summaryrefslogtreecommitdiffstats
path: root/block/cfq-iosched.c
diff options
context:
space:
mode:
Diffstat (limited to 'block/cfq-iosched.c')
-rw-r--r--block/cfq-iosched.c2423
1 files changed, 2423 insertions, 0 deletions
diff --git a/block/cfq-iosched.c b/block/cfq-iosched.c
new file mode 100644
index 0000000..6a062ee
--- /dev/null
+++ b/block/cfq-iosched.c
@@ -0,0 +1,2423 @@
+/*
+ * CFQ, or complete fairness queueing, disk scheduler.
+ *
+ * Based on ideas from a previously unfinished io
+ * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
+ *
+ * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
+ */
+#include <linux/module.h>
+#include <linux/blkdev.h>
+#include <linux/elevator.h>
+#include <linux/rbtree.h>
+#include <linux/ioprio.h>
+#include <linux/blktrace_api.h>
+
+/*
+ * tunables
+ */
+/* max queue in one round of service */
+static const int cfq_quantum = 4;
+static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
+/* maximum backwards seek, in KiB */
+static const int cfq_back_max = 16 * 1024;
+/* penalty of a backwards seek */
+static const int cfq_back_penalty = 2;
+static const int cfq_slice_sync = HZ / 10;
+static int cfq_slice_async = HZ / 25;
+static const int cfq_slice_async_rq = 2;
+static int cfq_slice_idle = HZ / 125;
+
+/*
+ * offset from end of service tree
+ */
+#define CFQ_IDLE_DELAY (HZ / 5)
+
+/*
+ * below this threshold, we consider thinktime immediate
+ */
+#define CFQ_MIN_TT (2)
+
+#define CFQ_SLICE_SCALE (5)
+#define CFQ_HW_QUEUE_MIN (5)
+
+#define RQ_CIC(rq) \
+ ((struct cfq_io_context *) (rq)->elevator_private)
+#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
+
+static struct kmem_cache *cfq_pool;
+static struct kmem_cache *cfq_ioc_pool;
+
+static DEFINE_PER_CPU(unsigned long, ioc_count);
+static struct completion *ioc_gone;
+static DEFINE_SPINLOCK(ioc_gone_lock);
+
+#define CFQ_PRIO_LISTS IOPRIO_BE_NR
+#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
+#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
+
+#define ASYNC (0)
+#define SYNC (1)
+
+#define sample_valid(samples) ((samples) > 80)
+
+/*
+ * Most of our rbtree usage is for sorting with min extraction, so
+ * if we cache the leftmost node we don't have to walk down the tree
+ * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
+ * move this into the elevator for the rq sorting as well.
+ */
+struct cfq_rb_root {
+ struct rb_root rb;
+ struct rb_node *left;
+};
+#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
+
+/*
+ * Per block device queue structure
+ */
+struct cfq_data {
+ struct request_queue *queue;
+
+ /*
+ * rr list of queues with requests and the count of them
+ */
+ struct cfq_rb_root service_tree;
+ unsigned int busy_queues;
+
+ int rq_in_driver;
+ int sync_flight;
+
+ /*
+ * queue-depth detection
+ */
+ int rq_queued;
+ int hw_tag;
+ int hw_tag_samples;
+ int rq_in_driver_peak;
+
+ /*
+ * idle window management
+ */
+ struct timer_list idle_slice_timer;
+ struct work_struct unplug_work;
+
+ struct cfq_queue *active_queue;
+ struct cfq_io_context *active_cic;
+
+ /*
+ * async queue for each priority case
+ */
+ struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
+ struct cfq_queue *async_idle_cfqq;
+
+ sector_t last_position;
+ unsigned long last_end_request;
+
+ /*
+ * tunables, see top of file
+ */
+ unsigned int cfq_quantum;
+ unsigned int cfq_fifo_expire[2];
+ unsigned int cfq_back_penalty;
+ unsigned int cfq_back_max;
+ unsigned int cfq_slice[2];
+ unsigned int cfq_slice_async_rq;
+ unsigned int cfq_slice_idle;
+
+ struct list_head cic_list;
+};
+
+/*
+ * Per process-grouping structure
+ */
+struct cfq_queue {
+ /* reference count */
+ atomic_t ref;
+ /* various state flags, see below */
+ unsigned int flags;
+ /* parent cfq_data */
+ struct cfq_data *cfqd;
+ /* service_tree member */
+ struct rb_node rb_node;
+ /* service_tree key */
+ unsigned long rb_key;
+ /* sorted list of pending requests */
+ struct rb_root sort_list;
+ /* if fifo isn't expired, next request to serve */
+ struct request *next_rq;
+ /* requests queued in sort_list */
+ int queued[2];
+ /* currently allocated requests */
+ int allocated[2];
+ /* fifo list of requests in sort_list */
+ struct list_head fifo;
+
+ unsigned long slice_end;
+ long slice_resid;
+
+ /* pending metadata requests */
+ int meta_pending;
+ /* number of requests that are on the dispatch list or inside driver */
+ int dispatched;
+
+ /* io prio of this group */
+ unsigned short ioprio, org_ioprio;
+ unsigned short ioprio_class, org_ioprio_class;
+
+ pid_t pid;
+};
+
+enum cfqq_state_flags {
+ CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
+ CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
+ CFQ_CFQQ_FLAG_must_alloc, /* must be allowed rq alloc */
+ CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
+ CFQ_CFQQ_FLAG_must_dispatch, /* must dispatch, even if expired */
+ CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
+ CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
+ CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
+ CFQ_CFQQ_FLAG_queue_new, /* queue never been serviced */
+ CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
+ CFQ_CFQQ_FLAG_sync, /* synchronous queue */
+};
+
+#define CFQ_CFQQ_FNS(name) \
+static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
+{ \
+ (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
+} \
+static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
+{ \
+ (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
+} \
+static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
+{ \
+ return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
+}
+
+CFQ_CFQQ_FNS(on_rr);
+CFQ_CFQQ_FNS(wait_request);
+CFQ_CFQQ_FNS(must_alloc);
+CFQ_CFQQ_FNS(must_alloc_slice);
+CFQ_CFQQ_FNS(must_dispatch);
+CFQ_CFQQ_FNS(fifo_expire);
+CFQ_CFQQ_FNS(idle_window);
+CFQ_CFQQ_FNS(prio_changed);
+CFQ_CFQQ_FNS(queue_new);
+CFQ_CFQQ_FNS(slice_new);
+CFQ_CFQQ_FNS(sync);
+#undef CFQ_CFQQ_FNS
+
+#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
+ blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
+#define cfq_log(cfqd, fmt, args...) \
+ blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
+
+static void cfq_dispatch_insert(struct request_queue *, struct request *);
+static struct cfq_queue *cfq_get_queue(struct cfq_data *, int,
+ struct io_context *, gfp_t);
+static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
+ struct io_context *);
+
+static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
+ int is_sync)
+{
+ return cic->cfqq[!!is_sync];
+}
+
+static inline void cic_set_cfqq(struct cfq_io_context *cic,
+ struct cfq_queue *cfqq, int is_sync)
+{
+ cic->cfqq[!!is_sync] = cfqq;
+}
+
+/*
+ * We regard a request as SYNC, if it's either a read or has the SYNC bit
+ * set (in which case it could also be direct WRITE).
+ */
+static inline int cfq_bio_sync(struct bio *bio)
+{
+ if (bio_data_dir(bio) == READ || bio_sync(bio))
+ return 1;
+
+ return 0;
+}
+
+/*
+ * scheduler run of queue, if there are requests pending and no one in the
+ * driver that will restart queueing
+ */
+static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
+{
+ if (cfqd->busy_queues) {
+ cfq_log(cfqd, "schedule dispatch");
+ kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
+ }
+}
+
+static int cfq_queue_empty(struct request_queue *q)
+{
+ struct cfq_data *cfqd = q->elevator->elevator_data;
+
+ return !cfqd->busy_queues;
+}
+
+/*
+ * Scale schedule slice based on io priority. Use the sync time slice only
+ * if a queue is marked sync and has sync io queued. A sync queue with async
+ * io only, should not get full sync slice length.
+ */
+static inline int cfq_prio_slice(struct cfq_data *cfqd, int sync,
+ unsigned short prio)
+{
+ const int base_slice = cfqd->cfq_slice[sync];
+
+ WARN_ON(prio >= IOPRIO_BE_NR);
+
+ return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
+}
+
+static inline int
+cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
+{
+ return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
+}
+
+static inline void
+cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
+{
+ cfqq->slice_end = cfq_prio_to_slice(cfqd, cfqq) + jiffies;
+ cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
+}
+
+/*
+ * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
+ * isn't valid until the first request from the dispatch is activated
+ * and the slice time set.
+ */
+static inline int cfq_slice_used(struct cfq_queue *cfqq)
+{
+ if (cfq_cfqq_slice_new(cfqq))
+ return 0;
+ if (time_before(jiffies, cfqq->slice_end))
+ return 0;
+
+ return 1;
+}
+
+/*
+ * Lifted from AS - choose which of rq1 and rq2 that is best served now.
+ * We choose the request that is closest to the head right now. Distance
+ * behind the head is penalized and only allowed to a certain extent.
+ */
+static struct request *
+cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2)
+{
+ sector_t last, s1, s2, d1 = 0, d2 = 0;
+ unsigned long back_max;
+#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
+#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
+ unsigned wrap = 0; /* bit mask: requests behind the disk head? */
+
+ if (rq1 == NULL || rq1 == rq2)
+ return rq2;
+ if (rq2 == NULL)
+ return rq1;
+
+ if (rq_is_sync(rq1) && !rq_is_sync(rq2))
+ return rq1;
+ else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
+ return rq2;
+ if (rq_is_meta(rq1) && !rq_is_meta(rq2))
+ return rq1;
+ else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
+ return rq2;
+
+ s1 = rq1->sector;
+ s2 = rq2->sector;
+
+ last = cfqd->last_position;
+
+ /*
+ * by definition, 1KiB is 2 sectors
+ */
+ back_max = cfqd->cfq_back_max * 2;
+
+ /*
+ * Strict one way elevator _except_ in the case where we allow
+ * short backward seeks which are biased as twice the cost of a
+ * similar forward seek.
+ */
+ if (s1 >= last)
+ d1 = s1 - last;
+ else if (s1 + back_max >= last)
+ d1 = (last - s1) * cfqd->cfq_back_penalty;
+ else
+ wrap |= CFQ_RQ1_WRAP;
+
+ if (s2 >= last)
+ d2 = s2 - last;
+ else if (s2 + back_max >= last)
+ d2 = (last - s2) * cfqd->cfq_back_penalty;
+ else
+ wrap |= CFQ_RQ2_WRAP;
+
+ /* Found required data */
+
+ /*
+ * By doing switch() on the bit mask "wrap" we avoid having to
+ * check two variables for all permutations: --> faster!
+ */
+ switch (wrap) {
+ case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
+ if (d1 < d2)
+ return rq1;
+ else if (d2 < d1)
+ return rq2;
+ else {
+ if (s1 >= s2)
+ return rq1;
+ else
+ return rq2;
+ }
+
+ case CFQ_RQ2_WRAP:
+ return rq1;
+ case CFQ_RQ1_WRAP:
+ return rq2;
+ case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
+ default:
+ /*
+ * Since both rqs are wrapped,
+ * start with the one that's further behind head
+ * (--> only *one* back seek required),
+ * since back seek takes more time than forward.
+ */
+ if (s1 <= s2)
+ return rq1;
+ else
+ return rq2;
+ }
+}
+
+/*
+ * The below is leftmost cache rbtree addon
+ */
+static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
+{
+ if (!root->left)
+ root->left = rb_first(&root->rb);
+
+ if (root->left)
+ return rb_entry(root->left, struct cfq_queue, rb_node);
+
+ return NULL;
+}
+
+static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
+{
+ if (root->left == n)
+ root->left = NULL;
+
+ rb_erase(n, &root->rb);
+ RB_CLEAR_NODE(n);
+}
+
+/*
+ * would be nice to take fifo expire time into account as well
+ */
+static struct request *
+cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
+ struct request *last)
+{
+ struct rb_node *rbnext = rb_next(&last->rb_node);
+ struct rb_node *rbprev = rb_prev(&last->rb_node);
+ struct request *next = NULL, *prev = NULL;
+
+ BUG_ON(RB_EMPTY_NODE(&last->rb_node));
+
+ if (rbprev)
+ prev = rb_entry_rq(rbprev);
+
+ if (rbnext)
+ next = rb_entry_rq(rbnext);
+ else {
+ rbnext = rb_first(&cfqq->sort_list);
+ if (rbnext && rbnext != &last->rb_node)
+ next = rb_entry_rq(rbnext);
+ }
+
+ return cfq_choose_req(cfqd, next, prev);
+}
+
+static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
+ struct cfq_queue *cfqq)
+{
+ /*
+ * just an approximation, should be ok.
+ */
+ return (cfqd->busy_queues - 1) * (cfq_prio_slice(cfqd, 1, 0) -
+ cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
+}
+
+/*
+ * The cfqd->service_tree holds all pending cfq_queue's that have
+ * requests waiting to be processed. It is sorted in the order that
+ * we will service the queues.
+ */
+static void cfq_service_tree_add(struct cfq_data *cfqd,
+ struct cfq_queue *cfqq, int add_front)
+{
+ struct rb_node **p, *parent;
+ struct cfq_queue *__cfqq;
+ unsigned long rb_key;
+ int left;
+
+ if (cfq_class_idle(cfqq)) {
+ rb_key = CFQ_IDLE_DELAY;
+ parent = rb_last(&cfqd->service_tree.rb);
+ if (parent && parent != &cfqq->rb_node) {
+ __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
+ rb_key += __cfqq->rb_key;
+ } else
+ rb_key += jiffies;
+ } else if (!add_front) {
+ rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
+ rb_key += cfqq->slice_resid;
+ cfqq->slice_resid = 0;
+ } else
+ rb_key = 0;
+
+ if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
+ /*
+ * same position, nothing more to do
+ */
+ if (rb_key == cfqq->rb_key)
+ return;
+
+ cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
+ }
+
+ left = 1;
+ parent = NULL;
+ p = &cfqd->service_tree.rb.rb_node;
+ while (*p) {
+ struct rb_node **n;
+
+ parent = *p;
+ __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
+
+ /*
+ * sort RT queues first, we always want to give
+ * preference to them. IDLE queues goes to the back.
+ * after that, sort on the next service time.
+ */
+ if (cfq_class_rt(cfqq) > cfq_class_rt(__cfqq))
+ n = &(*p)->rb_left;
+ else if (cfq_class_rt(cfqq) < cfq_class_rt(__cfqq))
+ n = &(*p)->rb_right;
+ else if (cfq_class_idle(cfqq) < cfq_class_idle(__cfqq))
+ n = &(*p)->rb_left;
+ else if (cfq_class_idle(cfqq) > cfq_class_idle(__cfqq))
+ n = &(*p)->rb_right;
+ else if (rb_key < __cfqq->rb_key)
+ n = &(*p)->rb_left;
+ else
+ n = &(*p)->rb_right;
+
+ if (n == &(*p)->rb_right)
+ left = 0;
+
+ p = n;
+ }
+
+ if (left)
+ cfqd->service_tree.left = &cfqq->rb_node;
+
+ cfqq->rb_key = rb_key;
+ rb_link_node(&cfqq->rb_node, parent, p);
+ rb_insert_color(&cfqq->rb_node, &cfqd->service_tree.rb);
+}
+
+/*
+ * Update cfqq's position in the service tree.
+ */
+static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
+{
+ /*
+ * Resorting requires the cfqq to be on the RR list already.
+ */
+ if (cfq_cfqq_on_rr(cfqq))
+ cfq_service_tree_add(cfqd, cfqq, 0);
+}
+
+/*
+ * add to busy list of queues for service, trying to be fair in ordering
+ * the pending list according to last request service
+ */
+static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
+{
+ cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
+ BUG_ON(cfq_cfqq_on_rr(cfqq));
+ cfq_mark_cfqq_on_rr(cfqq);
+ cfqd->busy_queues++;
+
+ cfq_resort_rr_list(cfqd, cfqq);
+}
+
+/*
+ * Called when the cfqq no longer has requests pending, remove it from
+ * the service tree.
+ */
+static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
+{
+ cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
+ BUG_ON(!cfq_cfqq_on_rr(cfqq));
+ cfq_clear_cfqq_on_rr(cfqq);
+
+ if (!RB_EMPTY_NODE(&cfqq->rb_node))
+ cfq_rb_erase(&cfqq->rb_node, &cfqd->service_tree);
+
+ BUG_ON(!cfqd->busy_queues);
+ cfqd->busy_queues--;
+}
+
+/*
+ * rb tree support functions
+ */
+static void cfq_del_rq_rb(struct request *rq)
+{
+ struct cfq_queue *cfqq = RQ_CFQQ(rq);
+ struct cfq_data *cfqd = cfqq->cfqd;
+ const int sync = rq_is_sync(rq);
+
+ BUG_ON(!cfqq->queued[sync]);
+ cfqq->queued[sync]--;
+
+ elv_rb_del(&cfqq->sort_list, rq);
+
+ if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
+ cfq_del_cfqq_rr(cfqd, cfqq);
+}
+
+static void cfq_add_rq_rb(struct request *rq)
+{
+ struct cfq_queue *cfqq = RQ_CFQQ(rq);
+ struct cfq_data *cfqd = cfqq->cfqd;
+ struct request *__alias;
+
+ cfqq->queued[rq_is_sync(rq)]++;
+
+ /*
+ * looks a little odd, but the first insert might return an alias.
+ * if that happens, put the alias on the dispatch list
+ */
+ while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
+ cfq_dispatch_insert(cfqd->queue, __alias);
+
+ if (!cfq_cfqq_on_rr(cfqq))
+ cfq_add_cfqq_rr(cfqd, cfqq);
+
+ /*
+ * check if this request is a better next-serve candidate
+ */
+ cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq);
+ BUG_ON(!cfqq->next_rq);
+}
+
+static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
+{
+ elv_rb_del(&cfqq->sort_list, rq);
+ cfqq->queued[rq_is_sync(rq)]--;
+ cfq_add_rq_rb(rq);
+}
+
+static struct request *
+cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
+{
+ struct task_struct *tsk = current;
+ struct cfq_io_context *cic;
+ struct cfq_queue *cfqq;
+
+ cic = cfq_cic_lookup(cfqd, tsk->io_context);
+ if (!cic)
+ return NULL;
+
+ cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
+ if (cfqq) {
+ sector_t sector = bio->bi_sector + bio_sectors(bio);
+
+ return elv_rb_find(&cfqq->sort_list, sector);
+ }
+
+ return NULL;
+}
+
+static void cfq_activate_request(struct request_queue *q, struct request *rq)
+{
+ struct cfq_data *cfqd = q->elevator->elevator_data;
+
+ cfqd->rq_in_driver++;
+ cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
+ cfqd->rq_in_driver);
+
+ cfqd->last_position = rq->hard_sector + rq->hard_nr_sectors;
+}
+
+static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
+{
+ struct cfq_data *cfqd = q->elevator->elevator_data;
+
+ WARN_ON(!cfqd->rq_in_driver);
+ cfqd->rq_in_driver--;
+ cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
+ cfqd->rq_in_driver);
+}
+
+static void cfq_remove_request(struct request *rq)
+{
+ struct cfq_queue *cfqq = RQ_CFQQ(rq);
+
+ if (cfqq->next_rq == rq)
+ cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
+
+ list_del_init(&rq->queuelist);
+ cfq_del_rq_rb(rq);
+
+ cfqq->cfqd->rq_queued--;
+ if (rq_is_meta(rq)) {
+ WARN_ON(!cfqq->meta_pending);
+ cfqq->meta_pending--;
+ }
+}
+
+static int cfq_merge(struct request_queue *q, struct request **req,
+ struct bio *bio)
+{
+ struct cfq_data *cfqd = q->elevator->elevator_data;
+ struct request *__rq;
+
+ __rq = cfq_find_rq_fmerge(cfqd, bio);
+ if (__rq && elv_rq_merge_ok(__rq, bio)) {
+ *req = __rq;
+ return ELEVATOR_FRONT_MERGE;
+ }
+
+ return ELEVATOR_NO_MERGE;
+}
+
+static void cfq_merged_request(struct request_queue *q, struct request *req,
+ int type)
+{
+ if (type == ELEVATOR_FRONT_MERGE) {
+ struct cfq_queue *cfqq = RQ_CFQQ(req);
+
+ cfq_reposition_rq_rb(cfqq, req);
+ }
+}
+
+static void
+cfq_merged_requests(struct request_queue *q, struct request *rq,
+ struct request *next)
+{
+ /*
+ * reposition in fifo if next is older than rq
+ */
+ if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
+ time_before(next->start_time, rq->start_time))
+ list_move(&rq->queuelist, &next->queuelist);
+
+ cfq_remove_request(next);
+}
+
+static int cfq_allow_merge(struct request_queue *q, struct request *rq,
+ struct bio *bio)
+{
+ struct cfq_data *cfqd = q->elevator->elevator_data;
+ struct cfq_io_context *cic;
+ struct cfq_queue *cfqq;
+
+ /*
+ * Disallow merge of a sync bio into an async request.
+ */
+ if (cfq_bio_sync(bio) && !rq_is_sync(rq))
+ return 0;
+
+ /*
+ * Lookup the cfqq that this bio will be queued with. Allow
+ * merge only if rq is queued there.
+ */
+ cic = cfq_cic_lookup(cfqd, current->io_context);
+ if (!cic)
+ return 0;
+
+ cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
+ if (cfqq == RQ_CFQQ(rq))
+ return 1;
+
+ return 0;
+}
+
+static void __cfq_set_active_queue(struct cfq_data *cfqd,
+ struct cfq_queue *cfqq)
+{
+ if (cfqq) {
+ cfq_log_cfqq(cfqd, cfqq, "set_active");
+ cfqq->slice_end = 0;
+ cfq_clear_cfqq_must_alloc_slice(cfqq);
+ cfq_clear_cfqq_fifo_expire(cfqq);
+ cfq_mark_cfqq_slice_new(cfqq);
+ cfq_clear_cfqq_queue_new(cfqq);
+ }
+
+ cfqd->active_queue = cfqq;
+}
+
+/*
+ * current cfqq expired its slice (or was too idle), select new one
+ */
+static void
+__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
+ int timed_out)
+{
+ cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
+
+ if (cfq_cfqq_wait_request(cfqq))
+ del_timer(&cfqd->idle_slice_timer);
+
+ cfq_clear_cfqq_must_dispatch(cfqq);
+ cfq_clear_cfqq_wait_request(cfqq);
+
+ /*
+ * store what was left of this slice, if the queue idled/timed out
+ */
+ if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
+ cfqq->slice_resid = cfqq->slice_end - jiffies;
+ cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
+ }
+
+ cfq_resort_rr_list(cfqd, cfqq);
+
+ if (cfqq == cfqd->active_queue)
+ cfqd->active_queue = NULL;
+
+ if (cfqd->active_cic) {
+ put_io_context(cfqd->active_cic->ioc);
+ cfqd->active_cic = NULL;
+ }
+}
+
+static inline void cfq_slice_expired(struct cfq_data *cfqd, int timed_out)
+{
+ struct cfq_queue *cfqq = cfqd->active_queue;
+
+ if (cfqq)
+ __cfq_slice_expired(cfqd, cfqq, timed_out);
+}
+
+/*
+ * Get next queue for service. Unless we have a queue preemption,
+ * we'll simply select the first cfqq in the service tree.
+ */
+static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
+{
+ if (RB_EMPTY_ROOT(&cfqd->service_tree.rb))
+ return NULL;
+
+ return cfq_rb_first(&cfqd->service_tree);
+}
+
+/*
+ * Get and set a new active queue for service.
+ */
+static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd)
+{
+ struct cfq_queue *cfqq;
+
+ cfqq = cfq_get_next_queue(cfqd);
+ __cfq_set_active_queue(cfqd, cfqq);
+ return cfqq;
+}
+
+static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
+ struct request *rq)
+{
+ if (rq->sector >= cfqd->last_position)
+ return rq->sector - cfqd->last_position;
+ else
+ return cfqd->last_position - rq->sector;
+}
+
+static inline int cfq_rq_close(struct cfq_data *cfqd, struct request *rq)
+{
+ struct cfq_io_context *cic = cfqd->active_cic;
+
+ if (!sample_valid(cic->seek_samples))
+ return 0;
+
+ return cfq_dist_from_last(cfqd, rq) <= cic->seek_mean;
+}
+
+static int cfq_close_cooperator(struct cfq_data *cfq_data,
+ struct cfq_queue *cfqq)
+{
+ /*
+ * We should notice if some of the queues are cooperating, eg
+ * working closely on the same area of the disk. In that case,
+ * we can group them together and don't waste time idling.
+ */
+ return 0;
+}
+
+#define CIC_SEEKY(cic) ((cic)->seek_mean > (8 * 1024))
+
+static void cfq_arm_slice_timer(struct cfq_data *cfqd)
+{
+ struct cfq_queue *cfqq = cfqd->active_queue;
+ struct cfq_io_context *cic;
+ unsigned long sl;
+
+ /*
+ * SSD device without seek penalty, disable idling. But only do so
+ * for devices that support queuing, otherwise we still have a problem
+ * with sync vs async workloads.
+ */
+ if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
+ return;
+
+ WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
+ WARN_ON(cfq_cfqq_slice_new(cfqq));
+
+ /*
+ * idle is disabled, either manually or by past process history
+ */
+ if (!cfqd->cfq_slice_idle || !cfq_cfqq_idle_window(cfqq))
+ return;
+
+ /*
+ * still requests with the driver, don't idle
+ */
+ if (cfqd->rq_in_driver)
+ return;
+
+ /*
+ * task has exited, don't wait
+ */
+ cic = cfqd->active_cic;
+ if (!cic || !atomic_read(&cic->ioc->nr_tasks))
+ return;
+
+ /*
+ * See if this prio level has a good candidate
+ */
+ if (cfq_close_cooperator(cfqd, cfqq) &&
+ (sample_valid(cic->ttime_samples) && cic->ttime_mean > 2))
+ return;
+
+ cfq_mark_cfqq_must_dispatch(cfqq);
+ cfq_mark_cfqq_wait_request(cfqq);
+
+ /*
+ * we don't want to idle for seeks, but we do want to allow
+ * fair distribution of slice time for a process doing back-to-back
+ * seeks. so allow a little bit of time for him to submit a new rq
+ */
+ sl = cfqd->cfq_slice_idle;
+ if (sample_valid(cic->seek_samples) && CIC_SEEKY(cic))
+ sl = min(sl, msecs_to_jiffies(CFQ_MIN_TT));
+
+ mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
+ cfq_log(cfqd, "arm_idle: %lu", sl);
+}
+
+/*
+ * Move request from internal lists to the request queue dispatch list.
+ */
+static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
+{
+ struct cfq_data *cfqd = q->elevator->elevator_data;
+ struct cfq_queue *cfqq = RQ_CFQQ(rq);
+
+ cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
+
+ cfq_remove_request(rq);
+ cfqq->dispatched++;
+ elv_dispatch_sort(q, rq);
+
+ if (cfq_cfqq_sync(cfqq))
+ cfqd->sync_flight++;
+}
+
+/*
+ * return expired entry, or NULL to just start from scratch in rbtree
+ */
+static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
+{
+ struct cfq_data *cfqd = cfqq->cfqd;
+ struct request *rq;
+ int fifo;
+
+ if (cfq_cfqq_fifo_expire(cfqq))
+ return NULL;
+
+ cfq_mark_cfqq_fifo_expire(cfqq);
+
+ if (list_empty(&cfqq->fifo))
+ return NULL;
+
+ fifo = cfq_cfqq_sync(cfqq);
+ rq = rq_entry_fifo(cfqq->fifo.next);
+
+ if (time_before(jiffies, rq->start_time + cfqd->cfq_fifo_expire[fifo]))
+ rq = NULL;
+
+ cfq_log_cfqq(cfqd, cfqq, "fifo=%p", rq);
+ return rq;
+}
+
+static inline int
+cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
+{
+ const int base_rq = cfqd->cfq_slice_async_rq;
+
+ WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
+
+ return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
+}
+
+/*
+ * Select a queue for service. If we have a current active queue,
+ * check whether to continue servicing it, or retrieve and set a new one.
+ */
+static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
+{
+ struct cfq_queue *cfqq;
+
+ cfqq = cfqd->active_queue;
+ if (!cfqq)
+ goto new_queue;
+
+ /*
+ * The active queue has run out of time, expire it and select new.
+ */
+ if (cfq_slice_used(cfqq))
+ goto expire;
+
+ /*
+ * The active queue has requests and isn't expired, allow it to
+ * dispatch.
+ */
+ if (!RB_EMPTY_ROOT(&cfqq->sort_list))
+ goto keep_queue;
+
+ /*
+ * No requests pending. If the active queue still has requests in
+ * flight or is idling for a new request, allow either of these
+ * conditions to happen (or time out) before selecting a new queue.
+ */
+ if (timer_pending(&cfqd->idle_slice_timer) ||
+ (cfqq->dispatched && cfq_cfqq_idle_window(cfqq))) {
+ cfqq = NULL;
+ goto keep_queue;
+ }
+
+expire:
+ cfq_slice_expired(cfqd, 0);
+new_queue:
+ cfqq = cfq_set_active_queue(cfqd);
+keep_queue:
+ return cfqq;
+}
+
+/*
+ * Dispatch some requests from cfqq, moving them to the request queue
+ * dispatch list.
+ */
+static int
+__cfq_dispatch_requests(struct cfq_data *cfqd, struct cfq_queue *cfqq,
+ int max_dispatch)
+{
+ int dispatched = 0;
+
+ BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
+
+ do {
+ struct request *rq;
+
+ /*
+ * follow expired path, else get first next available
+ */
+ rq = cfq_check_fifo(cfqq);
+ if (rq == NULL)
+ rq = cfqq->next_rq;
+
+ /*
+ * finally, insert request into driver dispatch list
+ */
+ cfq_dispatch_insert(cfqd->queue, rq);
+
+ dispatched++;
+
+ if (!cfqd->active_cic) {
+ atomic_inc(&RQ_CIC(rq)->ioc->refcount);
+ cfqd->active_cic = RQ_CIC(rq);
+ }
+
+ if (RB_EMPTY_ROOT(&cfqq->sort_list))
+ break;
+
+ } while (dispatched < max_dispatch);
+
+ /*
+ * expire an async queue immediately if it has used up its slice. idle
+ * queue always expire after 1 dispatch round.
+ */
+ if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
+ dispatched >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
+ cfq_class_idle(cfqq))) {
+ cfqq->slice_end = jiffies + 1;
+ cfq_slice_expired(cfqd, 0);
+ }
+
+ return dispatched;
+}
+
+static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
+{
+ int dispatched = 0;
+
+ while (cfqq->next_rq) {
+ cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
+ dispatched++;
+ }
+
+ BUG_ON(!list_empty(&cfqq->fifo));
+ return dispatched;
+}
+
+/*
+ * Drain our current requests. Used for barriers and when switching
+ * io schedulers on-the-fly.
+ */
+static int cfq_forced_dispatch(struct cfq_data *cfqd)
+{
+ struct cfq_queue *cfqq;
+ int dispatched = 0;
+
+ while ((cfqq = cfq_rb_first(&cfqd->service_tree)) != NULL)
+ dispatched += __cfq_forced_dispatch_cfqq(cfqq);
+
+ cfq_slice_expired(cfqd, 0);
+
+ BUG_ON(cfqd->busy_queues);
+
+ cfq_log(cfqd, "forced_dispatch=%d\n", dispatched);
+ return dispatched;
+}
+
+static int cfq_dispatch_requests(struct request_queue *q, int force)
+{
+ struct cfq_data *cfqd = q->elevator->elevator_data;
+ struct cfq_queue *cfqq;
+ int dispatched;
+
+ if (!cfqd->busy_queues)
+ return 0;
+
+ if (unlikely(force))
+ return cfq_forced_dispatch(cfqd);
+
+ dispatched = 0;
+ while ((cfqq = cfq_select_queue(cfqd)) != NULL) {
+ int max_dispatch;
+
+ max_dispatch = cfqd->cfq_quantum;
+ if (cfq_class_idle(cfqq))
+ max_dispatch = 1;
+
+ if (cfqq->dispatched >= max_dispatch) {
+ if (cfqd->busy_queues > 1)
+ break;
+ if (cfqq->dispatched >= 4 * max_dispatch)
+ break;
+ }
+
+ if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
+ break;
+
+ cfq_clear_cfqq_must_dispatch(cfqq);
+ cfq_clear_cfqq_wait_request(cfqq);
+ del_timer(&cfqd->idle_slice_timer);
+
+ dispatched += __cfq_dispatch_requests(cfqd, cfqq, max_dispatch);
+ }
+
+ cfq_log(cfqd, "dispatched=%d", dispatched);
+ return dispatched;
+}
+
+/*
+ * task holds one reference to the queue, dropped when task exits. each rq
+ * in-flight on this queue also holds a reference, dropped when rq is freed.
+ *
+ * queue lock must be held here.
+ */
+static void cfq_put_queue(struct cfq_queue *cfqq)
+{
+ struct cfq_data *cfqd = cfqq->cfqd;
+
+ BUG_ON(atomic_read(&cfqq->ref) <= 0);
+
+ if (!atomic_dec_and_test(&cfqq->ref))
+ return;
+
+ cfq_log_cfqq(cfqd, cfqq, "put_queue");
+ BUG_ON(rb_first(&cfqq->sort_list));
+ BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
+ BUG_ON(cfq_cfqq_on_rr(cfqq));
+
+ if (unlikely(cfqd->active_queue == cfqq)) {
+ __cfq_slice_expired(cfqd, cfqq, 0);
+ cfq_schedule_dispatch(cfqd);
+ }
+
+ kmem_cache_free(cfq_pool, cfqq);
+}
+
+/*
+ * Must always be called with the rcu_read_lock() held
+ */
+static void
+__call_for_each_cic(struct io_context *ioc,
+ void (*func)(struct io_context *, struct cfq_io_context *))
+{
+ struct cfq_io_context *cic;
+ struct hlist_node *n;
+
+ hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
+ func(ioc, cic);
+}
+
+/*
+ * Call func for each cic attached to this ioc.
+ */
+static void
+call_for_each_cic(struct io_context *ioc,
+ void (*func)(struct io_context *, struct cfq_io_context *))
+{
+ rcu_read_lock();
+ __call_for_each_cic(ioc, func);
+ rcu_read_unlock();
+}
+
+static void cfq_cic_free_rcu(struct rcu_head *head)
+{
+ struct cfq_io_context *cic;
+
+ cic = container_of(head, struct cfq_io_context, rcu_head);
+
+ kmem_cache_free(cfq_ioc_pool, cic);
+ elv_ioc_count_dec(ioc_count);
+
+ if (ioc_gone) {
+ /*
+ * CFQ scheduler is exiting, grab exit lock and check
+ * the pending io context count. If it hits zero,
+ * complete ioc_gone and set it back to NULL
+ */
+ spin_lock(&ioc_gone_lock);
+ if (ioc_gone && !elv_ioc_count_read(ioc_count)) {
+ complete(ioc_gone);
+ ioc_gone = NULL;
+ }
+ spin_unlock(&ioc_gone_lock);
+ }
+}
+
+static void cfq_cic_free(struct cfq_io_context *cic)
+{
+ call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
+}
+
+static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
+{
+ unsigned long flags;
+
+ BUG_ON(!cic->dead_key);
+
+ spin_lock_irqsave(&ioc->lock, flags);
+ radix_tree_delete(&ioc->radix_root, cic->dead_key);
+ hlist_del_rcu(&cic->cic_list);
+ spin_unlock_irqrestore(&ioc->lock, flags);
+
+ cfq_cic_free(cic);
+}
+
+/*
+ * Must be called with rcu_read_lock() held or preemption otherwise disabled.
+ * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
+ * and ->trim() which is called with the task lock held
+ */
+static void cfq_free_io_context(struct io_context *ioc)
+{
+ /*
+ * ioc->refcount is zero here, or we are called from elv_unregister(),
+ * so no more cic's are allowed to be linked into this ioc. So it
+ * should be ok to iterate over the known list, we will see all cic's
+ * since no new ones are added.
+ */
+ __call_for_each_cic(ioc, cic_free_func);
+}
+
+static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
+{
+ if (unlikely(cfqq == cfqd->active_queue)) {
+ __cfq_slice_expired(cfqd, cfqq, 0);
+ cfq_schedule_dispatch(cfqd);
+ }
+
+ cfq_put_queue(cfqq);
+}
+
+static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
+ struct cfq_io_context *cic)
+{
+ struct io_context *ioc = cic->ioc;
+
+ list_del_init(&cic->queue_list);
+
+ /*
+ * Make sure key == NULL is seen for dead queues
+ */
+ smp_wmb();
+ cic->dead_key = (unsigned long) cic->key;
+ cic->key = NULL;
+
+ if (ioc->ioc_data == cic)
+ rcu_assign_pointer(ioc->ioc_data, NULL);
+
+ if (cic->cfqq[ASYNC]) {
+ cfq_exit_cfqq(cfqd, cic->cfqq[ASYNC]);
+ cic->cfqq[ASYNC] = NULL;
+ }
+
+ if (cic->cfqq[SYNC]) {
+ cfq_exit_cfqq(cfqd, cic->cfqq[SYNC]);
+ cic->cfqq[SYNC] = NULL;
+ }
+}
+
+static void cfq_exit_single_io_context(struct io_context *ioc,
+ struct cfq_io_context *cic)
+{
+ struct cfq_data *cfqd = cic->key;
+
+ if (cfqd) {
+ struct request_queue *q = cfqd->queue;
+ unsigned long flags;
+
+ spin_lock_irqsave(q->queue_lock, flags);
+ __cfq_exit_single_io_context(cfqd, cic);
+ spin_unlock_irqrestore(q->queue_lock, flags);
+ }
+}
+
+/*
+ * The process that ioc belongs to has exited, we need to clean up
+ * and put the internal structures we have that belongs to that process.
+ */
+static void cfq_exit_io_context(struct io_context *ioc)
+{
+ call_for_each_cic(ioc, cfq_exit_single_io_context);
+}
+
+static struct cfq_io_context *
+cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
+{
+ struct cfq_io_context *cic;
+
+ cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
+ cfqd->queue->node);
+ if (cic) {
+ cic->last_end_request = jiffies;
+ INIT_LIST_HEAD(&cic->queue_list);
+ INIT_HLIST_NODE(&cic->cic_list);
+ cic->dtor = cfq_free_io_context;
+ cic->exit = cfq_exit_io_context;
+ elv_ioc_count_inc(ioc_count);
+ }
+
+ return cic;
+}
+
+static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
+{
+ struct task_struct *tsk = current;
+ int ioprio_class;
+
+ if (!cfq_cfqq_prio_changed(cfqq))
+ return;
+
+ ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
+ switch (ioprio_class) {
+ default:
+ printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
+ case IOPRIO_CLASS_NONE:
+ /*
+ * no prio set, inherit CPU scheduling settings
+ */
+ cfqq->ioprio = task_nice_ioprio(tsk);
+ cfqq->ioprio_class = task_nice_ioclass(tsk);
+ break;
+ case IOPRIO_CLASS_RT:
+ cfqq->ioprio = task_ioprio(ioc);
+ cfqq->ioprio_class = IOPRIO_CLASS_RT;
+ break;
+ case IOPRIO_CLASS_BE:
+ cfqq->ioprio = task_ioprio(ioc);
+ cfqq->ioprio_class = IOPRIO_CLASS_BE;
+ break;
+ case IOPRIO_CLASS_IDLE:
+ cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
+ cfqq->ioprio = 7;
+ cfq_clear_cfqq_idle_window(cfqq);
+ break;
+ }
+
+ /*
+ * keep track of original prio settings in case we have to temporarily
+ * elevate the priority of this queue
+ */
+ cfqq->org_ioprio = cfqq->ioprio;
+ cfqq->org_ioprio_class = cfqq->ioprio_class;
+ cfq_clear_cfqq_prio_changed(cfqq);
+}
+
+static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
+{
+ struct cfq_data *cfqd = cic->key;
+ struct cfq_queue *cfqq;
+ unsigned long flags;
+
+ if (unlikely(!cfqd))
+ return;
+
+ spin_lock_irqsave(cfqd->queue->queue_lock, flags);
+
+ cfqq = cic->cfqq[ASYNC];
+ if (cfqq) {
+ struct cfq_queue *new_cfqq;
+ new_cfqq = cfq_get_queue(cfqd, ASYNC, cic->ioc, GFP_ATOMIC);
+ if (new_cfqq) {
+ cic->cfqq[ASYNC] = new_cfqq;
+ cfq_put_queue(cfqq);
+ }
+ }
+
+ cfqq = cic->cfqq[SYNC];
+ if (cfqq)
+ cfq_mark_cfqq_prio_changed(cfqq);
+
+ spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
+}
+
+static void cfq_ioc_set_ioprio(struct io_context *ioc)
+{
+ call_for_each_cic(ioc, changed_ioprio);
+ ioc->ioprio_changed = 0;
+}
+
+static struct cfq_queue *
+cfq_find_alloc_queue(struct cfq_data *cfqd, int is_sync,
+ struct io_context *ioc, gfp_t gfp_mask)
+{
+ struct cfq_queue *cfqq, *new_cfqq = NULL;
+ struct cfq_io_context *cic;
+
+retry:
+ cic = cfq_cic_lookup(cfqd, ioc);
+ /* cic always exists here */
+ cfqq = cic_to_cfqq(cic, is_sync);
+
+ if (!cfqq) {
+ if (new_cfqq) {
+ cfqq = new_cfqq;
+ new_cfqq = NULL;
+ } else if (gfp_mask & __GFP_WAIT) {
+ /*
+ * Inform the allocator of the fact that we will
+ * just repeat this allocation if it fails, to allow
+ * the allocator to do whatever it needs to attempt to
+ * free memory.
+ */
+ spin_unlock_irq(cfqd->queue->queue_lock);
+ new_cfqq = kmem_cache_alloc_node(cfq_pool,
+ gfp_mask | __GFP_NOFAIL | __GFP_ZERO,
+ cfqd->queue->node);
+ spin_lock_irq(cfqd->queue->queue_lock);
+ goto retry;
+ } else {
+ cfqq = kmem_cache_alloc_node(cfq_pool,
+ gfp_mask | __GFP_ZERO,
+ cfqd->queue->node);
+ if (!cfqq)
+ goto out;
+ }
+
+ RB_CLEAR_NODE(&cfqq->rb_node);
+ INIT_LIST_HEAD(&cfqq->fifo);
+
+ atomic_set(&cfqq->ref, 0);
+ cfqq->cfqd = cfqd;
+
+ cfq_mark_cfqq_prio_changed(cfqq);
+ cfq_mark_cfqq_queue_new(cfqq);
+
+ cfq_init_prio_data(cfqq, ioc);
+
+ if (is_sync) {
+ if (!cfq_class_idle(cfqq))
+ cfq_mark_cfqq_idle_window(cfqq);
+ cfq_mark_cfqq_sync(cfqq);
+ }
+ cfqq->pid = current->pid;
+ cfq_log_cfqq(cfqd, cfqq, "alloced");
+ }
+
+ if (new_cfqq)
+ kmem_cache_free(cfq_pool, new_cfqq);
+
+out:
+ WARN_ON((gfp_mask & __GFP_WAIT) && !cfqq);
+ return cfqq;
+}
+
+static struct cfq_queue **
+cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
+{
+ switch (ioprio_class) {
+ case IOPRIO_CLASS_RT:
+ return &cfqd->async_cfqq[0][ioprio];
+ case IOPRIO_CLASS_BE:
+ return &cfqd->async_cfqq[1][ioprio];
+ case IOPRIO_CLASS_IDLE:
+ return &cfqd->async_idle_cfqq;
+ default:
+ BUG();
+ }
+}
+
+static struct cfq_queue *
+cfq_get_queue(struct cfq_data *cfqd, int is_sync, struct io_context *ioc,
+ gfp_t gfp_mask)
+{
+ const int ioprio = task_ioprio(ioc);
+ const int ioprio_class = task_ioprio_class(ioc);
+ struct cfq_queue **async_cfqq = NULL;
+ struct cfq_queue *cfqq = NULL;
+
+ if (!is_sync) {
+ async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
+ cfqq = *async_cfqq;
+ }
+
+ if (!cfqq) {
+ cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
+ if (!cfqq)
+ return NULL;
+ }
+
+ /*
+ * pin the queue now that it's allocated, scheduler exit will prune it
+ */
+ if (!is_sync && !(*async_cfqq)) {
+ atomic_inc(&cfqq->ref);
+ *async_cfqq = cfqq;
+ }
+
+ atomic_inc(&cfqq->ref);
+ return cfqq;
+}
+
+/*
+ * We drop cfq io contexts lazily, so we may find a dead one.
+ */
+static void
+cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
+ struct cfq_io_context *cic)
+{
+ unsigned long flags;
+
+ WARN_ON(!list_empty(&cic->queue_list));
+
+ spin_lock_irqsave(&ioc->lock, flags);
+
+ BUG_ON(ioc->ioc_data == cic);
+
+ radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
+ hlist_del_rcu(&cic->cic_list);
+ spin_unlock_irqrestore(&ioc->lock, flags);
+
+ cfq_cic_free(cic);
+}
+
+static struct cfq_io_context *
+cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
+{
+ struct cfq_io_context *cic;
+ unsigned long flags;
+ void *k;
+
+ if (unlikely(!ioc))
+ return NULL;
+
+ rcu_read_lock();
+
+ /*
+ * we maintain a last-hit cache, to avoid browsing over the tree
+ */
+ cic = rcu_dereference(ioc->ioc_data);
+ if (cic && cic->key == cfqd) {
+ rcu_read_unlock();
+ return cic;
+ }
+
+ do {
+ cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
+ rcu_read_unlock();
+ if (!cic)
+ break;
+ /* ->key must be copied to avoid race with cfq_exit_queue() */
+ k = cic->key;
+ if (unlikely(!k)) {
+ cfq_drop_dead_cic(cfqd, ioc, cic);
+ rcu_read_lock();
+ continue;
+ }
+
+ spin_lock_irqsave(&ioc->lock, flags);
+ rcu_assign_pointer(ioc->ioc_data, cic);
+ spin_unlock_irqrestore(&ioc->lock, flags);
+ break;
+ } while (1);
+
+ return cic;
+}
+
+/*
+ * Add cic into ioc, using cfqd as the search key. This enables us to lookup
+ * the process specific cfq io context when entered from the block layer.
+ * Also adds the cic to a per-cfqd list, used when this queue is removed.
+ */
+static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
+ struct cfq_io_context *cic, gfp_t gfp_mask)
+{
+ unsigned long flags;
+ int ret;
+
+ ret = radix_tree_preload(gfp_mask);
+ if (!ret) {
+ cic->ioc = ioc;
+ cic->key = cfqd;
+
+ spin_lock_irqsave(&ioc->lock, flags);
+ ret = radix_tree_insert(&ioc->radix_root,
+ (unsigned long) cfqd, cic);
+ if (!ret)
+ hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
+ spin_unlock_irqrestore(&ioc->lock, flags);
+
+ radix_tree_preload_end();
+
+ if (!ret) {
+ spin_lock_irqsave(cfqd->queue->queue_lock, flags);
+ list_add(&cic->queue_list, &cfqd->cic_list);
+ spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
+ }
+ }
+
+ if (ret)
+ printk(KERN_ERR "cfq: cic link failed!\n");
+
+ return ret;
+}
+
+/*
+ * Setup general io context and cfq io context. There can be several cfq
+ * io contexts per general io context, if this process is doing io to more
+ * than one device managed by cfq.
+ */
+static struct cfq_io_context *
+cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
+{
+ struct io_context *ioc = NULL;
+ struct cfq_io_context *cic;
+
+ might_sleep_if(gfp_mask & __GFP_WAIT);
+
+ ioc = get_io_context(gfp_mask, cfqd->queue->node);
+ if (!ioc)
+ return NULL;
+
+ cic = cfq_cic_lookup(cfqd, ioc);
+ if (cic)
+ goto out;
+
+ cic = cfq_alloc_io_context(cfqd, gfp_mask);
+ if (cic == NULL)
+ goto err;
+
+ if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
+ goto err_free;
+
+out:
+ smp_read_barrier_depends();
+ if (unlikely(ioc->ioprio_changed))
+ cfq_ioc_set_ioprio(ioc);
+
+ return cic;
+err_free:
+ cfq_cic_free(cic);
+err:
+ put_io_context(ioc);
+ return NULL;
+}
+
+static void
+cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
+{
+ unsigned long elapsed = jiffies - cic->last_end_request;
+ unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
+
+ cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
+ cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
+ cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
+}
+
+static void
+cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_io_context *cic,
+ struct request *rq)
+{
+ sector_t sdist;
+ u64 total;
+
+ if (cic->last_request_pos < rq->sector)
+ sdist = rq->sector - cic->last_request_pos;
+ else
+ sdist = cic->last_request_pos - rq->sector;
+
+ /*
+ * Don't allow the seek distance to get too large from the
+ * odd fragment, pagein, etc
+ */
+ if (cic->seek_samples <= 60) /* second&third seek */
+ sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*1024);
+ else
+ sdist = min(sdist, (cic->seek_mean * 4) + 2*1024*64);
+
+ cic->seek_samples = (7*cic->seek_samples + 256) / 8;
+ cic->seek_total = (7*cic->seek_total + (u64)256*sdist) / 8;
+ total = cic->seek_total + (cic->seek_samples/2);
+ do_div(total, cic->seek_samples);
+ cic->seek_mean = (sector_t)total;
+}
+
+/*
+ * Disable idle window if the process thinks too long or seeks so much that
+ * it doesn't matter
+ */
+static void
+cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
+ struct cfq_io_context *cic)
+{
+ int old_idle, enable_idle;
+
+ /*
+ * Don't idle for async or idle io prio class
+ */
+ if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
+ return;
+
+ enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
+
+ if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
+ (cfqd->hw_tag && CIC_SEEKY(cic)))
+ enable_idle = 0;
+ else if (sample_valid(cic->ttime_samples)) {
+ if (cic->ttime_mean > cfqd->cfq_slice_idle)
+ enable_idle = 0;
+ else
+ enable_idle = 1;
+ }
+
+ if (old_idle != enable_idle) {
+ cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
+ if (enable_idle)
+ cfq_mark_cfqq_idle_window(cfqq);
+ else
+ cfq_clear_cfqq_idle_window(cfqq);
+ }
+}
+
+/*
+ * Check if new_cfqq should preempt the currently active queue. Return 0 for
+ * no or if we aren't sure, a 1 will cause a preempt.
+ */
+static int
+cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
+ struct request *rq)
+{
+ struct cfq_queue *cfqq;
+
+ cfqq = cfqd->active_queue;
+ if (!cfqq)
+ return 0;
+
+ if (cfq_slice_used(cfqq))
+ return 1;
+
+ if (cfq_class_idle(new_cfqq))
+ return 0;
+
+ if (cfq_class_idle(cfqq))
+ return 1;
+
+ /*
+ * if the new request is sync, but the currently running queue is
+ * not, let the sync request have priority.
+ */
+ if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
+ return 1;
+
+ /*
+ * So both queues are sync. Let the new request get disk time if
+ * it's a metadata request and the current queue is doing regular IO.
+ */
+ if (rq_is_meta(rq) && !cfqq->meta_pending)
+ return 1;
+
+ if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
+ return 0;
+
+ /*
+ * if this request is as-good as one we would expect from the
+ * current cfqq, let it preempt
+ */
+ if (cfq_rq_close(cfqd, rq))
+ return 1;
+
+ return 0;
+}
+
+/*
+ * cfqq preempts the active queue. if we allowed preempt with no slice left,
+ * let it have half of its nominal slice.
+ */
+static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
+{
+ cfq_log_cfqq(cfqd, cfqq, "preempt");
+ cfq_slice_expired(cfqd, 1);
+
+ /*
+ * Put the new queue at the front of the of the current list,
+ * so we know that it will be selected next.
+ */
+ BUG_ON(!cfq_cfqq_on_rr(cfqq));
+
+ cfq_service_tree_add(cfqd, cfqq, 1);
+
+ cfqq->slice_end = 0;
+ cfq_mark_cfqq_slice_new(cfqq);
+}
+
+/*
+ * Called when a new fs request (rq) is added (to cfqq). Check if there's
+ * something we should do about it
+ */
+static void
+cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
+ struct request *rq)
+{
+ struct cfq_io_context *cic = RQ_CIC(rq);
+
+ cfqd->rq_queued++;
+ if (rq_is_meta(rq))
+ cfqq->meta_pending++;
+
+ cfq_update_io_thinktime(cfqd, cic);
+ cfq_update_io_seektime(cfqd, cic, rq);
+ cfq_update_idle_window(cfqd, cfqq, cic);
+
+ cic->last_request_pos = rq->sector + rq->nr_sectors;
+
+ if (cfqq == cfqd->active_queue) {
+ /*
+ * if we are waiting for a request for this queue, let it rip
+ * immediately and flag that we must not expire this queue
+ * just now
+ */
+ if (cfq_cfqq_wait_request(cfqq)) {
+ cfq_mark_cfqq_must_dispatch(cfqq);
+ del_timer(&cfqd->idle_slice_timer);
+ blk_start_queueing(cfqd->queue);
+ }
+ } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
+ /*
+ * not the active queue - expire current slice if it is
+ * idle and has expired it's mean thinktime or this new queue
+ * has some old slice time left and is of higher priority
+ */
+ cfq_preempt_queue(cfqd, cfqq);
+ cfq_mark_cfqq_must_dispatch(cfqq);
+ blk_start_queueing(cfqd->queue);
+ }
+}
+
+static void cfq_insert_request(struct request_queue *q, struct request *rq)
+{
+ struct cfq_data *cfqd = q->elevator->elevator_data;
+ struct cfq_queue *cfqq = RQ_CFQQ(rq);
+
+ cfq_log_cfqq(cfqd, cfqq, "insert_request");
+ cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
+
+ cfq_add_rq_rb(rq);
+
+ list_add_tail(&rq->queuelist, &cfqq->fifo);
+
+ cfq_rq_enqueued(cfqd, cfqq, rq);
+}
+
+/*
+ * Update hw_tag based on peak queue depth over 50 samples under
+ * sufficient load.
+ */
+static void cfq_update_hw_tag(struct cfq_data *cfqd)
+{
+ if (cfqd->rq_in_driver > cfqd->rq_in_driver_peak)
+ cfqd->rq_in_driver_peak = cfqd->rq_in_driver;
+
+ if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
+ cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
+ return;
+
+ if (cfqd->hw_tag_samples++ < 50)
+ return;
+
+ if (cfqd->rq_in_driver_peak >= CFQ_HW_QUEUE_MIN)
+ cfqd->hw_tag = 1;
+ else
+ cfqd->hw_tag = 0;
+
+ cfqd->hw_tag_samples = 0;
+ cfqd->rq_in_driver_peak = 0;
+}
+
+static void cfq_completed_request(struct request_queue *q, struct request *rq)
+{
+ struct cfq_queue *cfqq = RQ_CFQQ(rq);
+ struct cfq_data *cfqd = cfqq->cfqd;
+ const int sync = rq_is_sync(rq);
+ unsigned long now;
+
+ now = jiffies;
+ cfq_log_cfqq(cfqd, cfqq, "complete");
+
+ cfq_update_hw_tag(cfqd);
+
+ WARN_ON(!cfqd->rq_in_driver);
+ WARN_ON(!cfqq->dispatched);
+ cfqd->rq_in_driver--;
+ cfqq->dispatched--;
+
+ if (cfq_cfqq_sync(cfqq))
+ cfqd->sync_flight--;
+
+ if (!cfq_class_idle(cfqq))
+ cfqd->last_end_request = now;
+
+ if (sync)
+ RQ_CIC(rq)->last_end_request = now;
+
+ /*
+ * If this is the active queue, check if it needs to be expired,
+ * or if we want to idle in case it has no pending requests.
+ */
+ if (cfqd->active_queue == cfqq) {
+ if (cfq_cfqq_slice_new(cfqq)) {
+ cfq_set_prio_slice(cfqd, cfqq);
+ cfq_clear_cfqq_slice_new(cfqq);
+ }
+ if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
+ cfq_slice_expired(cfqd, 1);
+ else if (sync && RB_EMPTY_ROOT(&cfqq->sort_list))
+ cfq_arm_slice_timer(cfqd);
+ }
+
+ if (!cfqd->rq_in_driver)
+ cfq_schedule_dispatch(cfqd);
+}
+
+/*
+ * we temporarily boost lower priority queues if they are holding fs exclusive
+ * resources. they are boosted to normal prio (CLASS_BE/4)
+ */
+static void cfq_prio_boost(struct cfq_queue *cfqq)
+{
+ if (has_fs_excl()) {
+ /*
+ * boost idle prio on transactions that would lock out other
+ * users of the filesystem
+ */
+ if (cfq_class_idle(cfqq))
+ cfqq->ioprio_class = IOPRIO_CLASS_BE;
+ if (cfqq->ioprio > IOPRIO_NORM)
+ cfqq->ioprio = IOPRIO_NORM;
+ } else {
+ /*
+ * check if we need to unboost the queue
+ */
+ if (cfqq->ioprio_class != cfqq->org_ioprio_class)
+ cfqq->ioprio_class = cfqq->org_ioprio_class;
+ if (cfqq->ioprio != cfqq->org_ioprio)
+ cfqq->ioprio = cfqq->org_ioprio;
+ }
+}
+
+static inline int __cfq_may_queue(struct cfq_queue *cfqq)
+{
+ if ((cfq_cfqq_wait_request(cfqq) || cfq_cfqq_must_alloc(cfqq)) &&
+ !cfq_cfqq_must_alloc_slice(cfqq)) {
+ cfq_mark_cfqq_must_alloc_slice(cfqq);
+ return ELV_MQUEUE_MUST;
+ }
+
+ return ELV_MQUEUE_MAY;
+}
+
+static int cfq_may_queue(struct request_queue *q, int rw)
+{
+ struct cfq_data *cfqd = q->elevator->elevator_data;
+ struct task_struct *tsk = current;
+ struct cfq_io_context *cic;
+ struct cfq_queue *cfqq;
+
+ /*
+ * don't force setup of a queue from here, as a call to may_queue
+ * does not necessarily imply that a request actually will be queued.
+ * so just lookup a possibly existing queue, or return 'may queue'
+ * if that fails
+ */
+ cic = cfq_cic_lookup(cfqd, tsk->io_context);
+ if (!cic)
+ return ELV_MQUEUE_MAY;
+
+ cfqq = cic_to_cfqq(cic, rw & REQ_RW_SYNC);
+ if (cfqq) {
+ cfq_init_prio_data(cfqq, cic->ioc);
+ cfq_prio_boost(cfqq);
+
+ return __cfq_may_queue(cfqq);
+ }
+
+ return ELV_MQUEUE_MAY;
+}
+
+/*
+ * queue lock held here
+ */
+static void cfq_put_request(struct request *rq)
+{
+ struct cfq_queue *cfqq = RQ_CFQQ(rq);
+
+ if (cfqq) {
+ const int rw = rq_data_dir(rq);
+
+ BUG_ON(!cfqq->allocated[rw]);
+ cfqq->allocated[rw]--;
+
+ put_io_context(RQ_CIC(rq)->ioc);
+
+ rq->elevator_private = NULL;
+ rq->elevator_private2 = NULL;
+
+ cfq_put_queue(cfqq);
+ }
+}
+
+/*
+ * Allocate cfq data structures associated with this request.
+ */
+static int
+cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
+{
+ struct cfq_data *cfqd = q->elevator->elevator_data;
+ struct cfq_io_context *cic;
+ const int rw = rq_data_dir(rq);
+ const int is_sync = rq_is_sync(rq);
+ struct cfq_queue *cfqq;
+ unsigned long flags;
+
+ might_sleep_if(gfp_mask & __GFP_WAIT);
+
+ cic = cfq_get_io_context(cfqd, gfp_mask);
+
+ spin_lock_irqsave(q->queue_lock, flags);
+
+ if (!cic)
+ goto queue_fail;
+
+ cfqq = cic_to_cfqq(cic, is_sync);
+ if (!cfqq) {
+ cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
+
+ if (!cfqq)
+ goto queue_fail;
+
+ cic_set_cfqq(cic, cfqq, is_sync);
+ }
+
+ cfqq->allocated[rw]++;
+ cfq_clear_cfqq_must_alloc(cfqq);
+ atomic_inc(&cfqq->ref);
+
+ spin_unlock_irqrestore(q->queue_lock, flags);
+
+ rq->elevator_private = cic;
+ rq->elevator_private2 = cfqq;
+ return 0;
+
+queue_fail:
+ if (cic)
+ put_io_context(cic->ioc);
+
+ cfq_schedule_dispatch(cfqd);
+ spin_unlock_irqrestore(q->queue_lock, flags);
+ cfq_log(cfqd, "set_request fail");
+ return 1;
+}
+
+static void cfq_kick_queue(struct work_struct *work)
+{
+ struct cfq_data *cfqd =
+ container_of(work, struct cfq_data, unplug_work);
+ struct request_queue *q = cfqd->queue;
+ unsigned long flags;
+
+ spin_lock_irqsave(q->queue_lock, flags);
+ blk_start_queueing(q);
+ spin_unlock_irqrestore(q->queue_lock, flags);
+}
+
+/*
+ * Timer running if the active_queue is currently idling inside its time slice
+ */
+static void cfq_idle_slice_timer(unsigned long data)
+{
+ struct cfq_data *cfqd = (struct cfq_data *) data;
+ struct cfq_queue *cfqq;
+ unsigned long flags;
+ int timed_out = 1;
+
+ cfq_log(cfqd, "idle timer fired");
+
+ spin_lock_irqsave(cfqd->queue->queue_lock, flags);
+
+ cfqq = cfqd->active_queue;
+ if (cfqq) {
+ timed_out = 0;
+
+ /*
+ * expired
+ */
+ if (cfq_slice_used(cfqq))
+ goto expire;
+
+ /*
+ * only expire and reinvoke request handler, if there are
+ * other queues with pending requests
+ */
+ if (!cfqd->busy_queues)
+ goto out_cont;
+
+ /*
+ * not expired and it has a request pending, let it dispatch
+ */
+ if (!RB_EMPTY_ROOT(&cfqq->sort_list)) {
+ cfq_mark_cfqq_must_dispatch(cfqq);
+ goto out_kick;
+ }
+ }
+expire:
+ cfq_slice_expired(cfqd, timed_out);
+out_kick:
+ cfq_schedule_dispatch(cfqd);
+out_cont:
+ spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
+}
+
+static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
+{
+ del_timer_sync(&cfqd->idle_slice_timer);
+ kblockd_flush_work(&cfqd->unplug_work);
+}
+
+static void cfq_put_async_queues(struct cfq_data *cfqd)
+{
+ int i;
+
+ for (i = 0; i < IOPRIO_BE_NR; i++) {
+ if (cfqd->async_cfqq[0][i])
+ cfq_put_queue(cfqd->async_cfqq[0][i]);
+ if (cfqd->async_cfqq[1][i])
+ cfq_put_queue(cfqd->async_cfqq[1][i]);
+ }
+
+ if (cfqd->async_idle_cfqq)
+ cfq_put_queue(cfqd->async_idle_cfqq);
+}
+
+static void cfq_exit_queue(elevator_t *e)
+{
+ struct cfq_data *cfqd = e->elevator_data;
+ struct request_queue *q = cfqd->queue;
+
+ cfq_shutdown_timer_wq(cfqd);
+
+ spin_lock_irq(q->queue_lock);
+
+ if (cfqd->active_queue)
+ __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
+
+ while (!list_empty(&cfqd->cic_list)) {
+ struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
+ struct cfq_io_context,
+ queue_list);
+
+ __cfq_exit_single_io_context(cfqd, cic);
+ }
+
+ cfq_put_async_queues(cfqd);
+
+ spin_unlock_irq(q->queue_lock);
+
+ cfq_shutdown_timer_wq(cfqd);
+
+ kfree(cfqd);
+}
+
+static void *cfq_init_queue(struct request_queue *q)
+{
+ struct cfq_data *cfqd;
+
+ cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
+ if (!cfqd)
+ return NULL;
+
+ cfqd->service_tree = CFQ_RB_ROOT;
+ INIT_LIST_HEAD(&cfqd->cic_list);
+
+ cfqd->queue = q;
+
+ init_timer(&cfqd->idle_slice_timer);
+ cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
+ cfqd->idle_slice_timer.data = (unsigned long) cfqd;
+
+ INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
+
+ cfqd->last_end_request = jiffies;
+ cfqd->cfq_quantum = cfq_quantum;
+ cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
+ cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
+ cfqd->cfq_back_max = cfq_back_max;
+ cfqd->cfq_back_penalty = cfq_back_penalty;
+ cfqd->cfq_slice[0] = cfq_slice_async;
+ cfqd->cfq_slice[1] = cfq_slice_sync;
+ cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
+ cfqd->cfq_slice_idle = cfq_slice_idle;
+ cfqd->hw_tag = 1;
+
+ return cfqd;
+}
+
+static void cfq_slab_kill(void)
+{
+ /*
+ * Caller already ensured that pending RCU callbacks are completed,
+ * so we should have no busy allocations at this point.
+ */
+ if (cfq_pool)
+ kmem_cache_destroy(cfq_pool);
+ if (cfq_ioc_pool)
+ kmem_cache_destroy(cfq_ioc_pool);
+}
+
+static int __init cfq_slab_setup(void)
+{
+ cfq_pool = KMEM_CACHE(cfq_queue, 0);
+ if (!cfq_pool)
+ goto fail;
+
+ cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
+ if (!cfq_ioc_pool)
+ goto fail;
+
+ return 0;
+fail:
+ cfq_slab_kill();
+ return -ENOMEM;
+}
+
+/*
+ * sysfs parts below -->
+ */
+static ssize_t
+cfq_var_show(unsigned int var, char *page)
+{
+ return sprintf(page, "%d\n", var);
+}
+
+static ssize_t
+cfq_var_store(unsigned int *var, const char *page, size_t count)
+{
+ char *p = (char *) page;
+
+ *var = simple_strtoul(p, &p, 10);
+ return count;
+}
+
+#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
+static ssize_t __FUNC(elevator_t *e, char *page) \
+{ \
+ struct cfq_data *cfqd = e->elevator_data; \
+ unsigned int __data = __VAR; \
+ if (__CONV) \
+ __data = jiffies_to_msecs(__data); \
+ return cfq_var_show(__data, (page)); \
+}
+SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
+SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
+SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
+SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
+SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
+SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
+SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
+SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
+SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
+#undef SHOW_FUNCTION
+
+#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
+static ssize_t __FUNC(elevator_t *e, const char *page, size_t count) \
+{ \
+ struct cfq_data *cfqd = e->elevator_data; \
+ unsigned int __data; \
+ int ret = cfq_var_store(&__data, (page), count); \
+ if (__data < (MIN)) \
+ __data = (MIN); \
+ else if (__data > (MAX)) \
+ __data = (MAX); \
+ if (__CONV) \
+ *(__PTR) = msecs_to_jiffies(__data); \
+ else \
+ *(__PTR) = __data; \
+ return ret; \
+}
+STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
+STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
+ UINT_MAX, 1);
+STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
+ UINT_MAX, 1);
+STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
+STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
+ UINT_MAX, 0);
+STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
+STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
+STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
+STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
+ UINT_MAX, 0);
+#undef STORE_FUNCTION
+
+#define CFQ_ATTR(name) \
+ __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
+
+static struct elv_fs_entry cfq_attrs[] = {
+ CFQ_ATTR(quantum),
+ CFQ_ATTR(fifo_expire_sync),
+ CFQ_ATTR(fifo_expire_async),
+ CFQ_ATTR(back_seek_max),
+ CFQ_ATTR(back_seek_penalty),
+ CFQ_ATTR(slice_sync),
+ CFQ_ATTR(slice_async),
+ CFQ_ATTR(slice_async_rq),
+ CFQ_ATTR(slice_idle),
+ __ATTR_NULL
+};
+
+static struct elevator_type iosched_cfq = {
+ .ops = {
+ .elevator_merge_fn = cfq_merge,
+ .elevator_merged_fn = cfq_merged_request,
+ .elevator_merge_req_fn = cfq_merged_requests,
+ .elevator_allow_merge_fn = cfq_allow_merge,
+ .elevator_dispatch_fn = cfq_dispatch_requests,
+ .elevator_add_req_fn = cfq_insert_request,
+ .elevator_activate_req_fn = cfq_activate_request,
+ .elevator_deactivate_req_fn = cfq_deactivate_request,
+ .elevator_queue_empty_fn = cfq_queue_empty,
+ .elevator_completed_req_fn = cfq_completed_request,
+ .elevator_former_req_fn = elv_rb_former_request,
+ .elevator_latter_req_fn = elv_rb_latter_request,
+ .elevator_set_req_fn = cfq_set_request,
+ .elevator_put_req_fn = cfq_put_request,
+ .elevator_may_queue_fn = cfq_may_queue,
+ .elevator_init_fn = cfq_init_queue,
+ .elevator_exit_fn = cfq_exit_queue,
+ .trim = cfq_free_io_context,
+ },
+ .elevator_attrs = cfq_attrs,
+ .elevator_name = "cfq",
+ .elevator_owner = THIS_MODULE,
+};
+
+static int __init cfq_init(void)
+{
+ /*
+ * could be 0 on HZ < 1000 setups
+ */
+ if (!cfq_slice_async)
+ cfq_slice_async = 1;
+ if (!cfq_slice_idle)
+ cfq_slice_idle = 1;
+
+ if (cfq_slab_setup())
+ return -ENOMEM;
+
+ elv_register(&iosched_cfq);
+
+ return 0;
+}
+
+static void __exit cfq_exit(void)
+{
+ DECLARE_COMPLETION_ONSTACK(all_gone);
+ elv_unregister(&iosched_cfq);
+ ioc_gone = &all_gone;
+ /* ioc_gone's update must be visible before reading ioc_count */
+ smp_wmb();
+
+ /*
+ * this also protects us from entering cfq_slab_kill() with
+ * pending RCU callbacks
+ */
+ if (elv_ioc_count_read(ioc_count))
+ wait_for_completion(&all_gone);
+ cfq_slab_kill();
+}
+
+module_init(cfq_init);
+module_exit(cfq_exit);
+
+MODULE_AUTHOR("Jens Axboe");
+MODULE_LICENSE("GPL");
+MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");
OpenPOWER on IntegriCloud