summaryrefslogtreecommitdiffstats
path: root/mm/oom_kill.c
diff options
context:
space:
mode:
Diffstat (limited to 'mm/oom_kill.c')
-rw-r--r--mm/oom_kill.c593
1 files changed, 593 insertions, 0 deletions
diff --git a/mm/oom_kill.c b/mm/oom_kill.c
new file mode 100644
index 0000000..a0a0190
--- /dev/null
+++ b/mm/oom_kill.c
@@ -0,0 +1,593 @@
+/*
+ * linux/mm/oom_kill.c
+ *
+ * Copyright (C) 1998,2000 Rik van Riel
+ * Thanks go out to Claus Fischer for some serious inspiration and
+ * for goading me into coding this file...
+ *
+ * The routines in this file are used to kill a process when
+ * we're seriously out of memory. This gets called from __alloc_pages()
+ * in mm/page_alloc.c when we really run out of memory.
+ *
+ * Since we won't call these routines often (on a well-configured
+ * machine) this file will double as a 'coding guide' and a signpost
+ * for newbie kernel hackers. It features several pointers to major
+ * kernel subsystems and hints as to where to find out what things do.
+ */
+
+#include <linux/oom.h>
+#include <linux/mm.h>
+#include <linux/err.h>
+#include <linux/sched.h>
+#include <linux/swap.h>
+#include <linux/timex.h>
+#include <linux/jiffies.h>
+#include <linux/cpuset.h>
+#include <linux/module.h>
+#include <linux/notifier.h>
+#include <linux/memcontrol.h>
+#include <linux/security.h>
+
+int sysctl_panic_on_oom;
+int sysctl_oom_kill_allocating_task;
+int sysctl_oom_dump_tasks;
+static DEFINE_SPINLOCK(zone_scan_mutex);
+/* #define DEBUG */
+
+/**
+ * badness - calculate a numeric value for how bad this task has been
+ * @p: task struct of which task we should calculate
+ * @uptime: current uptime in seconds
+ *
+ * The formula used is relatively simple and documented inline in the
+ * function. The main rationale is that we want to select a good task
+ * to kill when we run out of memory.
+ *
+ * Good in this context means that:
+ * 1) we lose the minimum amount of work done
+ * 2) we recover a large amount of memory
+ * 3) we don't kill anything innocent of eating tons of memory
+ * 4) we want to kill the minimum amount of processes (one)
+ * 5) we try to kill the process the user expects us to kill, this
+ * algorithm has been meticulously tuned to meet the principle
+ * of least surprise ... (be careful when you change it)
+ */
+
+unsigned long badness(struct task_struct *p, unsigned long uptime)
+{
+ unsigned long points, cpu_time, run_time, s;
+ struct mm_struct *mm;
+ struct task_struct *child;
+
+ task_lock(p);
+ mm = p->mm;
+ if (!mm) {
+ task_unlock(p);
+ return 0;
+ }
+
+ /*
+ * The memory size of the process is the basis for the badness.
+ */
+ points = mm->total_vm;
+
+ /*
+ * After this unlock we can no longer dereference local variable `mm'
+ */
+ task_unlock(p);
+
+ /*
+ * swapoff can easily use up all memory, so kill those first.
+ */
+ if (p->flags & PF_SWAPOFF)
+ return ULONG_MAX;
+
+ /*
+ * Processes which fork a lot of child processes are likely
+ * a good choice. We add half the vmsize of the children if they
+ * have an own mm. This prevents forking servers to flood the
+ * machine with an endless amount of children. In case a single
+ * child is eating the vast majority of memory, adding only half
+ * to the parents will make the child our kill candidate of choice.
+ */
+ list_for_each_entry(child, &p->children, sibling) {
+ task_lock(child);
+ if (child->mm != mm && child->mm)
+ points += child->mm->total_vm/2 + 1;
+ task_unlock(child);
+ }
+
+ /*
+ * CPU time is in tens of seconds and run time is in thousands
+ * of seconds. There is no particular reason for this other than
+ * that it turned out to work very well in practice.
+ */
+ cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime))
+ >> (SHIFT_HZ + 3);
+
+ if (uptime >= p->start_time.tv_sec)
+ run_time = (uptime - p->start_time.tv_sec) >> 10;
+ else
+ run_time = 0;
+
+ s = int_sqrt(cpu_time);
+ if (s)
+ points /= s;
+ s = int_sqrt(int_sqrt(run_time));
+ if (s)
+ points /= s;
+
+ /*
+ * Niced processes are most likely less important, so double
+ * their badness points.
+ */
+ if (task_nice(p) > 0)
+ points *= 2;
+
+ /*
+ * Superuser processes are usually more important, so we make it
+ * less likely that we kill those.
+ */
+ if (has_capability(p, CAP_SYS_ADMIN) ||
+ has_capability(p, CAP_SYS_RESOURCE))
+ points /= 4;
+
+ /*
+ * We don't want to kill a process with direct hardware access.
+ * Not only could that mess up the hardware, but usually users
+ * tend to only have this flag set on applications they think
+ * of as important.
+ */
+ if (has_capability(p, CAP_SYS_RAWIO))
+ points /= 4;
+
+ /*
+ * If p's nodes don't overlap ours, it may still help to kill p
+ * because p may have allocated or otherwise mapped memory on
+ * this node before. However it will be less likely.
+ */
+ if (!cpuset_mems_allowed_intersects(current, p))
+ points /= 8;
+
+ /*
+ * Adjust the score by oomkilladj.
+ */
+ if (p->oomkilladj) {
+ if (p->oomkilladj > 0) {
+ if (!points)
+ points = 1;
+ points <<= p->oomkilladj;
+ } else
+ points >>= -(p->oomkilladj);
+ }
+
+#ifdef DEBUG
+ printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n",
+ p->pid, p->comm, points);
+#endif
+ return points;
+}
+
+/*
+ * Determine the type of allocation constraint.
+ */
+static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist,
+ gfp_t gfp_mask)
+{
+#ifdef CONFIG_NUMA
+ struct zone *zone;
+ struct zoneref *z;
+ enum zone_type high_zoneidx = gfp_zone(gfp_mask);
+ nodemask_t nodes = node_states[N_HIGH_MEMORY];
+
+ for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
+ if (cpuset_zone_allowed_softwall(zone, gfp_mask))
+ node_clear(zone_to_nid(zone), nodes);
+ else
+ return CONSTRAINT_CPUSET;
+
+ if (!nodes_empty(nodes))
+ return CONSTRAINT_MEMORY_POLICY;
+#endif
+
+ return CONSTRAINT_NONE;
+}
+
+/*
+ * Simple selection loop. We chose the process with the highest
+ * number of 'points'. We expect the caller will lock the tasklist.
+ *
+ * (not docbooked, we don't want this one cluttering up the manual)
+ */
+static struct task_struct *select_bad_process(unsigned long *ppoints,
+ struct mem_cgroup *mem)
+{
+ struct task_struct *g, *p;
+ struct task_struct *chosen = NULL;
+ struct timespec uptime;
+ *ppoints = 0;
+
+ do_posix_clock_monotonic_gettime(&uptime);
+ do_each_thread(g, p) {
+ unsigned long points;
+
+ /*
+ * skip kernel threads and tasks which have already released
+ * their mm.
+ */
+ if (!p->mm)
+ continue;
+ /* skip the init task */
+ if (is_global_init(p))
+ continue;
+ if (mem && !task_in_mem_cgroup(p, mem))
+ continue;
+
+ /*
+ * This task already has access to memory reserves and is
+ * being killed. Don't allow any other task access to the
+ * memory reserve.
+ *
+ * Note: this may have a chance of deadlock if it gets
+ * blocked waiting for another task which itself is waiting
+ * for memory. Is there a better alternative?
+ */
+ if (test_tsk_thread_flag(p, TIF_MEMDIE))
+ return ERR_PTR(-1UL);
+
+ /*
+ * This is in the process of releasing memory so wait for it
+ * to finish before killing some other task by mistake.
+ *
+ * However, if p is the current task, we allow the 'kill' to
+ * go ahead if it is exiting: this will simply set TIF_MEMDIE,
+ * which will allow it to gain access to memory reserves in
+ * the process of exiting and releasing its resources.
+ * Otherwise we could get an easy OOM deadlock.
+ */
+ if (p->flags & PF_EXITING) {
+ if (p != current)
+ return ERR_PTR(-1UL);
+
+ chosen = p;
+ *ppoints = ULONG_MAX;
+ }
+
+ if (p->oomkilladj == OOM_DISABLE)
+ continue;
+
+ points = badness(p, uptime.tv_sec);
+ if (points > *ppoints || !chosen) {
+ chosen = p;
+ *ppoints = points;
+ }
+ } while_each_thread(g, p);
+
+ return chosen;
+}
+
+/**
+ * dump_tasks - dump current memory state of all system tasks
+ * @mem: target memory controller
+ *
+ * Dumps the current memory state of all system tasks, excluding kernel threads.
+ * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj
+ * score, and name.
+ *
+ * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are
+ * shown.
+ *
+ * Call with tasklist_lock read-locked.
+ */
+static void dump_tasks(const struct mem_cgroup *mem)
+{
+ struct task_struct *g, *p;
+
+ printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj "
+ "name\n");
+ do_each_thread(g, p) {
+ /*
+ * total_vm and rss sizes do not exist for tasks with a
+ * detached mm so there's no need to report them.
+ */
+ if (!p->mm)
+ continue;
+ if (mem && !task_in_mem_cgroup(p, mem))
+ continue;
+ if (!thread_group_leader(p))
+ continue;
+
+ task_lock(p);
+ printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n",
+ p->pid, p->uid, p->tgid, p->mm->total_vm,
+ get_mm_rss(p->mm), (int)task_cpu(p), p->oomkilladj,
+ p->comm);
+ task_unlock(p);
+ } while_each_thread(g, p);
+}
+
+/*
+ * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO
+ * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO
+ * set.
+ */
+static void __oom_kill_task(struct task_struct *p, int verbose)
+{
+ if (is_global_init(p)) {
+ WARN_ON(1);
+ printk(KERN_WARNING "tried to kill init!\n");
+ return;
+ }
+
+ if (!p->mm) {
+ WARN_ON(1);
+ printk(KERN_WARNING "tried to kill an mm-less task!\n");
+ return;
+ }
+
+ if (verbose)
+ printk(KERN_ERR "Killed process %d (%s)\n",
+ task_pid_nr(p), p->comm);
+
+ /*
+ * We give our sacrificial lamb high priority and access to
+ * all the memory it needs. That way it should be able to
+ * exit() and clear out its resources quickly...
+ */
+ p->rt.time_slice = HZ;
+ set_tsk_thread_flag(p, TIF_MEMDIE);
+
+ force_sig(SIGKILL, p);
+}
+
+static int oom_kill_task(struct task_struct *p)
+{
+ struct mm_struct *mm;
+ struct task_struct *g, *q;
+
+ mm = p->mm;
+
+ /* WARNING: mm may not be dereferenced since we did not obtain its
+ * value from get_task_mm(p). This is OK since all we need to do is
+ * compare mm to q->mm below.
+ *
+ * Furthermore, even if mm contains a non-NULL value, p->mm may
+ * change to NULL at any time since we do not hold task_lock(p).
+ * However, this is of no concern to us.
+ */
+
+ if (mm == NULL)
+ return 1;
+
+ /*
+ * Don't kill the process if any threads are set to OOM_DISABLE
+ */
+ do_each_thread(g, q) {
+ if (q->mm == mm && q->oomkilladj == OOM_DISABLE)
+ return 1;
+ } while_each_thread(g, q);
+
+ __oom_kill_task(p, 1);
+
+ /*
+ * kill all processes that share the ->mm (i.e. all threads),
+ * but are in a different thread group. Don't let them have access
+ * to memory reserves though, otherwise we might deplete all memory.
+ */
+ do_each_thread(g, q) {
+ if (q->mm == mm && !same_thread_group(q, p))
+ force_sig(SIGKILL, q);
+ } while_each_thread(g, q);
+
+ return 0;
+}
+
+static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order,
+ unsigned long points, struct mem_cgroup *mem,
+ const char *message)
+{
+ struct task_struct *c;
+
+ if (printk_ratelimit()) {
+ printk(KERN_WARNING "%s invoked oom-killer: "
+ "gfp_mask=0x%x, order=%d, oomkilladj=%d\n",
+ current->comm, gfp_mask, order, current->oomkilladj);
+ dump_stack();
+ show_mem();
+ if (sysctl_oom_dump_tasks)
+ dump_tasks(mem);
+ }
+
+ /*
+ * If the task is already exiting, don't alarm the sysadmin or kill
+ * its children or threads, just set TIF_MEMDIE so it can die quickly
+ */
+ if (p->flags & PF_EXITING) {
+ __oom_kill_task(p, 0);
+ return 0;
+ }
+
+ printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n",
+ message, task_pid_nr(p), p->comm, points);
+
+ /* Try to kill a child first */
+ list_for_each_entry(c, &p->children, sibling) {
+ if (c->mm == p->mm)
+ continue;
+ if (!oom_kill_task(c))
+ return 0;
+ }
+ return oom_kill_task(p);
+}
+
+#ifdef CONFIG_CGROUP_MEM_RES_CTLR
+void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask)
+{
+ unsigned long points = 0;
+ struct task_struct *p;
+
+ cgroup_lock();
+ read_lock(&tasklist_lock);
+retry:
+ p = select_bad_process(&points, mem);
+ if (PTR_ERR(p) == -1UL)
+ goto out;
+
+ if (!p)
+ p = current;
+
+ if (oom_kill_process(p, gfp_mask, 0, points, mem,
+ "Memory cgroup out of memory"))
+ goto retry;
+out:
+ read_unlock(&tasklist_lock);
+ cgroup_unlock();
+}
+#endif
+
+static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
+
+int register_oom_notifier(struct notifier_block *nb)
+{
+ return blocking_notifier_chain_register(&oom_notify_list, nb);
+}
+EXPORT_SYMBOL_GPL(register_oom_notifier);
+
+int unregister_oom_notifier(struct notifier_block *nb)
+{
+ return blocking_notifier_chain_unregister(&oom_notify_list, nb);
+}
+EXPORT_SYMBOL_GPL(unregister_oom_notifier);
+
+/*
+ * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero
+ * if a parallel OOM killing is already taking place that includes a zone in
+ * the zonelist. Otherwise, locks all zones in the zonelist and returns 1.
+ */
+int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask)
+{
+ struct zoneref *z;
+ struct zone *zone;
+ int ret = 1;
+
+ spin_lock(&zone_scan_mutex);
+ for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
+ if (zone_is_oom_locked(zone)) {
+ ret = 0;
+ goto out;
+ }
+ }
+
+ for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
+ /*
+ * Lock each zone in the zonelist under zone_scan_mutex so a
+ * parallel invocation of try_set_zone_oom() doesn't succeed
+ * when it shouldn't.
+ */
+ zone_set_flag(zone, ZONE_OOM_LOCKED);
+ }
+
+out:
+ spin_unlock(&zone_scan_mutex);
+ return ret;
+}
+
+/*
+ * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed
+ * allocation attempts with zonelists containing them may now recall the OOM
+ * killer, if necessary.
+ */
+void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask)
+{
+ struct zoneref *z;
+ struct zone *zone;
+
+ spin_lock(&zone_scan_mutex);
+ for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) {
+ zone_clear_flag(zone, ZONE_OOM_LOCKED);
+ }
+ spin_unlock(&zone_scan_mutex);
+}
+
+/**
+ * out_of_memory - kill the "best" process when we run out of memory
+ * @zonelist: zonelist pointer
+ * @gfp_mask: memory allocation flags
+ * @order: amount of memory being requested as a power of 2
+ *
+ * If we run out of memory, we have the choice between either
+ * killing a random task (bad), letting the system crash (worse)
+ * OR try to be smart about which process to kill. Note that we
+ * don't have to be perfect here, we just have to be good.
+ */
+void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order)
+{
+ struct task_struct *p;
+ unsigned long points = 0;
+ unsigned long freed = 0;
+ enum oom_constraint constraint;
+
+ blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
+ if (freed > 0)
+ /* Got some memory back in the last second. */
+ return;
+
+ if (sysctl_panic_on_oom == 2)
+ panic("out of memory. Compulsory panic_on_oom is selected.\n");
+
+ /*
+ * Check if there were limitations on the allocation (only relevant for
+ * NUMA) that may require different handling.
+ */
+ constraint = constrained_alloc(zonelist, gfp_mask);
+ read_lock(&tasklist_lock);
+
+ switch (constraint) {
+ case CONSTRAINT_MEMORY_POLICY:
+ oom_kill_process(current, gfp_mask, order, points, NULL,
+ "No available memory (MPOL_BIND)");
+ break;
+
+ case CONSTRAINT_NONE:
+ if (sysctl_panic_on_oom)
+ panic("out of memory. panic_on_oom is selected\n");
+ /* Fall-through */
+ case CONSTRAINT_CPUSET:
+ if (sysctl_oom_kill_allocating_task) {
+ oom_kill_process(current, gfp_mask, order, points, NULL,
+ "Out of memory (oom_kill_allocating_task)");
+ break;
+ }
+retry:
+ /*
+ * Rambo mode: Shoot down a process and hope it solves whatever
+ * issues we may have.
+ */
+ p = select_bad_process(&points, NULL);
+
+ if (PTR_ERR(p) == -1UL)
+ goto out;
+
+ /* Found nothing?!?! Either we hang forever, or we panic. */
+ if (!p) {
+ read_unlock(&tasklist_lock);
+ panic("Out of memory and no killable processes...\n");
+ }
+
+ if (oom_kill_process(p, gfp_mask, order, points, NULL,
+ "Out of memory"))
+ goto retry;
+
+ break;
+ }
+
+out:
+ read_unlock(&tasklist_lock);
+
+ /*
+ * Give "p" a good chance of killing itself before we
+ * retry to allocate memory unless "p" is current
+ */
+ if (!test_thread_flag(TIF_MEMDIE))
+ schedule_timeout_uninterruptible(1);
+}
OpenPOWER on IntegriCloud