summaryrefslogtreecommitdiffstats
path: root/tinySIGCOMP/src/tcomp_udvm.instructions.c
diff options
context:
space:
mode:
Diffstat (limited to 'tinySIGCOMP/src/tcomp_udvm.instructions.c')
-rw-r--r--tinySIGCOMP/src/tcomp_udvm.instructions.c2010
1 files changed, 2010 insertions, 0 deletions
diff --git a/tinySIGCOMP/src/tcomp_udvm.instructions.c b/tinySIGCOMP/src/tcomp_udvm.instructions.c
new file mode 100644
index 0000000..64b20b5
--- /dev/null
+++ b/tinySIGCOMP/src/tcomp_udvm.instructions.c
@@ -0,0 +1,2010 @@
+/*
+* Copyright (C) 2010-2011 Mamadou Diop.
+*
+* Contact: Mamadou Diop <diopmamadou(at)doubango[dot]org>
+*
+* This file is part of Open Source Doubango Framework.
+*
+* DOUBANGO is free software: you can redistribute it and/or modify
+* it under the terms of the GNU General Public License as published by
+* the Free Software Foundation, either version 3 of the License, or
+* (at your option) any later version.
+*
+* DOUBANGO is distributed in the hope that it will be useful,
+* but WITHOUT ANY WARRANTY; without even the implied warranty of
+* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+* GNU General Public License for more details.
+*
+* You should have received a copy of the GNU General Public License
+* along with DOUBANGO.
+*
+*/
+
+/**@file tcomp_udvm.instructions.c
+ * @brief SigComp UDVM machine (Instructions).
+ *
+ * @author Mamadou Diop <diopmamadou(at)yahoo.fr>
+ *
+
+ */
+#include "tcomp_udvm.h"
+
+#include "tsk_memory.h"
+#include "tsk_debug.h"
+#include "tsk_ppfcs16.h"
+
+#include <string.h> /* memcpy */
+#include <stdlib.h> /* qsort */
+#include <math.h> /* ceil, log ... */
+
+/*
+* IMPORTANT: MSBs are stored before LSBs in the UDVM memory --> BIG ENDIAN
+*/
+
+#define F_BIT_MSB_TO_LSB 0
+#define F_BIT_LSB_TO_MSB 1
+#define H_BIT_MSB_TO_LSB F_BIT_MSB_TO_LSB
+#define H_BIT_LSB_TO_MSB F_BIT_LSB_TO_MSB
+
+#define CEILLINGLOG2(x) ceil( (log((double)x)/log(2.0)) )
+
+/*
+* Consume cycles
+*/
+#define CONSUME_CYCLES(cycles) \
+ udvm->consumed_cycles += (uint64_t)(cycles); \
+ if( udvm->consumed_cycles > udvm->maximum_UDVM_cycles ) \
+ { \
+ TSK_DEBUG_ERROR("%s (%llu > %llu)", TCOMP_NACK_DESCRIPTIONS[NACK_CYCLES_EXHAUSTED].desc, udvm->consumed_cycles, udvm->maximum_UDVM_cycles); \
+ tcomp_udvm_createNackInfo2(udvm, NACK_CYCLES_EXHAUSTED); \
+ return tsk_false; \
+ }
+
+#define SET_2BYTES_VAL(position, value) \
+ if(((position) + 1) >= TCOMP_UDVM_GET_SIZE()) \
+ { \
+ TSK_DEBUG_ERROR("%s (%u > %u)", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc, ((position) + 1), TCOMP_UDVM_GET_SIZE()); \
+ tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); \
+ return tsk_false; \
+ }\
+ TCOMP_UDVM_SET_2BYTES_VAL(position, value);\
+
+#define GET_2BYTES_VAL(position, ret_val) \
+ if(((position) + 1) >= TCOMP_UDVM_GET_SIZE()) \
+ { \
+ TSK_DEBUG_ERROR("%s (%u > %u)", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc, ((position) + 1), TCOMP_UDVM_GET_SIZE()); \
+ tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT); \
+ return tsk_false; \
+ }\
+ ret_val = TCOMP_UDVM_GET_2BYTES_VAL((position));
+
+
+/**
+ This structure is used to keep index-value pairs after sorting.
+*/
+typedef struct IndexValuePair_s
+{
+ uint16_t index;
+ uint16_t value;
+}
+IndexValuePair_t;
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+/// @brief Predicate to sort integers in ascending order.
+///
+/// @param [in,out] a First integer.
+/// @param [in,out] b Second integer.
+///
+/// @retval Zero if @a a == @a b; negative if @a a < @a b and positive otherwise..
+////////////////////////////////////////////////////////////////////////////////////////////////////
+
+static int SortAscendingPredicate(const void *a, const void *b)
+{
+ const IndexValuePair_t *el1 = a;
+ const IndexValuePair_t *el2 = b;
+
+ /* If values are equal the original ordering of the integers must be preserved
+ * ==> We cannot use normal comparaison because the ANSI C implementation of qsort could swap values even if they are equal.
+ */
+ return (el2->value == el1->value) ? (el1->index - el2->index) : (el1->value - el2->value);
+}
+
+/**
+* Sort Descending predicate.
+*/
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+/// @brief Predicate to sort integers in descending order.
+/// @param [in,out] a First integer.
+/// @param [in,out] b Second integer.
+///
+/// @retval Zero if @a a == @a b; negative if @a a > @a b and positive otherwise.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+static int SortDescendingPredicate(const void *a, const void *b)
+{
+ const IndexValuePair_t *el1 = a;
+ const IndexValuePair_t *el2 = b;
+
+ /* If values are equal the original ordering of the integers must be preserved.
+ * ==> We cannot use normal comparaison because the ANSI C implementation of qsort could swap values even if they are equal.
+ */
+ return (el2->value == el1->value) ? (el1->index - el2->index) : (el2->value - el1->value);
+};
+
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief DECOMPRESSION-FAILURE
+/// Reference: RFC3320 Section 9.4.1
+/// This instruction triggers a manual decompression failure. This is useful if the UDVM bytecode discovers that it
+/// cannot successfully decompress the message (e.g., by using the CRC instruction).
+
+
+/// @param [in,out] udvm The udvm state machine entity.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__DECOMPRESSION_FAILURE(tcomp_udvm_t *udvm)
+{
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_USER_REQUESTED].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_USER_REQUESTED);
+ return tsk_false;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief AND ($operand_1, %operand_2)
+/// Reference: RFC3320 Section 9.1.1
+/// Formula: [operand_1 := operand_1 & operand_2].
+
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
+/// this operand is overwritten with the result.
+/// @param operand_2 The second operand.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+
+tsk_bool_t TCOMP_UDVM_EXEC_INST__AND(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
+{
+ uint16_t _2bytes;
+
+ CONSUME_CYCLES(1);
+
+ GET_2BYTES_VAL(operand_1, _2bytes);
+ SET_2BYTES_VAL( operand_1, (_2bytes & operand_2) );
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief OR ($operand_1, %operand_2)
+/// Reference: RFC3320 Section 9.1.1
+/// Formula: [operand_1 := operand_1 | operand_2].
+
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
+/// this operand is overwritten with the result.
+/// @param operand_2 The second operand.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+
+tsk_bool_t TCOMP_UDVM_EXEC_INST__OR(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
+{
+ uint16_t _2bytes;
+
+ CONSUME_CYCLES(1);
+
+ GET_2BYTES_VAL(operand_1, _2bytes);
+ SET_2BYTES_VAL( operand_1, (_2bytes | operand_2) );
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>NOT ($operand_1)</i><br><br>
+/// Reference: RFC3320 Section 9.1.1<br>
+/// Formula: [operand_1 := ~operand_1]. <br>
+
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
+/// this operand is overwritten with the result.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+
+tsk_bool_t TCOMP_UDVM_EXEC_INST__NOT(tcomp_udvm_t *udvm, uint32_t operand_1)
+{
+ uint16_t _2bytes;
+
+ CONSUME_CYCLES(1);
+
+ GET_2BYTES_VAL(operand_1, _2bytes);
+ SET_2BYTES_VAL( operand_1, ~( _2bytes ) );
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>LSHIFT ($operand_1, %operand_2)</i><br><br>
+/// Reference: RFC3320 Section 9.1.1<br>
+/// Formula: [LSHIFT (m, n) := m * 2^n (modulo 2^16)]. <br>
+
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
+/// this operand is overwritten with the result.
+/// @param operand_2 2-byte value encoded by the operand.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+
+tsk_bool_t TCOMP_UDVM_EXEC_INST__LSHIFT(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
+{
+ uint16_t _2bytes;
+
+ CONSUME_CYCLES(1);
+
+ // (m * 2^n) == (m<<n)
+ // (2^16) === 65536
+
+ GET_2BYTES_VAL(operand_1, _2bytes);
+ SET_2BYTES_VAL( operand_1, (_2bytes << operand_2) );
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>RSHIFT ($operand_1, %operand_2)</i><br><br>
+/// Reference: RFC3320 Section 9.1.1<br>
+/// Formula: [RSHIFT (m, n) := floor(m / 2^n)]. <br>
+
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
+// this operand is overwritten with the result.
+/// @param operand_2 2-byte value encoded by the operand.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+
+tsk_bool_t TCOMP_UDVM_EXEC_INST__RSHIFT(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
+{
+ uint16_t _2bytes;
+
+ CONSUME_CYCLES(1);
+
+ // floor(m / 2^n) == (m>>n)
+ GET_2BYTES_VAL(operand_1, _2bytes);
+ SET_2BYTES_VAL(operand_1, (_2bytes >> operand_2) );
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>ADD ($operand_1, %operand_2)</i><br><br>
+/// Reference: RFC3320 Section 9.1.2<br>
+/// Formula: [ADD (m, n) := m + n (modulo 2^16)]<br>
+///
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
+/// this operand is overwritten with the result.
+/// @param operand_2 2-byte value encoded by the operand.
+///
+/// @retval True if succeed, otherwise return false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__ADD(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
+{
+ uint16_t _2bytes;
+
+ CONSUME_CYCLES(1);
+
+ GET_2BYTES_VAL(operand_1, _2bytes);
+ SET_2BYTES_VAL(operand_1, (_2bytes + operand_2) );
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>SUBTRACT ($operand_1, %operand_2)</i><br><br>
+/// Reference: RFC3320 Section 9.1.2<br>
+/// Formula: [SUBTRACT (m, n) := m - n (modulo 2^16)]<br>
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
+/// this operand is overwritten with the result.
+/// @param operand_2 2-byte value encoded by the operand.
+///
+/// @retval 1 if succeed, otherwise returns 0.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__SUBTRACT(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
+{
+ uint16_t _2bytes;
+
+ CONSUME_CYCLES(1);
+
+ GET_2BYTES_VAL(operand_1, _2bytes);
+ SET_2BYTES_VAL(operand_1, (_2bytes - operand_2) );
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>MULTIPLY ($operand_1, %operand_2)</i><br><br>
+/// Reference: RFC3320 Section 9.1.2<br>
+/// Formula: [MULTIPLY (m, n) := m * n (modulo 2^16)]<br>
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
+/// this operand is overwritten with the result.
+/// @param operand_2 2-byte value encoded by the operand.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__MULTIPLY(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
+{
+ uint16_t _2bytes;
+
+ CONSUME_CYCLES(1);
+
+ GET_2BYTES_VAL(operand_1, _2bytes);
+ SET_2BYTES_VAL(operand_1, (_2bytes * operand_2) );
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>DIVIDE ($operand_1, %operand_2)</i><br><br>
+/// Reference: RFC3320 Section 9.1.2<br>
+/// Formula: [DIVIDE (m, n) := floor(m / n)]<br>
+///
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
+/// this operand is overwritten with the result.
+/// @param operand_2 2-byte value encoded by the operand. Decompression failure occurs if this operand is zero.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__DIVIDE(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
+{
+ uint16_t _2bytes;
+
+ CONSUME_CYCLES(1);
+
+ if(!operand_2){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_DIV_BY_ZERO].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_DIV_BY_ZERO);
+ return tsk_false;
+ }
+
+ GET_2BYTES_VAL(operand_1, _2bytes);
+ SET_2BYTES_VAL(operand_1, (_2bytes / operand_2) );
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>REMAINDER ($operand_1, %operand_2)</i><br><br>
+/// Reference: RFC3320 Section 9.1.2<br>
+/// Formula: [REMAINDER (m, n) := m - n * floor(m / n)]<br>
+///
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param operand_1 2-byte value encoded by the operand. After the operation is complete, the 2-byte word at the memory address specified by
+/// this operand is overwritten with the result.
+/// @param operand_2 2-byte value encoded by the operand. Decompression failure occurs if this operand is zero.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__REMAINDER(tcomp_udvm_t *udvm, uint32_t operand_1, uint32_t operand_2)
+{
+ uint16_t _2bytes;
+ CONSUME_CYCLES(1);
+
+ if(!operand_2){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_DIV_BY_ZERO].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_DIV_BY_ZERO);
+ return tsk_false;
+ }
+
+ GET_2BYTES_VAL(operand_1, _2bytes);
+ SET_2BYTES_VAL(operand_1, (_2bytes % operand_2) );
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>SORT-ASCENDING (%start, %n, %k)</i><br><br>
+/// Reference: RFC3320 Section 9.1.3<br>
+///
+/// This instruction sort lists of 2-byte words in ascending order.
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param start The starting memory address of the block of data to be sorted.
+/// @param n Number of lists.
+/// @param k Lists length (2-byte words).
+///
+/// @retval True if succeed, otherwise return false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__SORT_ASCENDING(tcomp_udvm_t *udvm, uint32_t start, uint32_t n, uint32_t k)
+{
+ tsk_bool_t segfault = tsk_false;
+ uint16_t* list_temp = tsk_null;
+ IndexValuePair_t *list1_values = tsk_null;
+ uint32_t list_index, list_el;
+ uint32_t j, pos;
+
+ CONSUME_CYCLES(( 1 + k *(CEILLINGLOG2(k) + n) )); /* 1 + k * (ceiling(log2(k)) + n) */
+
+ if(TCOMP_UDVM_GET_SIZE() <= (tsk_size_t)(start+(n*k*2)) ){
+ segfault = tsk_true;
+ goto __SEGFAULT;
+ };
+
+ //
+ // Create FirstList with key-value pairs
+ //
+ list1_values = (IndexValuePair_t*)tsk_calloc(k, sizeof(IndexValuePair_t));
+ if(!list1_values) { segfault = tsk_true; goto __SEGFAULT; };
+ for(j=0, pos=0; pos<k; j+=2,pos++){
+ list1_values[pos].index = pos;
+ GET_2BYTES_VAL((start+j), list1_values[pos].value);
+ }
+
+ /*
+ * Sort Fisrt List Values
+ */
+ qsort(list1_values, k, sizeof(IndexValuePair_t), SortAscendingPredicate);
+
+ /* Sort all lists */
+ list_temp = tsk_calloc(k, sizeof(uint32_t));
+ if(!list1_values) { segfault = tsk_true; goto __SEGFAULT; };
+ for(list_index = 0; list_index < n; list_index++){
+ uint16_t* list_start = (uint16_t*)TCOMP_UDVM_GET_BUFFER_AT( start + (list_index*k*2) );
+ memcpy(list_temp, list_start, k*2);
+ for(list_el=0; list_el<k; list_el++){
+ list_start[(list_el)] = list_temp[ list1_values[list_el].index ];
+ }
+ }
+
+__SEGFAULT:
+ TSK_FREE(list_temp);
+ TSK_FREE(list1_values);
+
+ if(segfault)
+ {
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
+ return tsk_false;
+ }
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>SORT-DESCENDING (%start, %n, %k)</i><br><br>
+/// Reference: RFC3320 Section 9.1.3<br>
+///
+/// This instruction sort lists of 2-byte words in descending order.
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param start The starting memory address of the block of data to be sorted.
+/// @param n Number of lists.
+/// @param k Lists length (2-byte words).
+///
+/// @retval True if succeed, otherwise return false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__SORT_DESCENDING(tcomp_udvm_t *udvm, uint32_t start, uint32_t n, uint32_t k)
+{
+ tsk_bool_t segfault = tsk_false;
+ uint16_t* list_temp = tsk_null;
+ IndexValuePair_t *list1_values = tsk_null;
+ uint32_t list_index, list_el;
+ uint32_t j, pos;
+
+ CONSUME_CYCLES(( 1 + k *(CEILLINGLOG2(k) + n) )); // 1 + k * (ceiling(log2(k)) + n)
+
+ if(TCOMP_UDVM_GET_SIZE() <= (tsk_size_t)(start+(n*k*2)) ){ segfault = tsk_true; goto __SEGFAULT; };
+
+ //
+ // Create FirstList with key-value pairs.
+ //
+ list1_values = (IndexValuePair_t*)tsk_calloc(k, sizeof(IndexValuePair_t));
+ if(!list1_values) { segfault = tsk_true; goto __SEGFAULT; };
+ for(j=0, pos=0; pos<k; j+=2,pos++){
+ list1_values[pos].index = pos;
+ GET_2BYTES_VAL((start+j), list1_values[pos].value);
+ }
+
+ // Sort Fisrt List Values.
+ qsort(list1_values, k, sizeof(IndexValuePair_t), SortDescendingPredicate);
+
+
+ // Sort all lists
+ list_temp = tsk_calloc(k, sizeof(uint16_t));
+ if(!list1_values) { segfault = tsk_true; goto __SEGFAULT; };
+ for(list_index = 0; list_index < n; list_index++){
+ uint16_t* list_start = (uint16_t*)TCOMP_UDVM_GET_BUFFER_AT(start + (list_index*k*2));
+ memcpy(list_temp, list_start, k*2);
+ for(list_el=0; list_el<k; list_el++){
+ list_start[(list_el)] = list_temp[ list1_values[list_el].index ];
+ }
+ }
+
+__SEGFAULT:
+ TSK_FREE(list_temp);
+ TSK_FREE(list1_values);
+
+ if(segfault){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
+ return tsk_false;
+ }
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>SHA-1 (%position, %length, %destination)</i><br><br>
+/// Reference: RFC3320 Section 9.1.4<br>
+/// This instruction calculates a 20-byte SHA-1 hash [RFC-3174] over the specified area of UDVM memory.
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param position The starting memory address.
+/// @param length The length of the byte string over which the SHA-1 hash is calculated.
+/// @param destination The starting address to which the resulting 20-byte hash will be copied.
+///
+/// @retval True if succeed, otherwise return false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__SHA_1(tcomp_udvm_t *udvm, uint32_t position, uint32_t length, uint32_t destination)
+{
+ tsk_bool_t ok = tsk_false;
+ tsk_sha1context_t sha;
+ int32_t err;
+ uint8_t Message_Digest[TSK_SHA1_DIGEST_SIZE];
+
+ // only check length
+ // (destination + length) could be > sizeof(udvm_memory) as copying is done byte by byte and could wrap
+ if(!length){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
+ goto bail;
+ }
+
+ CONSUME_CYCLES(1 + length);
+
+ // The SHA-1 instruction calculates a 20-byte SHA-1 hash [RFC-3174] over the specified area of UDVM memory
+ if(udvm->tmp_buff.size < length){
+ if(!(udvm->tmp_buff.ptr = tsk_realloc(udvm->tmp_buff.ptr, length))){
+ udvm->tmp_buff.size = 0;
+ goto bail;
+ }
+ udvm->tmp_buff.size = length;
+ }
+
+ if(!(ok = tcomp_udvm_bytecopy_from(udvm, udvm->tmp_buff.ptr, position, length))){
+ goto bail;
+ }
+
+ // Compute SHA-1
+ if(!(ok = ((err = tsk_sha1reset(&sha)) == 0))){
+ TSK_DEBUG_ERROR("%s: %d", TCOMP_NACK_DESCRIPTIONS[NACK_INTERNAL_ERROR].desc, err);
+ tcomp_udvm_createNackInfo2(udvm, NACK_INTERNAL_ERROR);
+ goto bail;
+ }
+ if(!(ok = ((err = tsk_sha1input(&sha, udvm->tmp_buff.ptr, length)) == 0))){
+ TSK_DEBUG_ERROR("%s : %d", TCOMP_NACK_DESCRIPTIONS[NACK_INTERNAL_ERROR].desc, err);
+ tcomp_udvm_createNackInfo2(udvm, NACK_INTERNAL_ERROR);
+ goto bail;
+ }
+ if(!(ok = ((err = tsk_sha1result(&sha, (uint8_t*)Message_Digest)) == 0))){
+ TSK_DEBUG_ERROR("%s : %d", TCOMP_NACK_DESCRIPTIONS[NACK_INTERNAL_ERROR].desc, ok);
+ tcomp_udvm_createNackInfo2(udvm, NACK_INTERNAL_ERROR);
+ goto bail;
+ }
+
+ //Copy sha1 result to udvm memory
+ ok &= tcomp_udvm_bytecopy_to(udvm, destination, Message_Digest, TSK_SHA1_DIGEST_SIZE);
+
+bail:
+ return ok;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>LOAD(%address, %value)</i><br><br>
+/// Reference: RFC3320 Section 9.2.1<br>
+/// This instruction sets a 2-byte word to a certain specified value
+/// As usual, MSBs are stored before LSBs in the UDVM memory.
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param address Specifies the starting address of a 2-byte word.
+/// @param value Specifies the value to be loaded into this word.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__LOAD(tcomp_udvm_t *udvm, uint32_t address, uint32_t value)
+{
+ CONSUME_CYCLES(1);
+
+ if( address >= TCOMP_UDVM_GET_SIZE() ){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
+ return tsk_false;
+ }
+
+ SET_2BYTES_VAL(address, value);
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>MULTILOAD(%address, \#n, %value_0, ..., %value_n-1)</i><br><br>
+/// Reference: RFC3320 Section 9.2.2<br>
+/// This instruction sets a contiguous block of 2-byte words in the UDVM memory to specified values.
+/// value_0 through to value_n-1 specify the values to load into these words (in the same order as
+/// they appear in the instruction).
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param address Starting address of the contiguous 2-byte words.
+/// @param n Number of 2-bytes values to load.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__MULTILOAD(tcomp_udvm_t *udvm, uint32_t address, uint32_t n)
+{
+ uint32_t index, _address;
+ uint32_t overlap_start = udvm->last_memory_address_of_instruction;
+ #define overlap_end udvm->executionPointer
+ uint32_t write_start = address;
+ uint32_t write_end = (address + (n << 1));
+
+ CONSUME_CYCLES(1 + n);
+
+#define CHECK_MULTILOAD_OVERWRITTEN(__start, __address, __end) \
+ if(( (__start) <= (__address) && (__address) <= (__end) ) || ( (__start) <= ((__address) + 1) && ((__address) + 1) <= (__end) )){ \
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_MULTILOAD_OVERWRITTEN].desc); \
+ tcomp_udvm_createNackInfo2(udvm, NACK_MULTILOAD_OVERWRITTEN); \
+ return tsk_false; \
+ }
+
+ // tcomp_udvm_opget_multitype_param() will move the execPtr => make the test before the for loop
+ CHECK_MULTILOAD_OVERWRITTEN(overlap_start, address, overlap_end);
+ CHECK_MULTILOAD_OVERWRITTEN(write_start, udvm->executionPointer, write_end);
+
+ for(index = 0, _address = address; index < n; index++ , _address += 2){
+ uint32_t value_n = tcomp_udvm_opget_multitype_param(udvm);
+ CHECK_MULTILOAD_OVERWRITTEN(overlap_start, _address, overlap_end);
+ CHECK_MULTILOAD_OVERWRITTEN(write_start, udvm->executionPointer, write_end);
+ SET_2BYTES_VAL(_address, value_n);
+ }
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>PUSH (%value)</i><br><br>
+/// Reference: RFC3320 Section 9.2.3<br>
+/// This instruction pushes the value specified by its operand on the stack..
+///
+
+/// @date 11/27/2009
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param value 2-byte word to push.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__PUSH(tcomp_udvm_t *udvm, int16_t value)
+{
+ tsk_bool_t callback = (value>=0);
+ uint32_t stack_location, stack_fill;
+ if(!callback){
+ value = tcomp_udvm_opget_multitype_param(udvm);
+ }
+
+ CONSUME_CYCLES(callback ? 0 : 1);
+
+
+
+ GET_2BYTES_VAL(TCOMP_UDVM_HEADER_STACK_LOCATION_INDEX, stack_location);
+ GET_2BYTES_VAL(stack_location, stack_fill);
+
+ /*
+ * copying the value to stack[stack_fill]
+ * stack[n] = stack_location+2*n+2
+ */
+ SET_2BYTES_VAL((stack_location+(2*stack_fill)+2), value);
+
+ /* increasing stack_fill by 1*/
+ SET_2BYTES_VAL(stack_location, (stack_fill+1));
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>POP (%address)</i><br><br>
+/// Reference: RFC3320 Section 9.2.3<br>
+/// This instruction pops a value from the stack and then copies the value to the specified memory address..
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param [in,out] value 2-byte word to pop from the stack.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__POP(tcomp_udvm_t *udvm, uint32_t* value)
+{
+ uint32_t address;
+ uint32_t stack_location, stack_fill, _value = 0;
+
+ tsk_bool_t callback = (value != 0);
+
+ CONSUME_CYCLES(callback?0:1);
+
+ address = callback ? 0 : tcomp_udvm_opget_multitype_param(udvm);
+
+ GET_2BYTES_VAL(TCOMP_UDVM_HEADER_STACK_LOCATION_INDEX, stack_location);
+ GET_2BYTES_VAL(stack_location, stack_fill);
+
+ /*
+ * Decompression failure occurs if stack_fill is
+ * zero at the commencement of a popping operation. POP and RETURN pop
+ * values from the stack.
+ */
+ if(stack_fill == 0){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
+ _value = 0;
+ goto end;
+ }
+
+ /*
+ * "Popping" a value from the stack is an abbreviation for decreasing
+ * stack_fill by 1, and then using the value stored in stack[stack_fill].
+ */
+ --stack_fill;
+ SET_2BYTES_VAL(stack_location, stack_fill);
+ /* stack[n] = stack_location+2*n+2 */
+ GET_2BYTES_VAL((stack_location + (2*stack_fill) + 2), _value);
+
+end:
+ if(callback){
+ *value = _value;
+ }
+ else{
+ SET_2BYTES_VAL(address, _value);
+ }
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>COPY(%position, %length, %destination)</i><br><br>
+/// Reference: RFC3320 Section 9.2.4<br>
+/// This instruction is used to copy a string of bytes from one part of the UDVM memory to another.
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param position Specifies the memory address of the first byte in the string to be copied.
+/// @param length Specifies the number of bytes to be copied.
+/// @param destination Gives the address to which the first byte in the string will be copied.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__COPY(tcomp_udvm_t *udvm, uint32_t position, uint32_t length, uint32_t destination)
+{
+ tsk_bool_t ok = tsk_true;
+
+ CONSUME_CYCLES(1+length);
+
+ if( (position + length) > (int32_t)TCOMP_UDVM_GET_SIZE() || (destination + length) > (int32_t)TCOMP_UDVM_GET_SIZE() ){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
+ return tsk_false;
+ }
+
+ /*
+ * The COPY instruction is used to copy a string of bytes from one part
+ * of the UDVM memory to another.
+ */
+ ok &= tcomp_udvm_bytecopy_self(udvm, &destination, position, length);
+
+ return ok;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>COPY-LITERAL(%position, %length, $destination)</i><br><br>
+/// Reference: RFC3320 Section 9.2.5<br>
+/// The COPY-LITERAL instruction behaves as a COPY instruction except
+/// that after copying is completed, the value of the destination operand
+/// is replaced by the address to which the next byte of data would be copied..
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param position Specifies the memory address of the first byte in the string to be copied.
+/// @param length Specifies the number of bytes to be copied.
+/// @param destination Gives the address to which the first byte in the string will be copied.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__COPY_LITERAL(tcomp_udvm_t *udvm, uint32_t position, uint32_t length, uint32_t destination)
+{
+ tsk_bool_t ok;
+ uint32_t destination_index;
+
+ CONSUME_CYCLES(1+length);
+
+ GET_2BYTES_VAL(destination, destination_index);
+ ok = tcomp_udvm_bytecopy_self(udvm, &destination_index, position, length);
+ if(ok){
+ /* set next byte */
+ SET_2BYTES_VAL(destination, destination_index);
+ }
+
+ return ok;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>COPY-OFFSET(%offset, %length, $destination)</i><br><br>
+/// Reference: RFC3320 Section 9.2.6<br>
+/// This instruction behaves as a COPY-LITERAL instruction
+/// except that an offset operand is given instead of a position operand..
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param offset The offset value.
+/// @param length Specifies the number of bytes to be copied.
+/// @param destination Gives the address to which the first byte in the string will be copied.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__COPY_OFFSET(tcomp_udvm_t *udvm, uint32_t offset, uint32_t length, uint32_t destination)
+{
+ uint32_t DEST, LEFT, RIGTH;
+ int32_t position = -1;
+ uint32_t destination_index;
+
+ int32_t D, T;
+ int32_t O;
+
+ CONSUME_CYCLES(1+length);
+
+ GET_2BYTES_VAL(destination, DEST);
+ GET_2BYTES_VAL(TCOMP_UDVM_HEADER_BYTE_COPY_LEFT_INDEX, LEFT);
+ GET_2BYTES_VAL(TCOMP_UDVM_HEADER_BYTE_COPY_RIGHT_INDEX, RIGTH);
+
+ /*
+ DEST: ses
+ D: distance between LEFT and DEST
+ O: offset
+ T: total size between LEFT and RIGTH
+
+ [*****
+ case 1:
+ -----LEFT--------DEST------------RIGTH----
+ <-----D---->
+ <--O->
+ <---------------T------------>
+ ****]
+ [*****
+ case 2:
+ -----LEFT--------DEST------------RIGTH----
+ <-----D---->
+ <--------O-------->
+ <---------------T------------>
+ ****]
+ [*****
+ case 3:
+ -------DEST-----LEFT-------------RIGTH----
+ ****]
+ */
+ D = (DEST - LEFT);
+ T = (RIGTH - LEFT);
+ O = offset;
+
+ if( D>=0 && O<=D ){
+ /* case 1: easy case */
+ position = (DEST-O);
+ }
+ else if( D>=0 && O>D ){
+ /* case 2: */
+ double PAD = (D + ((ceil(((double)O-(double)D)/(double)T))*T))-O;
+ position = LEFT+(int32_t)PAD;
+ }
+ else if( D<0 ){
+ /* case 3: */
+ position = DEST-O;
+ }
+
+ /* Check position */
+ if(position<0){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
+ return tsk_false;
+ }
+
+ /* EXEC_INST__COPY_LITERAL */
+ GET_2BYTES_VAL(destination, destination_index);
+ if(tcomp_udvm_bytecopy_self(udvm, &destination_index, position, length) == tsk_true){
+ SET_2BYTES_VAL(destination, destination_index);
+ }
+ else{
+ return tsk_false;
+ }
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>MEMSET(%address, %length, %start_value, %offset)</i><br><br>
+/// Reference: RFC3320 Section 9.2.7<br>
+/// Formula: Seq[n] := (start_value + n * offset) modulo 256<br>
+/// This instruction initializes an area of UDVM memory to a specified sequence of values.
+///
+
+/// @date 11/27/2009
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param address The destination address.
+/// @param length The number of 1-byte values to set.
+/// @param start_value The starting value.
+/// @param offset The offset used for computation.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__MEMSET(tcomp_udvm_t *udvm, uint32_t address, uint32_t length, uint32_t start_value, uint32_t offset)
+{
+ uint8_t* seqs_temp;
+ uint32_t n;
+ tsk_bool_t ok;
+
+ CONSUME_CYCLES(1+length);
+
+ /*
+ * The values Seq[0] to Seq[length - 1] inclusive are each interpreted
+ * as a single byte, and then concatenated to form a byte string where
+ * the first byte has value Seq[0], the second byte has value Seq[1] and
+ * so on up to the last byte which has value Seq[length - 1].
+ */
+ seqs_temp = tsk_calloc(length, sizeof(uint8_t));
+ if(!seqs_temp){
+ return tsk_false;
+ }
+
+ for(n=0; n < length; n++){
+ seqs_temp[n] = (start_value + n * offset)%256;
+ }
+ /*
+ * The string is then byte copied into the UDVM memory beginning at the
+ * memory address specified as an operand to the MEMSET instruction,
+ * obeying the rules of Section 8.4.
+ */
+ ok = tcomp_udvm_bytecopy_to(udvm, address, seqs_temp, length);
+
+ TSK_FREE(seqs_temp);
+
+ return ok;
+}
+
+/**
+* @brief <i>JUMP (\@address)</i><br><br>
+* Reference: RFC3320 Section 9.3.1<br>
+* This instruction moves program execution to the specified memory address.
+* Decompression failure occurs if the value of the address operand lies
+* beyond the overall UDVM memory size.
+* @param [in,out] udvm The udvm state machine entity.
+* @param address defines the address to jump to
+* @retval 1 if succeed, otherwise returns 0
+*/
+tsk_bool_t TCOMP_UDVM_EXEC_INST__JUMP(tcomp_udvm_t *udvm, int16_t address)
+{
+ int callback = (address >=0 );
+ CONSUME_CYCLES(callback?0:1);
+
+ if(!callback){
+ address = tcomp_udvm_opget_address_param(udvm, udvm->last_memory_address_of_instruction);
+ }
+
+ if(address > (int32_t)TCOMP_UDVM_GET_SIZE()){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
+ return tsk_false;
+ }
+ udvm->executionPointer = address;
+
+ return tsk_true;
+}
+
+
+/**
+ *
+ * @brief <i>COMPARE(%value_1, %value_2, \@address_1, \@address_2, \@address_3)</i><br><br>
+ * Reference: RFC3320 Section 9.3.2<br>
+ *
+ * This instruction compares two operands and then jumps to one of three specified
+ * memory addresses depending on the result.<br>
+ * if(value_1 < value_2) --> address_1<br>
+ * elif(value_1 = value_2) --> address_2<br>
+ * elif(value_1 > value_2) --> address_3. <br>
+ *
+ *
+ * @param [in,out] udvm The udvm state machine entity.
+ * @param value_1 The first value to compare.
+ * @param value_2 The second value to compare.
+ * @param address_1 The address to jump to if (value_1 < value_2).
+ * @param address_2 The address to jump to if (value_1 = value_2).
+ * @param address_3 address to jump to if (value_1 > value_2).
+ * @retval 1 if succeed, otherwise returns 0.
+**/
+tsk_bool_t TCOMP_UDVM_EXEC_INST__COMPARE(tcomp_udvm_t *udvm, uint32_t value_1, uint32_t value_2, uint32_t address_1, uint32_t address_2, uint32_t address_3)
+{
+ tsk_bool_t ok = 1;
+
+ CONSUME_CYCLES(1);
+
+ if(value_1 < value_2){
+ ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address_1);
+ goto end;
+ }
+
+ if(value_1 == value_2){
+ ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address_2);
+ goto end;
+ }
+
+ if(value_1 > value_2){
+ ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address_3);
+ goto end;
+ }
+
+end:
+ return ok;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>CALL(\@address)</i><br><br>
+/// Reference: RFC3320 Section 9.3.3<br>
+/// This instruction finds the memory address of the instruction immediately following
+/// the CALL instruction and pushes this 2-byte value on the stack, ready for later retrieval.
+/// It then continues instruction execution at the memory address specified by the address operand..
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param address The next address.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__CALL(tcomp_udvm_t *udvm, uint32_t address)
+{
+ CONSUME_CYCLES(1);
+
+ return TCOMP_UDVM_EXEC_INST__PUSH(udvm, udvm->executionPointer)
+ && TCOMP_UDVM_EXEC_INST__JUMP(udvm, address);
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>RETURN</i><br><br>
+/// Reference: RFC3320 Section 9.3.3<br>
+/// This instruction pops a value from the stack and then continues instruction
+/// execution at the memory address just popped..
+///
+/// @param [in,out] udvm The udvm state machine entity.
+///
+/// @retval True if succeed, otherwise return false .
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__RETURN(tcomp_udvm_t *udvm)
+{
+ uint32_t value = 0;
+ tsk_bool_t ok = tsk_true;
+
+ CONSUME_CYCLES(1);
+
+ if( (ok = TCOMP_UDVM_EXEC_INST__POP(udvm, &value)) ){
+ ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, value);
+ }
+
+ return ok;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>SWITCH(\#n, %j, \@address_0, \@address_1, ... , \@address_n-1)</i><br><br>
+/// Reference: RFC3320 Section 9.3.4<br>
+/// This instruction performs a conditional jump based on the value of one of its operands.
+/// Decompression failure occurs if j specifies a value of n or more, or
+/// if the address lies beyond the overall UDVM memory size..
+
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param n The number of possibilities.
+/// @param j The possibility.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__SWITCH(tcomp_udvm_t *udvm, uint32_t n, uint32_t j)
+{
+ uint32_t next = 0;
+ tsk_bool_t ok = tsk_true;
+
+ CONSUME_CYCLES(1+n);
+
+ /* Decompression failure occurs if j specifies a value of n or more. */
+ if(j >= n){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SWITCH_VALUE_TOO_HIGH].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_SWITCH_VALUE_TOO_HIGH);
+ ok = tsk_false;
+ goto end;
+ }
+
+ do{
+ next = tcomp_udvm_opget_address_param(udvm, udvm->last_memory_address_of_instruction);
+ }
+ while(j--);
+
+end:
+ if(ok){
+ ok = TCOMP_UDVM_EXEC_INST__JUMP(udvm, next);
+ }
+
+ return ok;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>CRC(%value, %position, %length, \@address)</i><br><br>
+/// Reference: RFC3320 Section 9.3.5<br>
+/// This instruction verifies a string of bytes using a 2-byte CRC.
+/// The CRC value is computed exactly as defined for the 16-bit FCS calculation in [RFC-1662]..
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param value Contains the expected integer value of the 2-byte CRC.
+/// @param position Defines the position of the string of bytes over which the CRC is evaluated.
+/// @param length Defines the length of the string of bytes over which the CRC is evaluated.
+/// @param address The address to jump to if the calculated CRC value do not match.
+///
+/// @retval True if succeed, otherwise return false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__CRC(tcomp_udvm_t *udvm, uint32_t value, uint32_t position, uint32_t length, uint32_t address)
+{
+ uint32_t crc_value;
+
+ CONSUME_CYCLES(1 + length);
+
+ if(udvm->tmp_buff.size < length){
+ if(!(udvm->tmp_buff.ptr = tsk_realloc(udvm->tmp_buff.ptr, length))){
+ udvm->tmp_buff.size = 0;
+ tcomp_udvm_createNackInfo2(udvm, NACK_INTERNAL_ERROR);
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INTERNAL_ERROR].desc);
+ return tsk_false;
+ }
+ udvm->tmp_buff.size = length;
+ }
+
+ /* copy data */
+ if(!tcomp_udvm_bytecopy_from(udvm, udvm->tmp_buff.ptr, position, length)){
+ return tsk_false;
+ }
+
+ /*
+ * The CRC value is computed exactly as defined for the 16-bit FCS
+ * calculation in [RFC-1662]
+ */
+ crc_value = tsk_pppfcs16(TSK_PPPINITFCS16, udvm->tmp_buff.ptr, length);
+
+ /*
+ * If the calculated CRC matches the expected value then the UDVM
+ * continues instruction execution at the following instruction.
+ * Otherwise the UDVM jumps to the memory address specified by the
+ * address operand.
+ */
+ if(value != crc_value){
+ TCOMP_UDVM_EXEC_INST__JUMP(udvm, address);
+ }
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>INPUT-BYTES (%length, %destination, \@address)</i><br><br>
+/// Reference: RFC3320 Section 9.4.2<br>
+/// This instruction requests a certain number of bytes of compressed data from the decompressor dispatcher.
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param length Indicates the requested number of bytes of compressed data.
+/// @param destination Specifies the starting memory address to which they should be copied.
+/// @param address Defines the address to jump to if the instruction requests data that lies beyond the end of the SigComp message.
+///
+/// @retval True if succeed, otherwise return false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__INPUT_BYTES(tcomp_udvm_t *udvm, uint32_t length, uint32_t destination, uint32_t address)
+{
+ tsk_bool_t ok = tsk_true;
+ const uint8_t* compressedDataAddress;
+ uint8_t* destinationAddress;
+
+ CONSUME_CYCLES(1+length);
+
+ /*
+ * If the INPUT-BYTES is encountered after an INPUT-BITS or an INPUT-
+ * HUFFMAN instruction has been used, and the dispatcher currently holds
+ * a fraction of a byte, then the fraction MUST be discarded before any
+ * data is passed to the UDVM. The first byte to be passed is the byte
+ * immediately following the discarded data.
+ */
+ tcomp_buffer_discardBits(udvm->sigCompMessage->remaining_sigcomp_buffer);
+
+ compressedDataAddress = tcomp_buffer_readBytes(udvm->sigCompMessage->remaining_sigcomp_buffer, length);
+ destinationAddress = TCOMP_UDVM_GET_BUFFER_AT(destination);
+ if(compressedDataAddress){
+ ok &= tcomp_udvm_bytecopy_to(udvm, destination, compressedDataAddress, length);
+ if(ok){
+ /* FIXME: (8 * n + 1000) * cycles_per_bit */
+ udvm->maximum_UDVM_cycles += ((8 * length /*+ 1000*/) * udvm->stateHandler->sigcomp_parameters->cpbValue);
+ }
+ }
+ else{
+ /*
+ * If the instruction requests data that lies beyond the end of the
+ * SigComp message, no data is returned. Instead the UDVM moves program
+ * execution to the address specified by the address operand.
+ */
+ ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address);
+ }
+
+ return ok;
+}
+
+/**
+ *
+ * @brief <i>INPUT-BITS (%length, %destination, \@address)</i><br><br>
+ * Reference: RFC3320 Section 9.4.3<br>
+ * The INPUT-BITS instruction requests a certain number of bits of
+ * compressed data from the decompressor dispatcher.
+ *
+ *
+ * @param [in,out] udvm The udvm state machine entity.
+ * @param length The length operand indicates the requested number of bits.
+ Decompression failure occurs if this operand does not lie between 0
+ and 16 inclusive.
+ * @param destination The destination operand specifies the memory address to which the
+ compressed data should be copied. Note that the requested bits are
+ interpreted as a 2-byte integer ranging from 0 to 2^length - 1, as
+ explained in Section 8.2.
+
+ * @param address The address of the destination.
+ *
+ * @retval 1 if succeed, otherwise returns 0.
+**/
+tsk_bool_t TCOMP_UDVM_EXEC_INST__INPUT_BITS(tcomp_udvm_t *udvm, uint32_t length, uint32_t destination, uint32_t address)
+{
+ tsk_bool_t ok = tsk_true;
+ uint32_t input_bit_order, reserved;
+ uint8_t F_BIT, P_BIT;
+ uint8_t* old_P_BIT;
+
+ /*
+ The input_bit_order register contains the following three flags:
+ 0 7 8 15
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | reserved |F|H|P| 68 - 69
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ */
+
+ CONSUME_CYCLES(1);
+
+ GET_2BYTES_VAL(TCOMP_UDVM_HEADER_INPUT_BIT_ORDER_INDEX, input_bit_order);
+ reserved = (input_bit_order & 0xf8);
+ /*
+ * Decompression failure occurs if an INPUT-BITS or an INPUT-HUFFMAN
+ * instruction is encountered and the input_bit_order register does not
+ * lie between 0 and 7 inclusive.
+ */
+ if(reserved){
+ /* MUST BE ZEROS --> Only 3bits --> [0-7] */
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_BAD_INPUT_BITORDER].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_BAD_INPUT_BITORDER);
+ return tsk_false;
+ }
+
+ /* F and P BITS */
+ F_BIT = (input_bit_order & 0x0004) ? 1 : 0;
+ P_BIT = (input_bit_order & 0x0001);
+
+ /*
+ * Decompression failure occurs if this operand (length) does not lie between 0
+ * and 16 inclusive.
+ */
+ if(/*length<0 ||*/ length>16){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INVALID_OPERAND].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_OPERAND);
+ return tsk_false;
+ }
+
+ /*
+ * P:The P-bit controls the order in which bits are passed from the
+ * dispatcher to the INPUT instructions
+ * P=0 --> MSB_TO_LSB
+ * P=1 --> LSB_TO_MSB
+ */
+ old_P_BIT = tcomp_buffer_getP_BIT(udvm->sigCompMessage->remaining_sigcomp_buffer);
+ if(*old_P_BIT != P_BIT){
+ /*
+ * If the P-bit has changed since the last INPUT instruction, any fraction of a
+ * byte still held by the dispatcher MUST be discarded (even if the
+ * INPUT instruction requests zero bits)
+ */
+ tcomp_buffer_discardBits(udvm->sigCompMessage->remaining_sigcomp_buffer);
+ *old_P_BIT = P_BIT;
+ }
+
+ /*
+ * If the instruction requests data that lies beyond the end of the
+ * SigComp message, no data is returned. Instead the UDVM moves program
+ * execution to the address specified by the address operand.
+ */
+ if( (length) > tcomp_buffer_getRemainingBits(udvm->sigCompMessage->remaining_sigcomp_buffer) ){
+ ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address);
+ goto end;
+ }
+
+ /*
+ * If the F-bit is set to 0, the INPUT-BITS instruction interprets the
+ * received bits as arriving MSBs first, and if it is set to 1, it interprets the bits as arriving LSBs first.
+ * F=0 --> MSB_TO_LSB
+ * F=1 --> LSB_TO_MSB
+ */
+ if(P_BIT == TCOMP_P_BIT_MSB_TO_LSB){
+ /* MSB_TO_LSB */
+ uint32_t value = tcomp_buffer_readMsbToLsb(udvm->sigCompMessage->remaining_sigcomp_buffer, length);
+ if(F_BIT == F_BIT_LSB_TO_MSB){
+ value = (TSK_BINARY_REVERSE_2BYTE(value)>>(16-length));
+ }
+ SET_2BYTES_VAL(destination, value);
+ }
+ else{
+ /* LSB_TO_MSB */
+ uint32_t value = tcomp_buffer_readLsbToMsb(udvm->sigCompMessage->remaining_sigcomp_buffer, length);
+ if(F_BIT == F_BIT_LSB_TO_MSB) {
+ value = (TSK_BINARY_REVERSE_2BYTE(value)>>(16-length));
+ }
+ SET_2BYTES_VAL(destination, value);
+ }
+
+end:
+
+ udvm->maximum_UDVM_cycles += (length * udvm->stateHandler->sigcomp_parameters->cpbValue);
+ return ok;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>INPUT-HUFFMAN(%destination, \@address, \#n, %bits_1, %lower_bound_1, %upper_bound_1, %uncompressed_1, ... , %bits_n, %lower_bound_n, %upper_bound_n, %uncompressed_n)</i><br><br>
+/// Reference: RFC3320 Section 9.4.4<br>
+///
+/// This instruction requests a variable number of bits of compressed data from the decompressor dispatcher. The instruction
+/// initially requests a small number of bits and compares the result against a certain criterion; if the criterion is not met, then
+/// additional bits are requested until the criterion is achieved.
+///
+/// @param [in,out] udvm The udvm state machine entity.
+/// @param destination The udvm destination address.
+/// @param address Address to jump to if data is requested that lies beyond the end of the SigComp message.
+/// @param n Additional sets of operands count.
+///
+/// @retval True if succeed, otherwise return false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__INPUT_HUFFMAN(tcomp_udvm_t *udvm, uint32_t destination, uint32_t address, uint32_t n)
+{
+ /*
+ The input_bit_order register contains the following three flags:
+ 0 7 8 15
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ | reserved |F|H|P| 68 - 69
+ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
+ */
+ tsk_bool_t ok = tsk_true;
+ uint32_t input_bit_order, reserved;
+ uint8_t H_BIT, P_BIT, *old_P_BIT;
+
+ uint32_t bits_j, lower_bound_j, upper_bound_j, uncompressed_j;
+ uint32_t bits_total = 0, k = 0, H, J;
+ tsk_bool_t criterion_ok = tsk_false;
+
+ CONSUME_CYCLES(1+n);
+
+ /*Note that if n = 0 then the INPUT-HUFFMAN instruction is ignored and
+ program execution resumes at the following instruction.*/
+ if(n == 0){
+ //goto end;
+ return ok;
+ }
+
+ GET_2BYTES_VAL(TCOMP_UDVM_HEADER_INPUT_BIT_ORDER_INDEX, input_bit_order);
+ reserved = (input_bit_order & 0xf8);
+ /*
+ * Decompression failure occurs if an INPUT-BITS or an INPUT-HUFFMAN
+ * instruction is encountered and the input_bit_order register does not
+ * lie between 0 and 7 inclusive.
+ */
+ if(reserved){
+ /* MUST BE ZEROS --> Only 3bits --> [0-7] */
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_BAD_INPUT_BITORDER].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_BAD_INPUT_BITORDER);
+ return tsk_false;
+ }
+
+ /* H and P */
+ H_BIT = (input_bit_order & 0x0002)?1:0;
+ P_BIT = (input_bit_order & 0x0001);
+
+ /*
+ * P:The P-bit controls the order in which bits are passed from the
+ * dispatcher to the INPUT instructions
+ * P=0 --> MSB_TO_LSB
+ * P=1 --> LSB_TO_MSB
+ */
+ old_P_BIT = tcomp_buffer_getP_BIT(udvm->sigCompMessage->remaining_sigcomp_buffer);
+ if( *old_P_BIT != P_BIT ){
+ /*
+ * If the P-bit has changed since the last INPUT instruction, any fraction of a
+ * byte still held by the dispatcher MUST be discarded (even if the
+ * INPUT instruction requests zero bits)
+ */
+ tcomp_buffer_discardBits(udvm->sigCompMessage->remaining_sigcomp_buffer);
+ *old_P_BIT = P_BIT;
+ }
+
+ /*
+ * HUFFMAN COMPUTATION
+ */
+
+ /* 1. Set j := 1 and set H := 0. */
+ for(J = 1, H = 0; J<=n; J++){
+ /*
+ * Request bits_j compressed bits. Interpret the returned bits as an
+ * integer k from 0 to 2^bits_j - 1, as explained in Section 8.2.
+ */
+ bits_j = tcomp_udvm_opget_multitype_param(udvm);
+ lower_bound_j = tcomp_udvm_opget_multitype_param(udvm);
+ upper_bound_j = tcomp_udvm_opget_multitype_param(udvm);
+ uncompressed_j = tcomp_udvm_opget_multitype_param(udvm);
+ bits_total += bits_j;
+
+ /*Decompression failure occurs if (bits_1 + ... + bits_n) > 16.*/
+ if(bits_total > 16){
+ ok = tsk_false;
+ // FIXME: DECOMPRESSION failure TOO_MANY_BITS_REQUESTED
+ goto end;
+ }
+
+ if(criterion_ok){
+ continue;
+ }
+
+//==step_4:
+ /*
+ * 4.If data is requested that lies beyond the end of the SigComp
+ * message, terminate the INPUT-HUFFMAN instruction and move program
+ * execution to the memory address specified by the address operand.
+ */
+ if( (bits_j) > tcomp_buffer_getRemainingBits(udvm->sigCompMessage->remaining_sigcomp_buffer) ){
+ ok &= TCOMP_UDVM_EXEC_INST__JUMP(udvm, address);
+ goto end;
+ }
+
+//==step_2:
+ /*
+ * 2. Request bits_j compressed bits. Interpret the returned bits as an
+ * integer k from 0 to 2^bits_j - 1, as explained in Section 8.2.
+ */
+ if(P_BIT == TCOMP_P_BIT_MSB_TO_LSB){
+ k = tcomp_buffer_readMsbToLsb(udvm->sigCompMessage->remaining_sigcomp_buffer, bits_j);
+ if(H_BIT == H_BIT_LSB_TO_MSB) {
+ k = (TSK_BINARY_REVERSE_2BYTE(k)>>(16-bits_j));
+ }
+ }
+ else{
+ k = tcomp_buffer_readLsbToMsb(udvm->sigCompMessage->remaining_sigcomp_buffer, bits_j);
+ if(H_BIT == H_BIT_LSB_TO_MSB){
+ k = (TSK_BINARY_REVERSE_2BYTE(k)>>(16-bits_j));
+ }
+ }
+//==step_3:
+ /* 3. Set H := H * 2^bits_j + k */
+ H = H * (uint32_t)pow(2.0, bits_j) + k;
+
+//==step_5:
+ /*
+ * 5. If (H < lower_bound_j) or (H > upper_bound_j) then set j := j + 1.
+ * Then go back to Step 2, unless j > n in which case decompression
+ * failure occurs.
+ */
+ if( (H < lower_bound_j) || (H > upper_bound_j) ){
+ continue;
+ //goto step_2;
+ }
+ else{
+ /*
+ * Copy (H + uncompressed_j - lower_bound_j) modulo 2^16 to the
+ * memory address specified by the destination operand.
+ */
+ H = (H + uncompressed_j - lower_bound_j) % 65536;
+ criterion_ok = 1;
+ }
+ }
+
+ if(!criterion_ok){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_HUFFMAN_NO_MATCH].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_HUFFMAN_NO_MATCH);
+ ok = tsk_false;
+ goto end;
+ }
+ else if(ok){
+ SET_2BYTES_VAL(destination, H);
+ udvm->maximum_UDVM_cycles += (bits_total * udvm->stateHandler->sigcomp_parameters->cpbValue);
+ }
+end:
+ return ok;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>STATE-ACCESS(%partial_identifier_start, %partial_identifier_length, %state_begin, %state_length, %state_address, %state_instruction)</i><br><br>
+/// Reference: RFC3320 Section 9.4.5<br>
+/// This instruction retrieves some previously stored state information..
+
+/// @param [in,out] udvm If non-null, the udvm.
+/// @param partial_identifier_start Specifies the location of the partial state identifier used to retrieve the state information.
+/// @param partial_identifier_length Specifies the length of the partial state identifier used to retrieve the state information.
+/// @param state_begin Defines the starting byte to copy from the state_value contained in the returned item of state.
+/// @param state_length Defines the number of bytes to copy from the state_value contained in the returned item of state.
+/// @param state_address Contains a UDVM memory address.
+/// @param state_instruction Next instruction to jump to.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__STATE_ACCESS(tcomp_udvm_t *udvm, uint32_t partial_identifier_start, uint32_t partial_identifier_length, uint32_t state_begin, uint32_t state_length, uint32_t state_address, uint32_t state_instruction)
+{
+ tcomp_state_t* lpState = NULL;
+ tcomp_buffer_handle_t* partial_id;
+ uint32_t match_count;
+
+ /*
+ * Decompression failure occurs if partial_identifier_length does not
+ * lie between 6 and 20 inclusive.
+ */
+ if(partial_identifier_length<6 || partial_identifier_length>20){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INVALID_STATE_ID_LENGTH].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_STATE_ID_LENGTH);
+ return tsk_false;
+ }
+ /*
+ * decompression failure will always occur if the state_length operand
+ * is set to 0 but the state_begin operand is non-zero.
+ */
+ if(!state_length && state_begin){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INVALID_STATE_PROBE].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_STATE_PROBE);
+ return tsk_false;
+ }
+
+ /*
+ * Find matching state
+ */
+ partial_id = tcomp_buffer_create_null();
+ tcomp_buffer_referenceBuff(partial_id, TCOMP_UDVM_GET_BUFFER_AT(partial_identifier_start), partial_identifier_length);
+ match_count = tcomp_statehandler_findState(udvm->stateHandler, partial_id, &lpState);
+
+ /*
+ * Decompression failure occurs if no state item matching the partial state identifier can be found, if
+ * more than one state item matches the partial identifier.
+ */
+ if(!lpState || match_count != 1){
+ int32_t nack_code = (match_count > 1) ? NACK_ID_NOT_UNIQUE : NACK_STATE_NOT_FOUND;
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[nack_code].desc);
+ tcomp_udvm_createNackInfo3(udvm, nack_code, partial_id);
+ TSK_OBJECT_SAFE_FREE(partial_id);
+ return tsk_false;
+ }
+ else if(partial_identifier_length < lpState->minimum_access_length){
+ /*
+ * Decompression failure occurs if partial_identifier_length is less than the minimum_access_length of
+ * the matched state item.
+ */
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_STATE_NOT_FOUND].desc);
+ tcomp_udvm_createNackInfo3(udvm, NACK_STATE_NOT_FOUND, partial_id);
+ TSK_OBJECT_SAFE_FREE(partial_id);
+ return tsk_false;
+ }
+ TSK_OBJECT_SAFE_FREE(partial_id);
+
+ /*
+ * If any of the operands state_address, state_instruction or
+ * state_length is set to 0 then its value is taken from the returned
+ * item of state instead.
+ */
+ if(!state_address) {
+ state_address = lpState->address;
+ }
+ if(!state_instruction) {
+ state_instruction = lpState->instruction;
+ }
+ if(!state_length) {
+ state_length = lpState->length;
+ }
+
+ CONSUME_CYCLES(1+state_length);
+
+ /* Decompression failure occurs if bytes are copied from beyond the end of the state_value. */
+ if((tsk_size_t)(state_begin + state_length) > tcomp_buffer_getSize(lpState->value)){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_STATE_TOO_SHORT].desc);
+ tcomp_udvm_createNackInfo3(udvm, NACK_STATE_TOO_SHORT, partial_id);
+ return tsk_false;
+ }
+
+ /*
+ * The state_address operand contains a UDVM memory address. The
+ * requested portion of the state_value is byte copied to this memory
+ * address using the rules of Section 8.4.
+ */
+ if(tcomp_udvm_bytecopy_to(udvm, state_address, tcomp_buffer_getBufferAtPos(lpState->value, state_begin), state_length) != tsk_true){
+ return tsk_false;
+ }
+
+ /*
+ * Program execution then resumes at the memory address specified by
+ * state_instruction, unless this address is 0 in which case program
+ * execution resumes at the next instruction following the STATE-ACCESS
+ * instruction.
+ */
+ if(state_instruction){
+ if(!TCOMP_UDVM_EXEC_INST__JUMP(udvm, state_instruction)){
+ return tsk_false;
+ }
+ }
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>STATE-CREATE (%state_length, %state_address, %state_instruction, %minimum_access_length, %state_retention_priority)</i><br><br>
+/// Reference: RFC3320 Section 9.4.6<br>
+/// This instruction requests the creation of a state item at the receiving endpoint..
+
+/// @param [in,out] udvm If non-null, the udvm.
+/// @param state_length Defines the length of the state to create.
+/// @param state_address Defines the udvm address of the state to create.
+/// @param state_instruction Defines the state instruction.
+/// @param minimum_access_length Defines the minimun access length.
+/// @param state_retention_priority Defines the state retenion priority.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__STATE_CREATE(tcomp_udvm_t *udvm, uint32_t state_length, uint32_t state_address, uint32_t state_instruction, uint32_t minimum_access_length, uint32_t state_retention_priority)
+{
+ CONSUME_CYCLES(1 + state_length);
+
+ /*
+ * Create temporary state?
+ */
+ if(!tcomp_udvm_createTempState(udvm, state_length, state_address, state_instruction,
+ minimum_access_length, state_retention_priority, 0)){
+ return tsk_false;
+ }
+
+ return tsk_true;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i>STATE-FREE(%partial_identifier_start, %partial_identifier_length)</i><br><br>
+/// Reference: RFC3320 Section 9.4.7<br>
+/// This instruction informs the receiving endpoint that the sender no longer wishes to use a particular state item..
+
+/// @param [in,out] udvm If non-null, the udvm.
+/// @param partial_identifier_start Defines the first byte address of partial start identifier.
+/// @param partial_identifier_length Defines the partial identifier length.
+///
+/// @retval True if succeed, otherwise return false .
+////////////////////////////////////////////////////////////////////////////////////////////////////
+tsk_bool_t TCOMP_UDVM_EXEC_INST__STATE_FREE(tcomp_udvm_t *udvm, uint32_t partial_identifier_start, uint32_t partial_identifier_length)
+{
+ tcomp_tempstate_to_free_t *lpDesc;
+
+ CONSUME_CYCLES(1);
+
+ /*
+ * Decompression failure MUST occur if more than four state free
+ * requests are made before the END-MESSAGE instruction is encountered.
+ */
+ if(tcomp_result_getTempStatesToFreeSize(udvm->lpResult) >=4){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_TOO_MANY_STATE_REQUESTS].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_TOO_MANY_STATE_REQUESTS);
+ return tsk_false;
+ }
+
+ /*
+ * Decompression failure also occurs if partial_identifier_length does
+ * not lie between 6 and 20 inclusive.
+ */
+ if(partial_identifier_length<6 || partial_identifier_length>20){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INVALID_STATE_ID_LENGTH].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_INVALID_STATE_ID_LENGTH);
+ return tsk_false;
+ }
+
+ lpDesc = tcomp_tempstate_to_free_create();
+ lpDesc->partial_identifier_length = partial_identifier_length;
+ lpDesc->partial_identifier_start = partial_identifier_start;
+ tcomp_result_addTempStateToFree(udvm->lpResult, lpDesc);
+
+ /*** Do not ByteCopy data, wait for END_MESSAGE --> see RFC 3320 subclause 9.4.9 **/
+
+ return tsk_true;
+}
+
+/**
+* @brief <i>OUTPUT (%output_start, %output_length)</i><br><br>
+* Reference: RFC3320 Section 9.4.8<br>
+* This instruction provides successfully decompressed data to the dispatcher.
+* @param [in,out] udvm The udvm state machine entity.
+* @param output_start defines the starting memory address of the byte string to be provided to the dispatcher
+* @param output_length defines the length of the byte string to be provided to the dispatcher
+* @retval 1 if succeed, otherwise returns 0
+*/
+tsk_bool_t TCOMP_UDVM_EXEC_INST__OUTPUT(tcomp_udvm_t *udvm, uint32_t output_start, uint32_t output_length)
+{
+ tsk_bool_t ok;
+ tsk_size_t *outputbuffer_size;
+
+ CONSUME_CYCLES(1+output_length);
+
+ outputbuffer_size = tcomp_buffer_getIndexBytes(udvm->lpResult->output_buffer);
+ if( (*outputbuffer_size + output_length) > 65536 ){
+ /*
+ * Decompression failure occurs if the cumulative number of bytes
+ * provided to the dispatcher exceeds 65536 bytes.
+ */
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_OUTPUT_OVERFLOW].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_OUTPUT_OVERFLOW);
+ return tsk_false;
+ }
+
+ // FIXME: do it once?
+ if((ok = tcomp_udvm_bytecopy_from(udvm, tcomp_buffer_getBufferAtPos(udvm->lpResult->output_buffer, *outputbuffer_size), output_start, output_length))){
+ *outputbuffer_size += output_length;
+ }
+
+#if DEBUG || _DEBUG
+ //tcomp_buffer_nprint(udvm->lpResult->output_buffer, *outputbuffer_size);
+#endif
+ return ok;
+}
+
+////////////////////////////////////////////////////////////////////////////////////////////////////
+///
+///
+/// @brief <i> END-MESSAGE (%requested_feedback_location, %returned_parameters_location, %state_length, %state_address, %state_instruction, %minimum_access_length, %state_retention_priority)</i><br><br>
+/// Reference: RFC3320 Section 9.4.9<br>
+/// This instruction successfully terminates the UDVM and forwards the state creation and state free requests to the state
+/// handler together with any supplied feedback data.
+///
+/// @param [in,out] udvm Defines the requested feedback location.
+/// @param requested_feedback_location The requested feedback location.
+/// @param returned_parameters_location Defines the returned parameters location which contains remote party capabilities.
+/// @param state_length Length of the state to create.
+/// @param state_address UDVM memory address of the state to create.
+/// @param state_instruction Defines the state instruction.
+/// @param minimum_access_length Defines the state's minimum access length.
+/// @param state_retention_priority Determines the order in which state will be deleted when the compartment exceeds its allocated state memory.
+///
+/// @retval @a tsk_true if succeed, otherwise returns @a tsk_false.
+////////////////////////////////////////////////////////////////////////////////////////////////////
+
+tsk_bool_t TCOMP_UDVM_EXEC_INST__END_MESSAGE(tcomp_udvm_t *udvm, uint32_t requested_feedback_location, uint32_t returned_parameters_location, uint32_t state_length, uint32_t state_address, uint32_t state_instruction, uint32_t minimum_access_length, uint32_t state_retention_priority)
+{
+ tsk_size_t udvm_size;
+
+ CONSUME_CYCLES(1+state_length);
+
+ udvm_size = TCOMP_UDVM_GET_SIZE();
+
+ /*
+ * Create temporary state provided by END_MESSAGE?
+ */
+ if(!tcomp_udvm_createTempState(udvm, state_length, state_address, state_instruction, minimum_access_length, state_retention_priority, 1)){
+ return tsk_false;
+ }
+
+ /*
+ * Byte copy all waiting STATE-FREE/STATE-CREATE/END-MESSAGE states
+ */
+ if(!tcomp_udvm_byteCopy_TempStates(udvm)){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_INTERNAL_ERROR].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_INTERNAL_ERROR);
+ return tsk_false;
+ }
+
+ /*
+ * Feedback has been requested?
+ */
+ if(requested_feedback_location){
+ uint8_t r_f_l;
+ if(requested_feedback_location >= udvm_size){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
+ return tsk_false;
+ }
+ /*
+ 0 1 2 3 4 5 6 7
+ +---+---+---+---+---+---+---+---+
+ | reserved | Q | S | I | requested_feedback_location
+ +---+---+---+---+---+---+---+---+
+ | |
+ : requested feedback item : if Q = 1
+ | |
+ +---+---+---+---+---+---+---+---+
+ */
+ r_f_l = *TCOMP_UDVM_GET_BUFFER_AT(requested_feedback_location);
+ udvm->lpResult->req_feedback->I = (r_f_l & 0x01);
+ udvm->lpResult->req_feedback->S = (r_f_l & 0x02) ? 1 : 0;
+ udvm->lpResult->req_feedback->Q = (r_f_l & 0x04) ? 1 : 0;
+
+ requested_feedback_location++; /* skip 1-byte header */
+ if(udvm->lpResult->req_feedback->Q){
+ /* we have a requested feedback item */
+ uint8_t r_f_i = *TCOMP_UDVM_GET_BUFFER_AT(requested_feedback_location);
+ uint8_t length = 1; /* [1-128] */
+ if(r_f_i & 0x80){
+ /* case 2 */
+ length += (r_f_i & 0x7f); /* seven last bits */
+ }
+
+ if(requested_feedback_location >= TCOMP_UDVM_GET_SIZE()){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
+ return tsk_false;
+ }
+ /* copy from udvm */
+ // FIXME: use realloc
+ tcomp_buffer_freeBuff(udvm->lpResult->req_feedback->item);
+ tcomp_buffer_allocBuff(udvm->lpResult->req_feedback->item, length);
+ if(!tcomp_udvm_bytecopy_from(udvm, tcomp_buffer_getBuffer(udvm->lpResult->req_feedback->item), requested_feedback_location, length)){
+ return tsk_false;
+ }
+ }
+ }
+
+ //
+ // SigComp parameters have been returned?
+ //
+ if(returned_parameters_location){
+ uint8_t r_p_l, SigComp_version;
+ uint32_t index;
+ tcomp_buffer_handle_t *partial_id;
+
+ /*
+ 0 1 2 3 4 5 6 7
+ +---+---+---+---+---+---+---+---+
+ | cpb | dms | sms | returned_parameters_location
+ +---+---+---+---+---+---+---+---+
+ | SigComp_version |
+ +---+---+---+---+---+---+---+---+
+ | length_of_partial_state_ID_1 |
+ +---+---+---+---+---+---+---+---+
+ | |
+ : partial_state_identifier_1 :
+ | |
+ +---+---+---+---+---+---+---+---+
+ : :
+ +---+---+---+---+---+---+---+---+
+ | length_of_partial_state_ID_n |
+ +---+---+---+---+---+---+---+---+
+ | |
+ : partial_state_identifier_n :
+ | |
+ +---+---+---+---+---+---+---+---+
+ */
+
+ if(returned_parameters_location >= udvm_size){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
+ return tsk_false;
+ }
+
+ /* cpb+dms+sms */
+ r_p_l = *TCOMP_UDVM_GET_BUFFER_AT(returned_parameters_location);
+ returned_parameters_location++;
+ if(r_p_l){
+ tcomp_params_setCpbCode(udvm->lpResult->remote_parameters, ((r_p_l & 0xc0)>>6));
+ tcomp_params_setDmsCode(udvm->lpResult->remote_parameters, ((r_p_l & 0x38)>>3));
+ tcomp_params_setSmsCode(udvm->lpResult->remote_parameters, (r_p_l & 0x07));
+ }
+ /* sigcomp version */
+ SigComp_version = *TCOMP_UDVM_GET_BUFFER_AT(returned_parameters_location);
+ returned_parameters_location++;
+ if(SigComp_version){
+ udvm->lpResult->remote_parameters->SigComp_version = SigComp_version;
+ }
+ /* state items */
+ for(index = returned_parameters_location; index <(udvm_size-1); ){
+ uint8_t length, *length_ptr = TCOMP_UDVM_GET_BUFFER_AT(index);
+ if(!length_ptr){
+ return tsk_false;
+ }
+ length = *length_ptr; // 1-byte
+ if(length<6 || length>20){
+ break;
+ }
+ index++;
+ if((index+length) >= (uint32_t)udvm_size){
+ TSK_DEBUG_ERROR("%s", TCOMP_NACK_DESCRIPTIONS[NACK_SEGFAULT].desc);
+ tcomp_udvm_createNackInfo2(udvm, NACK_SEGFAULT);
+ return tsk_false;
+ }
+ partial_id = tcomp_buffer_create_null();
+ tcomp_buffer_allocBuff(partial_id, length);
+ if(!tcomp_udvm_bytecopy_from(udvm, tcomp_buffer_getBuffer(partial_id), index, length)){
+ return tsk_false;
+ }
+ if(!udvm->lpResult->remote_parameters->returnedStates){
+ udvm->lpResult->remote_parameters->returnedStates = tsk_list_create();
+ }
+ tsk_list_push_back_data(udvm->lpResult->remote_parameters->returnedStates, (void**)&partial_id);
+ index += length;
+ }
+ }
+
+ return tsk_true;
+}
+
OpenPOWER on IntegriCloud