){ + return tsk_false; + } + + /* + * Byte copy all waiting STATE-FREE/STATE-CREATE/END-MESSAGE states + */ + if(!tcomp_udvm_byteCopy_TempStates(udvm)){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INTERNAL_ERROR].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_INTERNAL_ERROR); + return tsk_false; + } + + /* + * Feedback has been requested? + */ + if(requested_feedback_location){ + uint8_t r_f_l; + if(requested_feedback_location >= udvm_size){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); + return tsk_false; + } + /* + 0 1 2 3 4 5 6 7 + +---+---+---+---+---+---+---+---+ + | reserved | Q | S | I | requested_feedback_location + +---+---+---+---+---+---+---+---+ + | | + : requested feedback item : if Q = 1 + | | + +---+---+---+---+---+---+---+---+ + */ + r_f_l = *TCOMP_UDVM_GET_BUFFER_AT(requested_feedback_location); + udvm->lpResult->req_feedback->I = (r_f_l & 0x01); + udvm->lpResult->req_feedback->S = (r_f_l & 0x02) ? 1 : 0; + udvm->lpResult->req_feedback->Q = (r_f_l & 0x04) ? 1 : 0; + + requested_feedback_location++; /* skip 1-byte header */ + if(udvm->lpResult->req_feedback->Q){ + /* we have a requested feedback item */ + uint8_t r_f_i = *TCOMP_UDVM_GET_BUFFER_AT(requested_feedback_location); + uint8_t length = 1; /* [1-128] */ + if(r_f_i & 0x80){ + /* case 2 */ + length += (r_f_i & 0x7f); /* seven last bits */ + } + + if(requested_feedback_location >= TCOMP_UDVM_GET_SIZE()){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); + return tsk_false; + } + /* copy from udvm */ + // FIXME: use realloc + tcomp_buffer_freeBuff(udvm->lpResult->req_feedback->item); + tcomp_buffer_allocBuff(udvm->lpResult->req_feedback->item, length); + if(!tcomp_udvm_bytecopy_from(udvm, tcomp_buffer_getBuffer(udvm->lpResult->req_feedback->item), requested_feedback_location, length)){ + return tsk_false; + } + } + } + + // + // SigComp parameters have been returned? + // + if(returned_parameters_location){ + uint8_t r_p_l, SigComp_version; + uint32_t index; + tcomp_buffer_handle_t *partial_id; + + /* + 0 1 2 3 4 5 6 7 + +---+---+---+---+---+---+---+---+ + | cpb | dms | sms | returned_parameters_location + +---+---+---+---+---+---+---+---+ + | SigComp_version | + +---+---+---+---+---+---+---+---+ + | length_of_partial_state_ID_1 | + +---+---+---+---+---+---+---+---+ + | | + : partial_state_identifier_1 : + | | + +---+---+---+---+---+---+---+---+ + : : + +---+---+---+---+---+---+---+---+ + | length_of_partial_state_ID_n | + +---+---+---+---+---+---+---+---+ + | | + : partial_state_identifier_n : + | | + +---+---+---+---+---+---+---+---+ + */ + + if(returned_parameters_location >= udvm_size){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); + return tsk_false; + } + + /* cpb+dms+sms */ + r_p_l = *TCOMP_UDVM_GET_BUFFER_AT(returned_parameters_location); + returned_parameters_location++; + if(r_p_l){ + tcomp_params_setCpbCode(udvm->lpResult->remote_parameters, ((r_p_l & 0xc0)>>6)); + tcomp_params_setDmsCode(udvm->lpResult->remote_parameters, ((r_p_l & 0x38)>>3)); + tcomp_params_setSmsCode(udvm->lpResult->remote_parameters, (r_p_l & 0x07)); + } + /* sigcomp version */ + SigComp_version = *TCOMP_UDVM_GET_BUFFER_AT(returned_parameters_location); + returned_parameters_location++; + if(SigComp_version){ + udvm->lpResult->remote_parameters->SigComp_version = SigComp_version; + } + /* state items */ + for(index = returned_parameters_location; index <(udvm_size-1); ){ + uint8_t length, *length_ptr = TCOMP_UDVM_GET_BUFFER_AT(index); + if(!length_ptr){ + return tsk_false; + } + length = *length_ptr; // 1-byte + if(length<6 || length>20){ + break; + } + index++; + if((index+length) >= (uint32_t)udvm_size){ + TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc); + tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); + return tsk_false; + } + partial_id = tcomp_buffer_create_null(); + tcomp_buffer_allocBuff(partial_id, length); + if(!tcomp_udvm_bytecopy_from(udvm, tcomp_buffer_getBuffer(partial_id), index, length)){ + return tsk_false; + } + if(!udvm->lpResult->remote_parameters->returnedStates){ + udvm->lpResult->remote_parameters->returnedStates = tsk_list_create(); + } + tsk_list_push_back_data(udvm->lpResult->remote_parameters->returnedStates, (void**)&partial_id); + index += length; + } + } + + return tsk_true; +} + |