summaryrefslogtreecommitdiffstats
path: root/documentation
diff options
context:
space:
mode:
authorScott Rifenbark <scott.m.rifenbark@intel.com>2012-12-27 15:35:33 -0600
committerRichard Purdie <richard.purdie@linuxfoundation.org>2013-01-16 15:59:12 +0000
commit3abb7da974d04733d52a7556a99477677f248b53 (patch)
tree5653a719701d63a565496767235126ad30f954cf /documentation
parent5b2ed2a5fa4ab37124457d9a749a889a78fc3470 (diff)
downloadast2050-yocto-poky-3abb7da974d04733d52a7556a99477677f248b53.zip
ast2050-yocto-poky-3abb7da974d04733d52a7556a99477677f248b53.tar.gz
kernel-dev: Added a new file named "kernel-dev-faq.xml".
(From yocto-docs rev: 00d6239d615e83fa0457ab82678c9501d0ea4e98) Signed-off-by: Scott Rifenbark <scott.m.rifenbark@intel.com> Signed-off-by: Richard Purdie <richard.purdie@linuxfoundation.org>
Diffstat (limited to 'documentation')
-rw-r--r--documentation/kernel-dev/kernel-dev-faq.xml1386
1 files changed, 537 insertions, 849 deletions
diff --git a/documentation/kernel-dev/kernel-dev-faq.xml b/documentation/kernel-dev/kernel-dev-faq.xml
index 9d9aef6..176573d 100644
--- a/documentation/kernel-dev/kernel-dev-faq.xml
+++ b/documentation/kernel-dev/kernel-dev-faq.xml
@@ -2,916 +2,604 @@
"http://www.oasis-open.org/docbook/xml/4.2/docbookx.dtd"
[<!ENTITY % poky SYSTEM "../poky.ent"> %poky; ] >
-<chapter id='kernel-how-to'>
-
-<title>Working with the Yocto Project Kernel</title>
-
-
-<section id='actions-org'>
- <title>Introduction</title>
- <para>
- This chapter describes how to accomplish tasks involving a kernel's tree structure.
- The information is designed to help the developer that wants to modify the Yocto
- Project kernel and contribute changes upstream to the Yocto Project.
- The information covers the following:
- <itemizedlist>
- <listitem><para>Tree construction</para></listitem>
- <listitem><para>Build strategies</para></listitem>
- <listitem><para>Workflow examples</para></listitem>
- </itemizedlist>
- </para>
-</section>
-
- <section id='tree-construction'>
- <title>Tree Construction</title>
- <para>
- This section describes construction of the Yocto Project kernel source repositories
- as accomplished by the Yocto Project team to create kernel repositories.
- These kernel repositories are found under the heading "Yocto Linux Kernel" at
- <ulink url='&YOCTO_GIT_URL;/cgit.cgi'>&YOCTO_GIT_URL;/cgit.cgi</ulink>
- and can be shipped as part of a Yocto Project release.
- The team creates these repositories by
- compiling and executing the set of feature descriptions for every BSP/feature
- in the product.
- Those feature descriptions list all necessary patches,
- configuration, branching, tagging and feature divisions found in a kernel.
- Thus, the Yocto Project kernel repository (or tree) is built.
- </para>
- <para>
- The existence of this tree allows you to access and clone a particular
- Yocto Project kernel repository and use it to build images based on their configurations
- and features.
- </para>
- <para>
- You can find the files used to describe all the valid features and BSPs
- in the Yocto Project kernel in any clone of the Yocto Project kernel source repository
- Git tree.
- For example, the following command clones the Yocto Project baseline kernel that
- branched off of <filename>linux.org</filename> version 3.4:
- <literallayout class='monospaced'>
- $ git clone git://git.yoctoproject.org/linux-yocto-3.4
- </literallayout>
- For another example of how to set up a local Git repository of the Yocto Project
- kernel files, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#local-kernel-files'>Yocto Project Kernel</ulink>" bulleted
- item in the Yocto Project Development Manual.
- </para>
- <para>
- Once you have cloned the kernel Git repository on your local machine, you can
- switch to the <filename>meta</filename> branch within the repository.
- Here is an example that assumes the local Git repository for the kernel is in
- a top-level directory named <filename>linux-yocto-3.4</filename>:
- <literallayout class='monospaced'>
- $ cd ~/linux-yocto-3.4
- $ git checkout -b meta origin/meta
- </literallayout>
- Once you have checked out and switched to the <filename>meta</filename> branch,
- you can see a snapshot of all the kernel configuration and feature descriptions that are
- used to build that particular kernel repository.
- These descriptions are in the form of <filename>.scc</filename> files.
- </para>
- <para>
- You should realize, however, that browsing your local kernel repository
- for feature descriptions and patches is not an effective way to determine what is in a
- particular kernel branch.
- Instead, you should use Git directly to discover the changes in a branch.
- Using Git is an efficient and flexible way to inspect changes to the kernel.
- For examples showing how to use Git to inspect kernel commits, see the following sections
- in this chapter.
- <note>
- Ground up reconstruction of the complete kernel tree is an action only taken by the
- Yocto Project team during an active development cycle.
- When you create a clone of the kernel Git repository, you are simply making it
- efficiently available for building and development.
- </note>
- </para>
- <para>
- The following steps describe what happens when the Yocto Project Team constructs
- the Yocto Project kernel source Git repository (or tree) found at
- <ulink url='&YOCTO_GIT_URL;/cgit.cgi'></ulink> given the
- introduction of a new top-level kernel feature or BSP.
- These are the actions that effectively create the tree
- that includes the new feature, patch or BSP:
- <orderedlist>
- <listitem><para>A top-level kernel feature is passed to the kernel build subsystem.
- Normally, this feature is a BSP for a particular kernel type.</para></listitem>
- <listitem><para>The file that describes the top-level feature is located by searching
- these system directories:
- <itemizedlist>
- <listitem><para>The in-tree kernel-cache directories, which are located
- in <filename>meta/cfg/kernel-cache</filename></para></listitem>
- <listitem><para>Areas pointed to by <filename>SRC_URI</filename> statements
- found in recipes</para></listitem>
- </itemizedlist>
- For a typical build, the target of the search is a
- feature description in an <filename>.scc</filename> file
- whose name follows this format:
- <literallayout class='monospaced'>
- &lt;bsp_name&gt;-&lt;kernel_type&gt;.scc
- </literallayout>
- </para></listitem>
- <listitem><para>Once located, the feature description is either compiled into a simple script
- of actions, or into an existing equivalent script that is already part of the
- shipped kernel.</para></listitem>
- <listitem><para>Extra features are appended to the top-level feature description.
- These features can come from the
- <ulink url='&YOCTO_DOCS_REF_URL;#var-KERNEL_FEATURES'><filename>KERNEL_FEATURES</filename></ulink>
- variable in recipes.</para></listitem>
- <listitem><para>Each extra feature is located, compiled and appended to the script
- as described in step three.</para></listitem>
- <listitem><para>The script is executed to produce a series of <filename>meta-*</filename>
- directories.
- These directories are descriptions of all the branches, tags, patches and configurations that
- need to be applied to the base Git repository to completely create the
- source (build) branch for the new BSP or feature.</para></listitem>
- <listitem><para>The base repository is cloned, and the actions
- listed in the <filename>meta-*</filename> directories are applied to the
- tree.</para></listitem>
- <listitem><para>The Git repository is left with the desired branch checked out and any
- required branching, patching and tagging has been performed.</para></listitem>
- </orderedlist>
- </para>
- <para>
- The kernel tree is now ready for developer consumption to be locally cloned,
- configured, and built into a Yocto Project kernel specific to some target hardware.
- <note><para>The generated <filename>meta-*</filename> directories add to the kernel
- as shipped with the Yocto Project release.
- Any add-ons and configuration data are applied to the end of an existing branch.
- The full repository generation that is found in the
- official Yocto Project kernel repositories at
- <ulink url='&YOCTO_GIT_URL;/cgit.cgi'>http://git.yoctoproject.org/cgit.cgi</ulink>
- is the combination of all supported boards and configurations.</para>
- <para>The technique the Yocto Project team uses is flexible and allows for seamless
- blending of an immutable history with additional patches specific to a
- deployment.
- Any additions to the kernel become an integrated part of the branches.</para>
- </note>
- </para>
- </section>
-
- <section id='build-strategy'>
- <title>Build Strategy</title>
- <para>
- Once a local Git repository of the Yocto Project kernel exists on a development system,
- you can consider the compilation phase of kernel development - building a kernel image.
- Some prerequisites exist that are validated by the build process before compilation
- starts:
- </para>
-
- <itemizedlist>
- <listitem><para>The
- <ulink url='&YOCTO_DOCS_REF_URL;#var-SRC_URI'><filename>SRC_URI</filename></ulink> points
- to the kernel Git repository.</para></listitem>
- <listitem><para>A BSP build branch exists.
- This branch has the following form:
- <literallayout class='monospaced'>
- &lt;kernel_type&gt;/&lt;bsp_name&gt;
- </literallayout></para></listitem>
- </itemizedlist>
-
- <para>
- The OpenEmbedded build system makes sure these conditions exist before attempting compilation.
- Other means, however, do exist, such as as bootstrapping a BSP, see
- the "<link linkend='workflow-examples'>Workflow Examples</link>".
- </para>
-
- <para>
- Before building a kernel, the build process verifies the tree
- and configures the kernel by processing all of the
- configuration "fragments" specified by feature descriptions in the <filename>.scc</filename>
- files.
- As the features are compiled, associated kernel configuration fragments are noted
- and recorded in the <filename>meta-*</filename> series of directories in their compilation order.
- The fragments are migrated, pre-processed and passed to the Linux Kernel
- Configuration subsystem (<filename>lkc</filename>) as raw input in the form
- of a <filename>.config</filename> file.
- The <filename>lkc</filename> uses its own internal dependency constraints to do the final
- processing of that information and generates the final <filename>.config</filename> file
- that is used during compilation.
- </para>
-
- <para>
- Using the board's architecture and other relevant values from the board's template,
- kernel compilation is started and a kernel image is produced.
- </para>
-
- <para>
- The other thing that you notice once you configure a kernel is that
- the build process generates a build tree that is separate from your kernel's local Git
- source repository tree.
- This build tree has a name that uses the following form, where
- <filename>${MACHINE}</filename> is the metadata name of the machine (BSP) and "kernel_type" is one
- of the Yocto Project supported kernel types (e.g. "standard"):
- <literallayout class='monospaced'>
- linux-${MACHINE}-&lt;kernel_type&gt;-build
- </literallayout>
- </para>
-
- <para>
- The existing support in the <filename>kernel.org</filename> tree achieves this
- default functionality.
- </para>
-
- <para>
- This behavior means that all the generated files for a particular machine or BSP are now in
- the build tree directory.
- The files include the final <filename>.config</filename> file, all the <filename>.o</filename>
- files, the <filename>.a</filename> files, and so forth.
- Since each machine or BSP has its own separate build directory in its own separate branch
- of the Git repository, you can easily switch between different builds.
- </para>
- </section>
-
- <section id='workflow-examples'>
- <title>Workflow Examples</title>
-
- <para>
- As previously noted, the Yocto Project kernel has built-in Git integration.
- However, these utilities are not the only way to work with the kernel repository.
- The Yocto Project has not made changes to Git or to other tools that
- would invalidate alternate workflows.
- Additionally, the way the kernel repository is constructed results in using
- only core Git functionality, thus allowing any number of tools or front ends to use the
- resulting tree.
- </para>
-
- <para>
- This section contains several workflow examples.
- Many of the examples use Git commands.
- You can find Git documentation at
- <ulink url='http://git-scm.com/documentation'></ulink>.
- You can find a simple overview of using Git with the Yocto Project in the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#git'>Git</ulink>"
- section of the Yocto Project Development Manual.
- </para>
-
- <section id='change-inspection-kernel-changes-commits'>
- <title>Change Inspection: Changes/Commits</title>
-
+<chapter id='faq'>
+<title>FAQ</title>
+<qandaset>
+ <qandaentry>
+ <question>
<para>
- A common question when working with a kernel is:
- "What changes have been applied to this tree?"
+ How does Poky differ from <ulink url='&OE_HOME_URL;'>OpenEmbedded</ulink>?
</para>
-
+ </question>
+ <answer>
<para>
- In projects that have a collection of directories that
- contain patches to the kernel, it is possible to inspect or "grep" the contents
- of the directories to get a general feel for the changes.
- This sort of patch inspection is not an efficient way to determine what has been
- done to the kernel.
- The reason it is inefficient is because there are many optional patches that are
- selected based on the kernel type and the feature description.
- Additionally, patches could exist in directories that are not included in the search.
+ The term "Poky" refers to the specific reference build system that
+ the Yocto Project provides.
+ Poky is based on <ulink url='&YOCTO_DOCS_DEV_URL;#oe-core'>OE-Core</ulink>
+ and BitBake.
+ Thus, the generic term used here for the build system is
+ the "OpenEmbedded build system."
+ Development in the Yocto Project using Poky is closely tied to OpenEmbedded, with
+ changes always being merged to OE-Core or BitBake first before being pulled back
+ into Poky.
+ This practice benefits both projects immediately.
+ For a fuller description of the term "Poky", see the
+ <ulink url='&YOCTO_DOCS_DEV_URL;#poky'>poky</ulink> term in the Yocto Project
+ Development Manual.
</para>
+ </answer>
+ </qandaentry>
+ <qandaentry>
+ <question>
<para>
- A more efficient way to determine what has changed in the branch is to use
- Git and inspect or search the kernel tree.
- This method gives you a full view of not only the source code modifications,
- but also provides the reasons for the changes.
+ I only have Python 2.4 or 2.5 but BitBake requires Python 2.6 or 2.7.
+ Can I still use the Yocto Project?
</para>
-
- <section id='what-changed-in-a-kernel'>
- <title>What Changed in a Kernel?</title>
-
- <para>
- Following are a few examples that show how to use Git commands to examine changes.
- Because Git repositories in the Yocto Project do not break existing Git
- functionality, and because there exists many permutations of these types of
- Git commands, many methods exist by which you can discover changes.
- <note>
- In the following examples, unless you provide a commit range,
- <filename>kernel.org</filename> history is blended with Yocto Project
- kernel changes.
- You can form ranges by using branch names from the kernel tree as the
- upper and lower commit markers with the Git commands.
- You can see the branch names through the web interface to the
- Yocto Project source repositories at
- <ulink url='http://git.yoctoproject.org/cgit.cgi'></ulink>.
- For example, the branch names for the <filename>linux-yocto-3.4</filename>
- kernel repository can be seen at
- <ulink url='http://git.yoctoproject.org/cgit.cgi/linux-yocto-3.4/refs/heads'></ulink>.
- </note>
- To see a full range of the changes, use the
- <filename>git whatchanged</filename> command and specify a commit range
- for the branch (<filename>&lt;commit&gt;..&lt;commit&gt;</filename>).
- </para>
-
- <para>
- Here is an example that looks at what has changed in the
- <filename>emenlow</filename> branch of the
- <filename>linux-yocto-3.4</filename> kernel.
- The lower commit range is the commit associated with the
- <filename>standard/base</filename> branch, while
- the upper commit range is the commit associated with the
- <filename>standard/emenlow</filename> branch.
- <literallayout class='monospaced'>
- $ git whatchanged origin/standard/base..origin/standard/emenlow
- </literallayout>
- </para>
-
- <para>
- To see a summary of changes use the <filename>git log</filename> command.
- Here is an example using the same branches:
- <literallayout class='monospaced'>
- $ git log --oneline origin/standard/base..origin/standard/emenlow
- </literallayout>
- The <filename>git log</filename> output might be more useful than
- the <filename>git whatchanged</filename> as you get
- a short, one-line summary of each change and not the entire commit.
- </para>
-
- <para>
- If you want to see code differences associated with all the changes, use
- the <filename>git diff</filename> command.
- Here is an example:
- <literallayout class='monospaced'>
- $ git diff origin/standard/base..origin/standard/emenlow
- </literallayout>
- </para>
-
- <para>
- You can see the commit log messages and the text differences using the
- <filename>git show</filename> command:
- Here is an example:
- <literallayout class='monospaced'>
- $ git show origin/standard/base..origin/standard/emenlow
- </literallayout>
- </para>
-
- <para>
- You can create individual patches for each change by using the
- <filename>git format-patch</filename> command.
- Here is an example that that creates patch files for each commit and
- places them in your <filename>Documents</filename> directory:
- <literallayout class='monospaced'>
- $ git format-patch -o $HOME/Documents origin/standard/base..origin/standard/emenlow
- </literallayout>
- </para>
- </section>
-
- <section id='show-a-particular-feature-or-branch-change'>
- <title>Show a Particular Feature or Branch Change</title>
-
- <para>
- Developers use tags in the Yocto Project kernel tree to divide changes for significant
- features or branches.
- Once you know a particular tag, you can use Git commands
- to show changes associated with the tag and find the branches that contain
- the feature.
- <note>
- Because BSP branch, <filename>kernel.org</filename>, and feature tags are all
- present, there could be many tags.
- </note>
- The <filename>git show &lt;tag&gt;</filename> command shows changes that are tagged by
- a feature.
- Here is an example that shows changes tagged by the <filename>systemtap</filename>
- feature:
- <literallayout class='monospaced'>
- $ git show systemtap
- </literallayout>
- You can use the <filename>git branch --contains &lt;tag&gt;</filename> command
- to show the branches that contain a particular feature.
- This command shows the branches that contain the <filename>systemtap</filename>
- feature:
- <literallayout class='monospaced'>
- $ git branch --contains systemtap
- </literallayout>
- </para>
-
- <para>
- You can use many other comparisons to isolate BSP and kernel changes.
- For example, you can compare against <filename>kernel.org</filename> tags
- such as the <filename>v3.4</filename> tag.
- </para>
- </section>
- </section>
-
- <section id='development-saving-kernel-modifications'>
- <title>Development: Saving Kernel Modifications</title>
-
+ </question>
+ <answer>
<para>
- Another common operation is to build a BSP supplied by the Yocto Project, make some
- changes, rebuild, and then test.
- Those local changes often need to be exported, shared or otherwise maintained.
+ You can use a stand-alone tarball to provide Python 2.6.
+ You can find pre-built 32 and 64-bit versions of Python 2.6 at the following locations:
+ <itemizedlist>
+ <listitem><para><ulink url='&YOCTO_PYTHON-i686_DL_URL;'>32-bit tarball</ulink></para></listitem>
+ <listitem><para><ulink url='&YOCTO_PYTHON-x86_64_DL_URL;'>64-bit tarball</ulink></para></listitem>
+ </itemizedlist>
</para>
-
<para>
- Since the Yocto Project kernel source tree is backed by Git, this activity is
- much easier as compared to with previous releases.
- Because Git tracks file modifications, additions and deletions, it is easy
- to modify the code and later realize that you need to save the changes.
- It is also easy to determine what has changed.
- This method also provides many tools to commit, undo and export those modifications.
+ These tarballs are self-contained with all required libraries and should work
+ on most Linux systems.
+ To use the tarballs extract them into the root
+ directory and run the appropriate command:
+ <literallayout class='monospaced'>
+ $ export PATH=/opt/poky/sysroots/i586-pokysdk-linux/usr/bin/:$PATH
+ $ export PATH=/opt/poky/sysroots/x86_64-pokysdk-linux/usr/bin/:$PATH
+ </literallayout>
</para>
-
<para>
- This section and its sub-sections, describe general application of Git's
- <filename>push</filename> and <filename>pull</filename> commands, which are used to
- get your changes upstream or source your code from an upstream repository.
- The Yocto Project provides scripts that help you work in a collaborative development
- environment.
- For information on these scripts, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#pushing-a-change-upstream'>Using Scripts to Push a Change
- Upstream and Request a Pull</ulink>" and
- "<ulink url='&YOCTO_DOCS_DEV_URL;#submitting-a-patch'>Using Email to Submit a Patch</ulink>"
- sections in the Yocto Project Development Manual.
+ Once you run the command, BitBake uses Python 2.6.
</para>
+ </answer>
+ </qandaentry>
+ <qandaentry>
+ <question>
<para>
- There are many ways to save kernel modifications.
- The technique employed
- depends on the destination for the patches:
-
- <itemizedlist>
- <listitem><para>Bulk storage</para></listitem>
- <listitem><para>Internal sharing either through patches or by using Git</para></listitem>
- <listitem><para>External submissions</para></listitem>
- <listitem><para>Exporting for integration into another Source Code
- Manager (SCM)</para></listitem>
- </itemizedlist>
+ How can you claim Poky / OpenEmbedded-Core is stable?
</para>
-
+ </question>
+ <answer>
<para>
- Because of the following list of issues, the destination of the patches also influences
- the method for gathering them:
-
+ There are three areas that help with stability;
<itemizedlist>
- <listitem><para>Bisectability</para></listitem>
- <listitem><para>Commit headers</para></listitem>
- <listitem><para>Division of subsystems for separate submission or review</para></listitem>
+ <listitem><para>The Yocto Project team keeps
+ <ulink url='&YOCTO_DOCS_DEV_URL;#oe-core'>OE-Core</ulink> small
+ and focused, containing around 830 recipes as opposed to the thousands
+ available in other OpenEmbedded community layers.
+ Keeping it small makes it easy to test and maintain.</para></listitem>
+ <listitem><para>The Yocto Project team runs manual and automated tests
+ using a small, fixed set of reference hardware as well as emulated
+ targets.</para></listitem>
+ <listitem><para>The Yocto Project uses an an autobuilder,
+ which provides continuous build and integration tests.</para></listitem>
</itemizedlist>
</para>
+ </answer>
+ </qandaentry>
- <section id='bulk-export'>
- <title>Bulk Export</title>
-
- <para>
- This section describes how you can "bulk" export changes that have not
- been separated or divided.
- This situation works well when you are simply storing patches outside of the kernel
- source repository, either permanently or temporarily, and you are not committing
- incremental changes during development.
- <note>
- This technique is not appropriate for full integration of upstream submission
- because changes are not properly divided and do not provide an avenue for per-change
- commit messages.
- Therefore, this example assumes that changes have not been committed incrementally
- during development and that you simply must gather and export them.
- </note>
- <literallayout class='monospaced'>
- # bulk export of ALL modifications without separation or division
- # of the changes
-
- $ git add .
- $ git commit -s -a -m &lt;msg&gt;
- or
- $ git commit -s -a # and interact with $EDITOR
- </literallayout>
- </para>
-
- <para>
- The previous operations capture all the local changes in the project source
- tree in a single Git commit.
- And, that commit is also stored in the project's source tree.
- </para>
-
- <para>
- Once the changes are exported, you can restore them manually using a template
- or through integration with the <filename>default_kernel</filename>.
- </para>
-
- </section>
-
- <section id='incremental-planned-sharing'>
- <title>Incremental/Planned Sharing</title>
-
- <para>
- This section describes how to save modifications when you are making incremental
- commits or practicing planned sharing.
- The examples in this section assume that you have incrementally committed
- changes to the tree during development and now need to export them.
- The sections that follow
- describe how you can export your changes internally through either patches or by
- using Git commands.
- </para>
-
- <para>
- During development, the following commands are of interest.
- For full Git documentation, refer to the Git documentation at
- <ulink url='http://github.com'></ulink>.
-
- <literallayout class='monospaced'>
- # edit a file
- $ vi &lt;path&gt;/file
- # stage the change
- $ git add &lt;path&gt;/file
- # commit the change
- $ git commit -s
- # remove a file
- $ git rm &lt;path&gt;/file
- # commit the change
- $ git commit -s
-
- ... etc.
- </literallayout>
- </para>
-
- <para>
- Distributed development with Git is possible when you use a universally
- agreed-upon unique commit identifier (set by the creator of the commit) that maps to a
- specific change set with a specific parent.
- This identifier is created for you when
- you create a commit, and is re-created when you amend, alter or re-apply
- a commit.
- As an individual in isolation, this is of no interest.
- However, if you
- intend to share your tree with normal Git <filename>push</filename> and
- <filename>pull</filename> operations for
- distributed development, you should consider the ramifications of changing a
- commit that you have already shared with others.
- </para>
-
- <para>
- Assuming that the changes have not been pushed upstream, or pulled into
- another repository, you can update both the commit content and commit messages
- associated with development by using the following commands:
-
- <literallayout class='monospaced'>
- $ Git add &lt;path&gt;/file
- $ Git commit --amend
- $ Git rebase or Git rebase -i
- </literallayout>
- </para>
-
- <para>
- Again, assuming that the changes have not been pushed upstream, and that
- no pending works-in-progress exist (use <filename>git status</filename> to check), then
- you can revert (undo) commits by using the following commands:
-
- <literallayout class='monospaced'>
- # remove the commit, update working tree and remove all
- # traces of the change
- $ git reset --hard HEAD^
- # remove the commit, but leave the files changed and staged for re-commit
- $ git reset --soft HEAD^
- # remove the commit, leave file change, but not staged for commit
- $ git reset --mixed HEAD^
- </literallayout>
- </para>
-
- <para>
- You can create branches, "cherry-pick" changes, or perform any number of Git
- operations until the commits are in good order for pushing upstream
- or for pull requests.
- After a <filename>push</filename> or <filename>pull</filename> command,
- commits are normally considered
- "permanent" and you should not modify them.
- If the commits need to be changed, you can incrementally do so with new commits.
- These practices follow standard Git workflow and the <filename>kernel.org</filename> best
- practices, which is recommended.
- <note>
- It is recommended to tag or branch before adding changes to a Yocto Project
- BSP or before creating a new one.
- The reason for this recommendation is because the branch or tag provides a
- reference point to facilitate locating and exporting local changes.
- </note>
- </para>
-
- <section id='export-internally-via-patches'>
- <title>Exporting Changes Internally by Using Patches</title>
-
- <para>
- This section describes how you can extract committed changes from a working directory
- by exporting them as patches.
- Once the changes have been extracted, you can use the patches for upstream submission,
- place them in a Yocto Project template for automatic kernel patching,
- or apply them in many other common uses.
- </para>
-
- <para>
- This example shows how to create a directory with sequentially numbered patches.
- Once the directory is created, you can apply it to a repository using the
- <filename>git am</filename> command to reproduce the original commit and all
- the related information such as author, date, commit log, and so forth.
- <note>
- The new commit identifiers (ID) will be generated upon re-application.
- This action reflects that the commit is now applied to an underlying commit
- with a different ID.
- </note>
- <literallayout class='monospaced'>
- # &lt;first-commit&gt; can be a tag if one was created before development
- # began. It can also be the parent branch if a branch was created
- # before development began.
-
- $ git format-patch -o &lt;dir&gt; &lt;first commit&gt;..&lt;last commit&gt;
- </literallayout>
- </para>
-
- <para>
- In other words:
- <literallayout class='monospaced'>
- # Identify commits of interest.
-
- # If the tree was tagged before development
- $ git format-patch -o &lt;save dir&gt; &lt;tag&gt;
-
- # If no tags are available
- $ git format-patch -o &lt;save dir&gt; HEAD^ # last commit
- $ git format-patch -o &lt;save dir&gt; HEAD^^ # last 2 commits
- $ git whatchanged # identify last commit
- $ git format-patch -o &lt;save dir&gt; &lt;commit id&gt;
- $ git format-patch -o &lt;save dir&gt; &lt;rev-list&gt;
- </literallayout>
- </para>
- </section>
-
- <section id='export-internally-via-git'>
- <title>Exporting Changes Internally by Using Git</title>
-
- <para>
- This section describes how you can export changes from a working directory
- by pushing the changes into a master repository or by making a pull request.
- Once you have pushed the changes to the master repository, you can then
- pull those same changes into a new kernel build at a later time.
- </para>
-
- <para>
- Use this command form to push the changes:
- <literallayout class='monospaced'>
- $ git push ssh://&lt;master_server&gt;/&lt;path_to_repo&gt;
- &lt;local_branch&gt;:&lt;remote_branch&gt;
- </literallayout>
- </para>
-
- <para>
- For example, the following command pushes the changes from your local branch
- <filename>yocto/standard/common-pc/base</filename> to the remote branch with the same name
- in the master repository <filename>//git.mycompany.com/pub/git/kernel-3.4</filename>.
- <literallayout class='monospaced'>
- $ git push ssh://git.mycompany.com/pub/git/kernel-3.4 \
- yocto/standard/common-pc/base:yocto/standard/common-pc/base
- </literallayout>
- </para>
-
- <para>
- A pull request entails using the <filename>git request-pull</filename> command to compose
- an email to the
- maintainer requesting that a branch be pulled into the master repository, see
- <ulink url='http://github.com/guides/pull-requests'></ulink> for an example.
- <note>
- Other commands such as <filename>git stash</filename> or branching can also be used to save
- changes, but are not covered in this document.
- </note>
- </para>
- </section>
- </section>
-
- <section id='export-for-external-upstream-submission'>
- <title>Exporting Changes for External (Upstream) Submission</title>
-
- <para>
- This section describes how to export changes for external upstream submission.
- If the patch series is large or the maintainer prefers to pull
- changes, you can submit these changes by using a pull request.
- However, it is common to send patches as an email series.
- This method allows easy review and integration of the changes.
- <note>
- Before sending patches for review be sure you understand the
- community standards for submitting and documenting changes and follow their best practices.
- For example, kernel patches should follow standards such as:
- <itemizedlist>
- <listitem><para>
- <ulink url='http://linux.yyz.us/patch-format.html'></ulink></para></listitem>
- <listitem><para>Documentation/SubmittingPatches (in any linux
- kernel source tree)</para></listitem>
- </itemizedlist>
- </note>
- </para>
-
- <para>
- The messages used to commit changes are a large part of these standards.
- Consequently, be sure that the headers for each commit have the required information.
- For information on how to follow the Yocto Project commit message standards, see the
- "<ulink url='&YOCTO_DOCS_DEV_URL;#how-to-submit-a-change'>How to Submit a
- Change</ulink>" section in the Yocto Project Development Manual.
- </para>
-
- <para>
- If the initial commits were not properly documented or do not meet those standards,
- you can re-base by using the <filename>git rebase -i</filename> command to
- manipulate the commits and
- get them into the required format.
- Other techniques such as branching and cherry-picking commits are also viable options.
- </para>
+ <qandaentry>
+ <question>
+ <para>
+ How do I get support for my board added to the Yocto Project?
+ </para>
+ </question>
+ <answer>
+ <para>
+ Support for an additional board is added by creating a BSP layer for it.
+ For more information on how to create a BSP layer, see the
+ <ulink url='&YOCTO_DOCS_BSP_URL;'>Yocto Project Board Support Package (BSP) Developer's Guide</ulink>.
+ </para>
+ <para>
+ Usually, if the board is not completely exotic, adding support in
+ the Yocto Project is fairly straightforward.
+ </para>
+ </answer>
+ </qandaentry>
- <para>
- Once you complete the commits, you can generate the email that sends the patches
- to the maintainer(s) or lists that review and integrate changes.
- The command <filename>git send-email</filename> is commonly used to ensure
- that patches are properly
- formatted for easy application and avoid mailer-induced patch damage.
- </para>
+ <qandaentry>
+ <question>
+ <para>
+ Are there any products built using the OpenEmbedded build system?
+ </para>
+ </question>
+ <answer>
+ <para>
+ The software running on the <ulink url='http://vernier.com/labquest/'>Vernier LabQuest</ulink>
+ is built using the OpenEmbedded build system.
+ See the <ulink url='http://www.vernier.com/products/interfaces/labq/'>Vernier LabQuest</ulink>
+ website for more information.
+ There are a number of pre-production devices using the OpenEmbedded build system
+ and the Yocto Project team
+ announces them as soon as they are released.
+ </para>
+ </answer>
+ </qandaentry>
- <para>
- The following is an example of dumping patches for external submission:
- <literallayout class='monospaced'>
- # dump the last 4 commits
- $ git format-patch --thread -n -o ~/rr/ HEAD^^^^
- $ git send-email --compose --subject '[RFC 0/N] &lt;patch series summary&gt;' \
- --to foo@yoctoproject.org --to bar@yoctoproject.org \
- --cc list@yoctoproject.org ~/rr
- # the editor is invoked for the 0/N patch, and when complete the entire
- # series is sent via email for review
- </literallayout>
- </para>
- </section>
+ <qandaentry>
+ <question>
+ <para>
+ What does the OpenEmbedded build system produce as output?
+ </para>
+ </question>
+ <answer>
+ <para>
+ Because the same set of recipes can be used to create output of various formats, the
+ output of an OpenEmbedded build depends on how it was started.
+ Usually, the output is a flashable image ready for the target device.
+ </para>
+ </answer>
+ </qandaentry>
- <section id='export-for-import-into-other-scm'>
- <title>Exporting Changes for Import into Another SCM</title>
+ <qandaentry>
+ <question>
+ <para>
+ How do I add my package to the Yocto Project?
+ </para>
+ </question>
+ <answer>
+ <para>
+ To add a package, you need to create a BitBake recipe.
+ For information on how to add a package, see the section
+ "<ulink url='&YOCTO_DOCS_DEV_URL;#usingpoky-extend-addpkg'>Adding a Package</ulink>"
+ in the Yocto Project Development Manual.
+ </para>
+ </answer>
+ </qandaentry>
- <para>
- When you want to export changes for import into another
- Source Code Manager (SCM), you can use any of the previously discussed
- techniques.
- However, if the patches are manually applied to a secondary tree and then
- that tree is checked into the SCM, you can lose change information such as
- commit logs.
- This process is not recommended.
- </para>
+ <qandaentry>
+ <question>
+ <para>
+ Do I have to reflash my entire board with a new Yocto Project image when recompiling
+ a package?
+ </para>
+ </question>
+ <answer>
+ <para>
+ The OpenEmbedded build system can build packages in various formats such as
+ <filename>ipk</filename> for <filename>opkg</filename>,
+ Debian package (<filename>.deb</filename>), or RPM.
+ The packages can then be upgraded using the package tools on the device, much like
+ on a desktop distribution such as Ubuntu or Fedora.
+ </para>
+ </answer>
+ </qandaentry>
- <para>
- Many SCMs can directly import Git commits, or can translate Git patches so that
- information is not lost.
- Those facilities are SCM-dependent and you should use them whenever possible.
- </para>
- </section>
- </section>
+ <qandaentry>
+ <question>
+ <para>
+ What is GNOME Mobile and what is the difference between GNOME Mobile and GNOME?
+ </para>
+ </question>
+ <answer>
+ <para>
+ GNOME Mobile is a subset of the <ulink url='http://www.gnome.org'>GNOME</ulink>
+ platform targeted at mobile and embedded devices.
+ The the main difference between GNOME Mobile and standard GNOME is that
+ desktop-orientated libraries have been removed, along with deprecated libraries,
+ creating a much smaller footprint.
+ </para>
+ </answer>
+ </qandaentry>
- <section id='scm-working-with-the-yocto-project-kernel-in-another-scm'>
- <title>Working with the Yocto Project Kernel in Another SCM</title>
+ <qandaentry>
+ <question>
+ <para>
+ I see the error '<filename>chmod: XXXXX new permissions are r-xrwxrwx, not r-xr-xr-x</filename>'.
+ What is wrong?
+ </para>
+ </question>
+ <answer>
+ <para>
+ You are probably running the build on an NTFS filesystem.
+ Use <filename>ext2</filename>, <filename>ext3</filename>, or <filename>ext4</filename> instead.
+ </para>
+ </answer>
+ </qandaentry>
+ <qandaentry>
+ <question>
+ <para>
+ How do I make the Yocto Project work in RHEL/CentOS?
+ </para>
+ </question>
+ <answer>
<para>
- This section describes kernel development in an SCM other than Git,
- which is not the same as exporting changes to another SCM described earlier.
- For this scenario, you use the OpenEmbedded build system to
- develop the kernel in a different SCM.
- The following must be true for you to accomplish this:
+ To get the Yocto Project working under RHEL/CentOS 5.1 you need to first
+ install some required packages.
+ The standard CentOS packages needed are:
+ <itemizedlist>
+ <listitem><para>"Development tools" (selected during installation)</para></listitem>
+ <listitem><para><filename>texi2html</filename></para></listitem>
+ <listitem><para><filename>compat-gcc-34</filename></para></listitem>
+ </itemizedlist>
+ On top of these, you need the following external packages:
<itemizedlist>
- <listitem><para>The delivered Yocto Project kernel must be exported into the second
- SCM.</para></listitem>
- <listitem><para>Development must be exported from that secondary SCM into a
- format that can be used by the OpenEmbedded build system.</para></listitem>
+ <listitem><para><filename>python-sqlite2</filename> from
+ <ulink url='http://dag.wieers.com/rpm/packages/python-sqlite2/'>DAG repository</ulink>
+ </para></listitem>
+ <listitem><para><filename>help2man</filename> from
+ <ulink url='http://centos.karan.org/el4/extras/stable/x86_64/RPMS/repodata/repoview/help2man-0-1.33.1-2.html'>Karan repository</ulink></para></listitem>
</itemizedlist>
</para>
- <section id='exporting-delivered-kernel-to-scm'>
- <title>Exporting the Delivered Kernel to the SCM</title>
+ <para>
+ Once these packages are installed, the OpenEmbedded build system will be able
+ to build standard images.
+ However, there might be a problem with the QEMU emulator segfaulting.
+ You can either disable the generation of binary locales by setting
+ <filename><link linkend='var-ENABLE_BINARY_LOCALE_GENERATION'>ENABLE_BINARY_LOCALE_GENERATION</link>
+ </filename> to "0" or by removing the <filename>linux-2.6-execshield.patch</filename>
+ from the kernel and rebuilding it since that is the patch that causes the problems with QEMU.
+ </para>
+ </answer>
+ </qandaentry>
- <para>
- Depending on the SCM, it might be possible to export the entire Yocto Project
- kernel Git repository, branches and all, into a new environment.
- This method is preferred because it has the most flexibility and potential to maintain
- the meta data associated with each commit.
- </para>
+ <qandaentry>
+ <question>
+ <para>
+ I see lots of 404 responses for files on
+ <filename>http://www.yoctoproject.org/sources/*</filename>. Is something wrong?
+ </para>
+ </question>
+ <answer>
+ <para>
+ Nothing is wrong.
+ The OpenEmbedded build system checks any configured source mirrors before downloading
+ from the upstream sources.
+ The build system does this searching for both source archives and
+ pre-checked out versions of SCM managed software.
+ These checks help in large installations because it can reduce load on the SCM servers
+ themselves.
+ The address above is one of the default mirrors configured into the
+ build system.
+ Consequently, if an upstream source disappears, the team
+ can place sources there so builds continue to work.
+ </para>
+ </answer>
+ </qandaentry>
+
+ <qandaentry>
+ <question>
+ <para>
+ I have machine-specific data in a package for one machine only but the package is
+ being marked as machine-specific in all cases, how do I prevent this?
+ </para>
+ </question>
+ <answer>
+ <para>
+ Set <filename><link linkend='var-SRC_URI_OVERRIDES_PACKAGE_ARCH'>SRC_URI_OVERRIDES_PACKAGE_ARCH</link>
+ </filename> = "0" in the <filename>.bb</filename> file but make sure the package is
+ manually marked as
+ machine-specific in the case that needs it.
+ The code that handles <filename>SRC_URI_OVERRIDES_PACKAGE_ARCH</filename> is in <filename>base.bbclass</filename>.
+ </para>
+ </answer>
+ </qandaentry>
- <para>
- When a direct import mechanism is not available, it is still possible to
- export a branch (or series of branches) and check them into a new repository.
- </para>
+ <qandaentry>
+ <question>
+ <para>
+ I'm behind a firewall and need to use a proxy server. How do I do that?
+ </para>
+ </question>
+ <answer>
+ <para>
+ Most source fetching by the OpenEmbedded build system is done by <filename>wget</filename>
+ and you therefore need to specify the proxy settings in a
+ <filename>.wgetrc</filename> file in your home directory.
+ Example settings in that file would be
+ <literallayout class='monospaced'>
+ http_proxy = http://proxy.yoyodyne.com:18023/
+ ftp_proxy = http://proxy.yoyodyne.com:18023/
+ </literallayout>
+ The Yocto Project also includes a <filename>site.conf.sample</filename>
+ file that shows how to configure CVS and Git proxy servers
+ if needed.
+ </para>
+ </answer>
+ </qandaentry>
- <para>
- The following commands illustrate some of the steps you could use to
- import the <filename>yocto/standard/common-pc/base</filename>
- kernel into a secondary SCM:
- <literallayout class='monospaced'>
- $ git checkout yocto/standard/common-pc/base
- $ cd .. ; echo linux/.git &gt; .cvsignore
- $ cvs import -m "initial import" linux MY_COMPANY start
- </literallayout>
- </para>
+ <qandaentry>
+ <question>
+ <para>
+ What’s the difference between <filename>foo</filename> and <filename>foo-native</filename>?
+ </para>
+ </question>
+ <answer>
+ <para>
+ The <filename>*-native</filename> targets are designed to run on the system
+ being used for the build.
+ These are usually tools that are needed to assist the build in some way such as
+ <filename>quilt-native</filename>, which is used to apply patches.
+ The non-native version is the one that runs on the target device.
+ </para>
+ </answer>
+ </qandaentry>
- <para>
- You could now relocate the CVS repository and use it in a centralized manner.
- </para>
+ <qandaentry>
+ <question>
+ <para>
+ I'm seeing random build failures. Help?!
+ </para>
+ </question>
+ <answer>
+ <para>
+ If the same build is failing in totally different and random ways,
+ the most likely explanation is that either the hardware you're running the
+ build on has some problem, or, if you are running the build under virtualisation,
+ the virtualisation probably has bugs.
+ The OpenEmbedded build system processes a massive amount of data causing lots of network, disk and
+ CPU activity and is sensitive to even single bit failures in any of these areas.
+ True random failures have always been traced back to hardware or virtualisation issues.
+ </para>
+ </answer>
+ </qandaentry>
- <para>
- The following commands illustrate how you can condense and merge two BSPs into a
- second SCM:
- <literallayout class='monospaced'>
- $ git checkout yocto/standard/common-pc/base
- $ git merge yocto/standard/common-pc-64/base
- # resolve any conflicts and commit them
- $ cd .. ; echo linux/.git &gt; .cvsignore
- $ cvs import -m "initial import" linux MY_COMPANY start
- </literallayout>
- </para>
- </section>
+ <qandaentry>
+ <question>
+ <para>
+ What do we need to ship for license compliance?
+ </para>
+ </question>
+ <answer>
+ <para>
+ This is a difficult question and you need to consult your lawyer for the answer
+ for your specific case.
+ It is worth bearing in mind that for GPL compliance there needs to be enough
+ information shipped to allow someone else to rebuild the same end result
+ you are shipping.
+ This means sharing the source code, any patches applied to it, and also any
+ configuration information about how that package was configured and built.
+ </para>
+ </answer>
+ </qandaentry>
- <section id='importing-changes-for-build'>
- <title>Importing Changes for the Build</title>
+ <qandaentry>
+ <question>
+ <para>
+ How do I disable the cursor on my touchscreen device?
+ </para>
+ </question>
+ <answer>
+ <para>
+ You need to create a form factor file as described in the
+ "<ulink url='&YOCTO_DOCS_BSP_URL;#bsp-filelayout-misc-recipes'>Miscellaneous Recipe Files</ulink>"
+ section and set the <filename>HAVE_TOUCHSCREEN</filename> variable equal to one as follows:
+ <literallayout class='monospaced'>
+ HAVE_TOUCHSCREEN=1
+ </literallayout>
+ </para>
+ </answer>
+ </qandaentry>
- <para>
- Once development has reached a suitable point in the second development
- environment, you need to export the changes as patches.
- To export them, place the changes in a recipe and
- automatically apply them to the kernel during patching.
- </para>
- </section>
- </section>
+ <qandaentry>
+ <question>
+ <para>
+ How do I make sure connected network interfaces are brought up by default?
+ </para>
+ </question>
+ <answer>
+ <para>
+ The default interfaces file provided by the netbase recipe does not
+ automatically bring up network interfaces.
+ Therefore, you will need to add a BSP-specific netbase that includes an interfaces
+ file.
+ See the "<ulink url='&YOCTO_DOCS_BSP_URL;#bsp-filelayout-misc-recipes'>Miscellaneous Recipe Files</ulink>"
+ section for information on creating these types of miscellaneous recipe files.
+ </para>
+ <para>
+ For example, add the following files to your layer:
+ <literallayout class='monospaced'>
+ meta-MACHINE/recipes-bsp/netbase/netbase/MACHINE/interfaces
+ meta-MACHINE/recipes-bsp/netbase/netbase_5.0.bbappend
+ </literallayout>
+ </para>
+ </answer>
+ </qandaentry>
- <section id='bsp-creating'>
- <title>Creating a BSP Based on an Existing Similar BSP</title>
+ <qandaentry>
+ <question>
+ <para>
+ How do I create images with more free space?
+ </para>
+ </question>
+ <answer>
+ <para>
+ Images are created to be 1.2 times the size of the populated root filesystem.
+ To modify this ratio so that there is more free space available, you need to
+ set the configuration value <filename>IMAGE_OVERHEAD_FACTOR</filename>.
+ For example, setting <filename>IMAGE_OVERHEAD_FACTOR</filename> to 1.5 sets
+ the image size ratio to one and a half times the size of the populated
+ root filesystem.
+ <literallayout class='monospaced'>
+ IMAGE_OVERHEAD_FACTOR = "1.5"
+ </literallayout>
+ </para>
+ </answer>
+ </qandaentry>
+ <qandaentry>
+ <question>
<para>
- This section overviews the process of creating a BSP based on an
- existing similar BSP.
- The information is introductory in nature and does not provide step-by-step examples.
- For detailed information on how to create a new BSP, see
- the "<ulink url='&YOCTO_DOCS_BSP_URL;#creating-a-new-bsp-layer-using-the-yocto-bsp-script'>Creating a New BSP Layer Using the yocto-bsp Script</ulink>" section in the
- Yocto Project Board Support Package (BSP) Developer's Guide, or see the
- <ulink url='&YOCTO_WIKI_URL;/wiki/Transcript:_creating_one_generic_Atom_BSP_from_another'>Transcript:_creating_one_generic_Atom_BSP_from_another</ulink>
- wiki page.
+ Why don't you support directories with spaces in the pathnames?
</para>
+ </question>
+ <answer>
+ <para>
+ The Yocto Project team has tried to do this before but too many of the tools
+ the OpenEmbedded build system depends on such as <filename>autoconf</filename>
+ break when they find spaces in pathnames.
+ Until that situation changes, the team will not support spaces in pathnames.
+ </para>
+ </answer>
+ </qandaentry>
+ <qandaentry>
+ <question>
+ <para>
+ How do I use an external toolchain?
+ </para>
+ </question>
+ <answer>
<para>
- The basic steps you need to follow are:
- <orderedlist>
- <listitem><para><emphasis>Make sure you have set up a local Source Directory:</emphasis>
- You must create a local
- <ulink url='&YOCTO_DOCS_DEV_URL;#source-directory'>Source Directory</ulink>
- by either creating a Git repository (recommended) or
- extracting a Yocto Project release tarball.</para></listitem>
- <listitem><para><emphasis>Choose an existing BSP available with the Yocto Project:</emphasis>
- Try to map your board features as closely to the features of a BSP that is
- already supported and exists in the Yocto Project.
- Starting with something as close as possible to your board makes developing
- your BSP easier.
- You can find all the BSPs that are supported and ship with the Yocto Project
- on the Yocto Project's Download page at
- <ulink url='&YOCTO_HOME_URL;/download'></ulink>.</para></listitem>
- <listitem><para><emphasis>Be sure you have the Base BSP:</emphasis>
- You need to either have a local Git repository of the base BSP set up or
- have downloaded and extracted the files from a release BSP tarball.
- Either method gives you access to the BSP source files.</para></listitem>
- <listitem><para><emphasis>Make a copy of the existing BSP, thus isolating your new
- BSP work:</emphasis>
- Copying the existing BSP file structure gives you a new area in which to work.</para></listitem>
- <listitem><para><emphasis>Make configuration and recipe changes to your new BSP:</emphasis>
- Configuration changes involve the files in the BSP's <filename>conf</filename>
- directory.
- Changes include creating a machine-specific configuration file and editing the
- <filename>layer.conf</filename> file.
- The configuration changes identify the kernel you will be using.
- Recipe changes include removing, modifying, or adding new recipe files that
- instruct the build process on what features to include in the image.</para></listitem>
- <listitem><para><emphasis>Prepare for the build:</emphasis>
- Before you actually initiate the build, you need to set up the build environment
- by sourcing the environment initialization script.
- After setting up the environment, you need to make some build configuration
- changes to the <filename>local.conf</filename> and <filename>bblayers.conf</filename>
- files.</para></listitem>
- <listitem><para><emphasis>Build the image:</emphasis>
- The OpenEmbedded build system uses BitBake to create the image.
- You need to decide on the type of image you are going to build (e.g. minimal, base,
- core, sato, and so forth) and then start the build using the <filename>bitbake</filename>
- command.</para></listitem>
- </orderedlist>
- </para>
- </section>
+ The toolchain configuration is very flexible and customizable.
+ It is primarily controlled with the
+ <filename><link linkend='var-TCMODE'>TCMODE</link></filename> variable.
+ This variable controls which <filename>tcmode-*.inc</filename> file to include
+ from the <filename>meta/conf/distro/include</filename> directory within the
+ <ulink url='&YOCTO_DOCS_DEV_URL;#source-directory'>source directory</ulink>.
+ </para>
- <section id='tip-dirty-string'>
- <title>"-dirty" String</title>
+ <para>
+ The default value of <filename>TCMODE</filename> is "default"
+ (i.e. <filename>tcmode-default.inc</filename>).
+ However, other patterns are accepted.
+ In particular, "external-*" refers to external toolchains of which there are some
+ basic examples included in the OpenEmbedded Core (<filename>meta</filename>).
+ You can use your own custom toolchain definition in your own layer
+ (or as defined in the <filename>local.conf</filename> file) at the location
+ <filename>conf/distro/include/tcmode-*.inc</filename>.
+ </para>
<para>
- If kernel images are being built with "-dirty" on the end of the version
- string, this simply means that modifications in the source
- directory have not been committed.
+ In addition to the toolchain configuration, you also need a corresponding toolchain recipe file.
+ This recipe file needs to package up any pre-built objects in the toolchain such as
+ <filename>libgcc</filename>, <filename>libstdcc++</filename>,
+ any locales, and <filename>libc</filename>.
+ An example is the <filename>external-sourcery-toolchain.bb</filename>, which is located
+ in <filename>meta/recipes-core/meta/</filename> within the source directory.
+ </para>
+ </answer>
+ </qandaentry>
+
+ <qandaentry>
+ <question>
+ <para id='how-does-the-yocto-project-obtain-source-code-and-will-it-work-behind-my-firewall-or-proxy-server'>
+ How does the OpenEmbedded build system obtain source code and will it work behind my
+ firewall or proxy server?
+ </para>
+ </question>
+ <answer>
+ <para>
+ The way the build system obtains source code is highly configurable.
+ You can setup the build system to get source code in most environments if
+ HTTP transport is available.
+ </para>
+ <para>
+ When the build system searches for source code, it first tries the local download directory.
+ If that location fails, Poky tries PREMIRRORS, the upstream source,
+ and then MIRRORS in that order.
+ </para>
+ <para>
+ By default, the OpenEmbedded build system uses the Yocto Project source PREMIRRORS
+ for SCM-based sources,
+ upstreams for normal tarballs, and then falls back to a number of other mirrors
+ including the Yocto Project source mirror if those fail.
+ </para>
+ <para>
+ As an example, you could add a specific server for Poky to attempt before any
+ others by adding something like the following to the <filename>local.conf</filename>
+ configuration file:
<literallayout class='monospaced'>
- $ git status
+ PREMIRRORS_prepend = "\
+ git://.*/.* http://www.yoctoproject.org/sources/ \n \
+ ftp://.*/.* http://www.yoctoproject.org/sources/ \n \
+ http://.*/.* http://www.yoctoproject.org/sources/ \n \
+ https://.*/.* http://www.yoctoproject.org/sources/ \n"
</literallayout>
</para>
-
<para>
- You can use the above Git command to report modified, removed, or added files.
- You should commit those changes to the tree regardless of whether they will be saved,
- exported, or used.
- Once you commit the changes you need to rebuild the kernel.
+ These changes cause Poky to intercept Git, FTP, HTTP, and HTTPS
+ requests and direct them to the <filename>http://</filename> sources mirror.
+ You can use <filename>file://</filename> URLs to point to local directories
+ or network shares as well.
</para>
-
<para>
- To brute force pickup and commit all such pending changes, enter the following:
+ Aside from the previous technique, these options also exist:
<literallayout class='monospaced'>
- $ git add .
- $ git commit -s -a -m "getting rid of -dirty"
+ BB_NO_NETWORK = "1"
</literallayout>
+ This statement tells BitBake to throw an error instead of trying to access the
+ Internet.
+ This technique is useful if you want to ensure code builds only from local sources.
+ </para>
+ <para>
+ Here is another technique:
+ <literallayout class='monospaced'>
+ BB_FETCH_PREMIRRORONLY = "1"
+ </literallayout>
+ This statement limits Poky to pulling source from the PREMIRRORS only.
+ Again, this technique is useful for reproducing builds.
+ </para>
+ <para>
+ Here is another technique:
+ <literallayout class='monospaced'>
+ BB_GENERATE_MIRROR_TARBALLS = "1"
+ </literallayout>
+ This statement tells Poky to generate mirror tarballs.
+ This technique is useful if you want to create a mirror server.
+ If not, however, the technique can simply waste time during the build.
+ </para>
+ <para>
+ Finally, consider an example where you are behind an HTTP-only firewall.
+ You could make the following changes to the <filename>local.conf</filename>
+ configuration file as long as the PREMIRROR server is up to date:
+ <literallayout class='monospaced'>
+ PREMIRRORS_prepend = "\
+ ftp://.*/.* http://www.yoctoproject.org/sources/ \n \
+ http://.*/.* http://www.yoctoproject.org/sources/ \n \
+ https://.*/.* http://www.yoctoproject.org/sources/ \n"
+ BB_FETCH_PREMIRRORONLY = "1"
+ </literallayout>
+ These changes would cause Poky to successfully fetch source over HTTP and
+ any network accesses to anything other than the PREMIRROR would fail.
+ </para>
+ <para>
+ The build system also honors the standard shell environment variables
+ <filename>http_proxy</filename>, <filename>ftp_proxy</filename>,
+ <filename>https_proxy</filename>, and <filename>all_proxy</filename>
+ to redirect requests through proxy servers.
+ </para>
+ </answer>
+ </qandaentry>
+
+ <qandaentry>
+ <question>
+ <para>
+ Can I get rid of build output so I can start over?
+ </para>
+ </question>
+ <answer>
+ <para>
+ Yes - you can easily do this.
+ When you use BitBake to build an image, all the build output goes into the
+ directory created when you source the <filename>oe-init-build-env</filename>
+ setup file.
+ By default, this <ulink url='&YOCTO_DOCS_DEV_URL;#build-directory'>build directory</ulink>
+ is named <filename>build</filename> but can be named
+ anything you want.
</para>
<para>
- Next, rebuild the kernel.
+ Within the build directory is the <filename>tmp</filename> directory.
+ To remove all the build output yet preserve any source code or downloaded files
+ from previous builds, simply remove the <filename>tmp</filename> directory.
</para>
- </section>
- </section>
+ </answer>
+ </qandaentry>
+
+
+</qandaset>
</chapter>
<!--
vim: expandtab tw=80 ts=4
OpenPOWER on IntegriCloud