summaryrefslogtreecommitdiffstats
path: root/net/sched/Kconfig
diff options
context:
space:
mode:
authorTimothy Pearson <tpearson@raptorengineering.com>2017-08-23 14:45:25 -0500
committerTimothy Pearson <tpearson@raptorengineering.com>2017-08-23 14:45:25 -0500
commitfcbb27b0ec6dcbc5a5108cb8fb19eae64593d204 (patch)
tree22962a4387943edc841c72a4e636a068c66d58fd /net/sched/Kconfig
downloadast2050-linux-kernel-fcbb27b0ec6dcbc5a5108cb8fb19eae64593d204.zip
ast2050-linux-kernel-fcbb27b0ec6dcbc5a5108cb8fb19eae64593d204.tar.gz
Initial import of modified Linux 2.6.28 tree
Original upstream URL: git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git | branch linux-2.6.28.y
Diffstat (limited to 'net/sched/Kconfig')
-rw-r--r--net/sched/Kconfig510
1 files changed, 510 insertions, 0 deletions
diff --git a/net/sched/Kconfig b/net/sched/Kconfig
new file mode 100644
index 0000000..6767e54
--- /dev/null
+++ b/net/sched/Kconfig
@@ -0,0 +1,510 @@
+#
+# Traffic control configuration.
+#
+
+menuconfig NET_SCHED
+ bool "QoS and/or fair queueing"
+ select NET_SCH_FIFO
+ ---help---
+ When the kernel has several packets to send out over a network
+ device, it has to decide which ones to send first, which ones to
+ delay, and which ones to drop. This is the job of the queueing
+ disciplines, several different algorithms for how to do this
+ "fairly" have been proposed.
+
+ If you say N here, you will get the standard packet scheduler, which
+ is a FIFO (first come, first served). If you say Y here, you will be
+ able to choose from among several alternative algorithms which can
+ then be attached to different network devices. This is useful for
+ example if some of your network devices are real time devices that
+ need a certain minimum data flow rate, or if you need to limit the
+ maximum data flow rate for traffic which matches specified criteria.
+ This code is considered to be experimental.
+
+ To administer these schedulers, you'll need the user-level utilities
+ from the package iproute2+tc at <ftp://ftp.tux.org/pub/net/ip-routing/>.
+ That package also contains some documentation; for more, check out
+ <http://linux-net.osdl.org/index.php/Iproute2>.
+
+ This Quality of Service (QoS) support will enable you to use
+ Differentiated Services (diffserv) and Resource Reservation Protocol
+ (RSVP) on your Linux router if you also say Y to the corresponding
+ classifiers below. Documentation and software is at
+ <http://diffserv.sourceforge.net/>.
+
+ If you say Y here and to "/proc file system" below, you will be able
+ to read status information about packet schedulers from the file
+ /proc/net/psched.
+
+ The available schedulers are listed in the following questions; you
+ can say Y to as many as you like. If unsure, say N now.
+
+if NET_SCHED
+
+comment "Queueing/Scheduling"
+
+config NET_SCH_CBQ
+ tristate "Class Based Queueing (CBQ)"
+ ---help---
+ Say Y here if you want to use the Class-Based Queueing (CBQ) packet
+ scheduling algorithm. This algorithm classifies the waiting packets
+ into a tree-like hierarchy of classes; the leaves of this tree are
+ in turn scheduled by separate algorithms.
+
+ See the top of <file:net/sched/sch_cbq.c> for more details.
+
+ CBQ is a commonly used scheduler, so if you're unsure, you should
+ say Y here. Then say Y to all the queueing algorithms below that you
+ want to use as leaf disciplines.
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_cbq.
+
+config NET_SCH_HTB
+ tristate "Hierarchical Token Bucket (HTB)"
+ ---help---
+ Say Y here if you want to use the Hierarchical Token Buckets (HTB)
+ packet scheduling algorithm. See
+ <http://luxik.cdi.cz/~devik/qos/htb/> for complete manual and
+ in-depth articles.
+
+ HTB is very similar to CBQ regarding its goals however is has
+ different properties and different algorithm.
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_htb.
+
+config NET_SCH_HFSC
+ tristate "Hierarchical Fair Service Curve (HFSC)"
+ ---help---
+ Say Y here if you want to use the Hierarchical Fair Service Curve
+ (HFSC) packet scheduling algorithm.
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_hfsc.
+
+config NET_SCH_ATM
+ tristate "ATM Virtual Circuits (ATM)"
+ depends on ATM
+ ---help---
+ Say Y here if you want to use the ATM pseudo-scheduler. This
+ provides a framework for invoking classifiers, which in turn
+ select classes of this queuing discipline. Each class maps
+ the flow(s) it is handling to a given virtual circuit.
+
+ See the top of <file:net/sched/sch_atm.c> for more details.
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_atm.
+
+config NET_SCH_PRIO
+ tristate "Multi Band Priority Queueing (PRIO)"
+ ---help---
+ Say Y here if you want to use an n-band priority queue packet
+ scheduler.
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_prio.
+
+config NET_SCH_MULTIQ
+ tristate "Hardware Multiqueue-aware Multi Band Queuing (MULTIQ)"
+ ---help---
+ Say Y here if you want to use an n-band queue packet scheduler
+ to support devices that have multiple hardware transmit queues.
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_multiq.
+
+config NET_SCH_RED
+ tristate "Random Early Detection (RED)"
+ ---help---
+ Say Y here if you want to use the Random Early Detection (RED)
+ packet scheduling algorithm.
+
+ See the top of <file:net/sched/sch_red.c> for more details.
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_red.
+
+config NET_SCH_SFQ
+ tristate "Stochastic Fairness Queueing (SFQ)"
+ ---help---
+ Say Y here if you want to use the Stochastic Fairness Queueing (SFQ)
+ packet scheduling algorithm.
+
+ See the top of <file:net/sched/sch_sfq.c> for more details.
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_sfq.
+
+config NET_SCH_TEQL
+ tristate "True Link Equalizer (TEQL)"
+ ---help---
+ Say Y here if you want to use the True Link Equalizer (TLE) packet
+ scheduling algorithm. This queueing discipline allows the combination
+ of several physical devices into one virtual device.
+
+ See the top of <file:net/sched/sch_teql.c> for more details.
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_teql.
+
+config NET_SCH_TBF
+ tristate "Token Bucket Filter (TBF)"
+ ---help---
+ Say Y here if you want to use the Token Bucket Filter (TBF) packet
+ scheduling algorithm.
+
+ See the top of <file:net/sched/sch_tbf.c> for more details.
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_tbf.
+
+config NET_SCH_GRED
+ tristate "Generic Random Early Detection (GRED)"
+ ---help---
+ Say Y here if you want to use the Generic Random Early Detection
+ (GRED) packet scheduling algorithm for some of your network devices
+ (see the top of <file:net/sched/sch_red.c> for details and
+ references about the algorithm).
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_gred.
+
+config NET_SCH_DSMARK
+ tristate "Differentiated Services marker (DSMARK)"
+ ---help---
+ Say Y if you want to schedule packets according to the
+ Differentiated Services architecture proposed in RFC 2475.
+ Technical information on this method, with pointers to associated
+ RFCs, is available at <http://www.gta.ufrj.br/diffserv/>.
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_dsmark.
+
+config NET_SCH_NETEM
+ tristate "Network emulator (NETEM)"
+ ---help---
+ Say Y if you want to emulate network delay, loss, and packet
+ re-ordering. This is often useful to simulate networks when
+ testing applications or protocols.
+
+ To compile this driver as a module, choose M here: the module
+ will be called sch_netem.
+
+ If unsure, say N.
+
+config NET_SCH_INGRESS
+ tristate "Ingress Qdisc"
+ depends on NET_CLS_ACT
+ ---help---
+ Say Y here if you want to use classifiers for incoming packets.
+ If unsure, say Y.
+
+ To compile this code as a module, choose M here: the
+ module will be called sch_ingress.
+
+comment "Classification"
+
+config NET_CLS
+ boolean
+
+config NET_CLS_BASIC
+ tristate "Elementary classification (BASIC)"
+ select NET_CLS
+ ---help---
+ Say Y here if you want to be able to classify packets using
+ only extended matches and actions.
+
+ To compile this code as a module, choose M here: the
+ module will be called cls_basic.
+
+config NET_CLS_TCINDEX
+ tristate "Traffic-Control Index (TCINDEX)"
+ select NET_CLS
+ ---help---
+ Say Y here if you want to be able to classify packets based on
+ traffic control indices. You will want this feature if you want
+ to implement Differentiated Services together with DSMARK.
+
+ To compile this code as a module, choose M here: the
+ module will be called cls_tcindex.
+
+config NET_CLS_ROUTE4
+ tristate "Routing decision (ROUTE)"
+ select NET_CLS_ROUTE
+ select NET_CLS
+ ---help---
+ If you say Y here, you will be able to classify packets
+ according to the route table entry they matched.
+
+ To compile this code as a module, choose M here: the
+ module will be called cls_route.
+
+config NET_CLS_ROUTE
+ bool
+
+config NET_CLS_FW
+ tristate "Netfilter mark (FW)"
+ select NET_CLS
+ ---help---
+ If you say Y here, you will be able to classify packets
+ according to netfilter/firewall marks.
+
+ To compile this code as a module, choose M here: the
+ module will be called cls_fw.
+
+config NET_CLS_U32
+ tristate "Universal 32bit comparisons w/ hashing (U32)"
+ select NET_CLS
+ ---help---
+ Say Y here to be able to classify packets using a universal
+ 32bit pieces based comparison scheme.
+
+ To compile this code as a module, choose M here: the
+ module will be called cls_u32.
+
+config CLS_U32_PERF
+ bool "Performance counters support"
+ depends on NET_CLS_U32
+ ---help---
+ Say Y here to make u32 gather additional statistics useful for
+ fine tuning u32 classifiers.
+
+config CLS_U32_MARK
+ bool "Netfilter marks support"
+ depends on NET_CLS_U32
+ ---help---
+ Say Y here to be able to use netfilter marks as u32 key.
+
+config NET_CLS_RSVP
+ tristate "IPv4 Resource Reservation Protocol (RSVP)"
+ select NET_CLS
+ ---help---
+ The Resource Reservation Protocol (RSVP) permits end systems to
+ request a minimum and maximum data flow rate for a connection; this
+ is important for real time data such as streaming sound or video.
+
+ Say Y here if you want to be able to classify outgoing packets based
+ on their RSVP requests.
+
+ To compile this code as a module, choose M here: the
+ module will be called cls_rsvp.
+
+config NET_CLS_RSVP6
+ tristate "IPv6 Resource Reservation Protocol (RSVP6)"
+ select NET_CLS
+ ---help---
+ The Resource Reservation Protocol (RSVP) permits end systems to
+ request a minimum and maximum data flow rate for a connection; this
+ is important for real time data such as streaming sound or video.
+
+ Say Y here if you want to be able to classify outgoing packets based
+ on their RSVP requests and you are using the IPv6 protocol.
+
+ To compile this code as a module, choose M here: the
+ module will be called cls_rsvp6.
+
+config NET_CLS_FLOW
+ tristate "Flow classifier"
+ select NET_CLS
+ ---help---
+ If you say Y here, you will be able to classify packets based on
+ a configurable combination of packet keys. This is mostly useful
+ in combination with SFQ.
+
+ To compile this code as a module, choose M here: the
+ module will be called cls_flow.
+
+config NET_EMATCH
+ bool "Extended Matches"
+ select NET_CLS
+ ---help---
+ Say Y here if you want to use extended matches on top of classifiers
+ and select the extended matches below.
+
+ Extended matches are small classification helpers not worth writing
+ a separate classifier for.
+
+ A recent version of the iproute2 package is required to use
+ extended matches.
+
+config NET_EMATCH_STACK
+ int "Stack size"
+ depends on NET_EMATCH
+ default "32"
+ ---help---
+ Size of the local stack variable used while evaluating the tree of
+ ematches. Limits the depth of the tree, i.e. the number of
+ encapsulated precedences. Every level requires 4 bytes of additional
+ stack space.
+
+config NET_EMATCH_CMP
+ tristate "Simple packet data comparison"
+ depends on NET_EMATCH
+ ---help---
+ Say Y here if you want to be able to classify packets based on
+ simple packet data comparisons for 8, 16, and 32bit values.
+
+ To compile this code as a module, choose M here: the
+ module will be called em_cmp.
+
+config NET_EMATCH_NBYTE
+ tristate "Multi byte comparison"
+ depends on NET_EMATCH
+ ---help---
+ Say Y here if you want to be able to classify packets based on
+ multiple byte comparisons mainly useful for IPv6 address comparisons.
+
+ To compile this code as a module, choose M here: the
+ module will be called em_nbyte.
+
+config NET_EMATCH_U32
+ tristate "U32 key"
+ depends on NET_EMATCH
+ ---help---
+ Say Y here if you want to be able to classify packets using
+ the famous u32 key in combination with logic relations.
+
+ To compile this code as a module, choose M here: the
+ module will be called em_u32.
+
+config NET_EMATCH_META
+ tristate "Metadata"
+ depends on NET_EMATCH
+ ---help---
+ Say Y here if you want to be able to classify packets based on
+ metadata such as load average, netfilter attributes, socket
+ attributes and routing decisions.
+
+ To compile this code as a module, choose M here: the
+ module will be called em_meta.
+
+config NET_EMATCH_TEXT
+ tristate "Textsearch"
+ depends on NET_EMATCH
+ select TEXTSEARCH
+ select TEXTSEARCH_KMP
+ select TEXTSEARCH_BM
+ select TEXTSEARCH_FSM
+ ---help---
+ Say Y here if you want to be able to classify packets based on
+ textsearch comparisons.
+
+ To compile this code as a module, choose M here: the
+ module will be called em_text.
+
+config NET_CLS_ACT
+ bool "Actions"
+ ---help---
+ Say Y here if you want to use traffic control actions. Actions
+ get attached to classifiers and are invoked after a successful
+ classification. They are used to overwrite the classification
+ result, instantly drop or redirect packets, etc.
+
+ A recent version of the iproute2 package is required to use
+ extended matches.
+
+config NET_ACT_POLICE
+ tristate "Traffic Policing"
+ depends on NET_CLS_ACT
+ ---help---
+ Say Y here if you want to do traffic policing, i.e. strict
+ bandwidth limiting. This action replaces the existing policing
+ module.
+
+ To compile this code as a module, choose M here: the
+ module will be called police.
+
+config NET_ACT_GACT
+ tristate "Generic actions"
+ depends on NET_CLS_ACT
+ ---help---
+ Say Y here to take generic actions such as dropping and
+ accepting packets.
+
+ To compile this code as a module, choose M here: the
+ module will be called gact.
+
+config GACT_PROB
+ bool "Probability support"
+ depends on NET_ACT_GACT
+ ---help---
+ Say Y here to use the generic action randomly or deterministically.
+
+config NET_ACT_MIRRED
+ tristate "Redirecting and Mirroring"
+ depends on NET_CLS_ACT
+ ---help---
+ Say Y here to allow packets to be mirrored or redirected to
+ other devices.
+
+ To compile this code as a module, choose M here: the
+ module will be called mirred.
+
+config NET_ACT_IPT
+ tristate "IPtables targets"
+ depends on NET_CLS_ACT && NETFILTER && IP_NF_IPTABLES
+ ---help---
+ Say Y here to be able to invoke iptables targets after successful
+ classification.
+
+ To compile this code as a module, choose M here: the
+ module will be called ipt.
+
+config NET_ACT_NAT
+ tristate "Stateless NAT"
+ depends on NET_CLS_ACT
+ ---help---
+ Say Y here to do stateless NAT on IPv4 packets. You should use
+ netfilter for NAT unless you know what you are doing.
+
+ To compile this code as a module, choose M here: the
+ module will be called nat.
+
+config NET_ACT_PEDIT
+ tristate "Packet Editing"
+ depends on NET_CLS_ACT
+ ---help---
+ Say Y here if you want to mangle the content of packets.
+
+ To compile this code as a module, choose M here: the
+ module will be called pedit.
+
+config NET_ACT_SIMP
+ tristate "Simple Example (Debug)"
+ depends on NET_CLS_ACT
+ ---help---
+ Say Y here to add a simple action for demonstration purposes.
+ It is meant as an example and for debugging purposes. It will
+ print a configured policy string followed by the packet count
+ to the console for every packet that passes by.
+
+ If unsure, say N.
+
+ To compile this code as a module, choose M here: the
+ module will be called simple.
+
+config NET_ACT_SKBEDIT
+ tristate "SKB Editing"
+ depends on NET_CLS_ACT
+ ---help---
+ Say Y here to change skb priority or queue_mapping settings.
+
+ If unsure, say N.
+
+ To compile this code as a module, choose M here: the
+ module will be called skbedit.
+
+config NET_CLS_IND
+ bool "Incoming device classification"
+ depends on NET_CLS_U32 || NET_CLS_FW
+ ---help---
+ Say Y here to extend the u32 and fw classifier to support
+ classification based on the incoming device. This option is
+ likely to disappear in favour of the metadata ematch.
+
+endif # NET_SCHED
+
+config NET_SCH_FIFO
+ bool
OpenPOWER on IntegriCloud