summaryrefslogtreecommitdiffstats
path: root/kernel/sched_rt.c
diff options
context:
space:
mode:
authorTimothy Pearson <tpearson@raptorengineering.com>2017-08-23 14:45:25 -0500
committerTimothy Pearson <tpearson@raptorengineering.com>2017-08-23 14:45:25 -0500
commitfcbb27b0ec6dcbc5a5108cb8fb19eae64593d204 (patch)
tree22962a4387943edc841c72a4e636a068c66d58fd /kernel/sched_rt.c
downloadast2050-linux-kernel-fcbb27b0ec6dcbc5a5108cb8fb19eae64593d204.zip
ast2050-linux-kernel-fcbb27b0ec6dcbc5a5108cb8fb19eae64593d204.tar.gz
Initial import of modified Linux 2.6.28 tree
Original upstream URL: git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git | branch linux-2.6.28.y
Diffstat (limited to 'kernel/sched_rt.c')
-rw-r--r--kernel/sched_rt.c1546
1 files changed, 1546 insertions, 0 deletions
diff --git a/kernel/sched_rt.c b/kernel/sched_rt.c
new file mode 100644
index 0000000..d9ba9d5
--- /dev/null
+++ b/kernel/sched_rt.c
@@ -0,0 +1,1546 @@
+/*
+ * Real-Time Scheduling Class (mapped to the SCHED_FIFO and SCHED_RR
+ * policies)
+ */
+
+#ifdef CONFIG_SMP
+
+static inline int rt_overloaded(struct rq *rq)
+{
+ return atomic_read(&rq->rd->rto_count);
+}
+
+static inline void rt_set_overload(struct rq *rq)
+{
+ if (!rq->online)
+ return;
+
+ cpu_set(rq->cpu, rq->rd->rto_mask);
+ /*
+ * Make sure the mask is visible before we set
+ * the overload count. That is checked to determine
+ * if we should look at the mask. It would be a shame
+ * if we looked at the mask, but the mask was not
+ * updated yet.
+ */
+ wmb();
+ atomic_inc(&rq->rd->rto_count);
+}
+
+static inline void rt_clear_overload(struct rq *rq)
+{
+ if (!rq->online)
+ return;
+
+ /* the order here really doesn't matter */
+ atomic_dec(&rq->rd->rto_count);
+ cpu_clear(rq->cpu, rq->rd->rto_mask);
+}
+
+static void update_rt_migration(struct rq *rq)
+{
+ if (rq->rt.rt_nr_migratory && (rq->rt.rt_nr_running > 1)) {
+ if (!rq->rt.overloaded) {
+ rt_set_overload(rq);
+ rq->rt.overloaded = 1;
+ }
+ } else if (rq->rt.overloaded) {
+ rt_clear_overload(rq);
+ rq->rt.overloaded = 0;
+ }
+}
+#endif /* CONFIG_SMP */
+
+static inline struct task_struct *rt_task_of(struct sched_rt_entity *rt_se)
+{
+ return container_of(rt_se, struct task_struct, rt);
+}
+
+static inline int on_rt_rq(struct sched_rt_entity *rt_se)
+{
+ return !list_empty(&rt_se->run_list);
+}
+
+#ifdef CONFIG_RT_GROUP_SCHED
+
+static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
+{
+ if (!rt_rq->tg)
+ return RUNTIME_INF;
+
+ return rt_rq->rt_runtime;
+}
+
+static inline u64 sched_rt_period(struct rt_rq *rt_rq)
+{
+ return ktime_to_ns(rt_rq->tg->rt_bandwidth.rt_period);
+}
+
+#define for_each_leaf_rt_rq(rt_rq, rq) \
+ list_for_each_entry(rt_rq, &rq->leaf_rt_rq_list, leaf_rt_rq_list)
+
+static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
+{
+ return rt_rq->rq;
+}
+
+static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
+{
+ return rt_se->rt_rq;
+}
+
+#define for_each_sched_rt_entity(rt_se) \
+ for (; rt_se; rt_se = rt_se->parent)
+
+static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
+{
+ return rt_se->my_q;
+}
+
+static void enqueue_rt_entity(struct sched_rt_entity *rt_se);
+static void dequeue_rt_entity(struct sched_rt_entity *rt_se);
+
+static void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
+{
+ struct task_struct *curr = rq_of_rt_rq(rt_rq)->curr;
+ struct sched_rt_entity *rt_se = rt_rq->rt_se;
+
+ if (rt_rq->rt_nr_running) {
+ if (rt_se && !on_rt_rq(rt_se))
+ enqueue_rt_entity(rt_se);
+ if (rt_rq->highest_prio < curr->prio)
+ resched_task(curr);
+ }
+}
+
+static void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
+{
+ struct sched_rt_entity *rt_se = rt_rq->rt_se;
+
+ if (rt_se && on_rt_rq(rt_se))
+ dequeue_rt_entity(rt_se);
+}
+
+static inline int rt_rq_throttled(struct rt_rq *rt_rq)
+{
+ return rt_rq->rt_throttled && !rt_rq->rt_nr_boosted;
+}
+
+static int rt_se_boosted(struct sched_rt_entity *rt_se)
+{
+ struct rt_rq *rt_rq = group_rt_rq(rt_se);
+ struct task_struct *p;
+
+ if (rt_rq)
+ return !!rt_rq->rt_nr_boosted;
+
+ p = rt_task_of(rt_se);
+ return p->prio != p->normal_prio;
+}
+
+#ifdef CONFIG_SMP
+static inline cpumask_t sched_rt_period_mask(void)
+{
+ return cpu_rq(smp_processor_id())->rd->span;
+}
+#else
+static inline cpumask_t sched_rt_period_mask(void)
+{
+ return cpu_online_map;
+}
+#endif
+
+static inline
+struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
+{
+ return container_of(rt_b, struct task_group, rt_bandwidth)->rt_rq[cpu];
+}
+
+static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
+{
+ return &rt_rq->tg->rt_bandwidth;
+}
+
+#else /* !CONFIG_RT_GROUP_SCHED */
+
+static inline u64 sched_rt_runtime(struct rt_rq *rt_rq)
+{
+ return rt_rq->rt_runtime;
+}
+
+static inline u64 sched_rt_period(struct rt_rq *rt_rq)
+{
+ return ktime_to_ns(def_rt_bandwidth.rt_period);
+}
+
+#define for_each_leaf_rt_rq(rt_rq, rq) \
+ for (rt_rq = &rq->rt; rt_rq; rt_rq = NULL)
+
+static inline struct rq *rq_of_rt_rq(struct rt_rq *rt_rq)
+{
+ return container_of(rt_rq, struct rq, rt);
+}
+
+static inline struct rt_rq *rt_rq_of_se(struct sched_rt_entity *rt_se)
+{
+ struct task_struct *p = rt_task_of(rt_se);
+ struct rq *rq = task_rq(p);
+
+ return &rq->rt;
+}
+
+#define for_each_sched_rt_entity(rt_se) \
+ for (; rt_se; rt_se = NULL)
+
+static inline struct rt_rq *group_rt_rq(struct sched_rt_entity *rt_se)
+{
+ return NULL;
+}
+
+static inline void sched_rt_rq_enqueue(struct rt_rq *rt_rq)
+{
+ if (rt_rq->rt_nr_running)
+ resched_task(rq_of_rt_rq(rt_rq)->curr);
+}
+
+static inline void sched_rt_rq_dequeue(struct rt_rq *rt_rq)
+{
+}
+
+static inline int rt_rq_throttled(struct rt_rq *rt_rq)
+{
+ return rt_rq->rt_throttled;
+}
+
+static inline cpumask_t sched_rt_period_mask(void)
+{
+ return cpu_online_map;
+}
+
+static inline
+struct rt_rq *sched_rt_period_rt_rq(struct rt_bandwidth *rt_b, int cpu)
+{
+ return &cpu_rq(cpu)->rt;
+}
+
+static inline struct rt_bandwidth *sched_rt_bandwidth(struct rt_rq *rt_rq)
+{
+ return &def_rt_bandwidth;
+}
+
+#endif /* CONFIG_RT_GROUP_SCHED */
+
+#ifdef CONFIG_SMP
+/*
+ * We ran out of runtime, see if we can borrow some from our neighbours.
+ */
+static int do_balance_runtime(struct rt_rq *rt_rq)
+{
+ struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+ struct root_domain *rd = cpu_rq(smp_processor_id())->rd;
+ int i, weight, more = 0;
+ u64 rt_period;
+
+ weight = cpus_weight(rd->span);
+
+ spin_lock(&rt_b->rt_runtime_lock);
+ rt_period = ktime_to_ns(rt_b->rt_period);
+ for_each_cpu_mask_nr(i, rd->span) {
+ struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
+ s64 diff;
+
+ if (iter == rt_rq)
+ continue;
+
+ spin_lock(&iter->rt_runtime_lock);
+ /*
+ * Either all rqs have inf runtime and there's nothing to steal
+ * or __disable_runtime() below sets a specific rq to inf to
+ * indicate its been disabled and disalow stealing.
+ */
+ if (iter->rt_runtime == RUNTIME_INF)
+ goto next;
+
+ /*
+ * From runqueues with spare time, take 1/n part of their
+ * spare time, but no more than our period.
+ */
+ diff = iter->rt_runtime - iter->rt_time;
+ if (diff > 0) {
+ diff = div_u64((u64)diff, weight);
+ if (rt_rq->rt_runtime + diff > rt_period)
+ diff = rt_period - rt_rq->rt_runtime;
+ iter->rt_runtime -= diff;
+ rt_rq->rt_runtime += diff;
+ more = 1;
+ if (rt_rq->rt_runtime == rt_period) {
+ spin_unlock(&iter->rt_runtime_lock);
+ break;
+ }
+ }
+next:
+ spin_unlock(&iter->rt_runtime_lock);
+ }
+ spin_unlock(&rt_b->rt_runtime_lock);
+
+ return more;
+}
+
+/*
+ * Ensure this RQ takes back all the runtime it lend to its neighbours.
+ */
+static void __disable_runtime(struct rq *rq)
+{
+ struct root_domain *rd = rq->rd;
+ struct rt_rq *rt_rq;
+
+ if (unlikely(!scheduler_running))
+ return;
+
+ for_each_leaf_rt_rq(rt_rq, rq) {
+ struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+ s64 want;
+ int i;
+
+ spin_lock(&rt_b->rt_runtime_lock);
+ spin_lock(&rt_rq->rt_runtime_lock);
+ /*
+ * Either we're all inf and nobody needs to borrow, or we're
+ * already disabled and thus have nothing to do, or we have
+ * exactly the right amount of runtime to take out.
+ */
+ if (rt_rq->rt_runtime == RUNTIME_INF ||
+ rt_rq->rt_runtime == rt_b->rt_runtime)
+ goto balanced;
+ spin_unlock(&rt_rq->rt_runtime_lock);
+
+ /*
+ * Calculate the difference between what we started out with
+ * and what we current have, that's the amount of runtime
+ * we lend and now have to reclaim.
+ */
+ want = rt_b->rt_runtime - rt_rq->rt_runtime;
+
+ /*
+ * Greedy reclaim, take back as much as we can.
+ */
+ for_each_cpu_mask(i, rd->span) {
+ struct rt_rq *iter = sched_rt_period_rt_rq(rt_b, i);
+ s64 diff;
+
+ /*
+ * Can't reclaim from ourselves or disabled runqueues.
+ */
+ if (iter == rt_rq || iter->rt_runtime == RUNTIME_INF)
+ continue;
+
+ spin_lock(&iter->rt_runtime_lock);
+ if (want > 0) {
+ diff = min_t(s64, iter->rt_runtime, want);
+ iter->rt_runtime -= diff;
+ want -= diff;
+ } else {
+ iter->rt_runtime -= want;
+ want -= want;
+ }
+ spin_unlock(&iter->rt_runtime_lock);
+
+ if (!want)
+ break;
+ }
+
+ spin_lock(&rt_rq->rt_runtime_lock);
+ /*
+ * We cannot be left wanting - that would mean some runtime
+ * leaked out of the system.
+ */
+ BUG_ON(want);
+balanced:
+ /*
+ * Disable all the borrow logic by pretending we have inf
+ * runtime - in which case borrowing doesn't make sense.
+ */
+ rt_rq->rt_runtime = RUNTIME_INF;
+ spin_unlock(&rt_rq->rt_runtime_lock);
+ spin_unlock(&rt_b->rt_runtime_lock);
+ }
+}
+
+static void disable_runtime(struct rq *rq)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&rq->lock, flags);
+ __disable_runtime(rq);
+ spin_unlock_irqrestore(&rq->lock, flags);
+}
+
+static void __enable_runtime(struct rq *rq)
+{
+ struct rt_rq *rt_rq;
+
+ if (unlikely(!scheduler_running))
+ return;
+
+ /*
+ * Reset each runqueue's bandwidth settings
+ */
+ for_each_leaf_rt_rq(rt_rq, rq) {
+ struct rt_bandwidth *rt_b = sched_rt_bandwidth(rt_rq);
+
+ spin_lock(&rt_b->rt_runtime_lock);
+ spin_lock(&rt_rq->rt_runtime_lock);
+ rt_rq->rt_runtime = rt_b->rt_runtime;
+ rt_rq->rt_time = 0;
+ rt_rq->rt_throttled = 0;
+ spin_unlock(&rt_rq->rt_runtime_lock);
+ spin_unlock(&rt_b->rt_runtime_lock);
+ }
+}
+
+static void enable_runtime(struct rq *rq)
+{
+ unsigned long flags;
+
+ spin_lock_irqsave(&rq->lock, flags);
+ __enable_runtime(rq);
+ spin_unlock_irqrestore(&rq->lock, flags);
+}
+
+static int balance_runtime(struct rt_rq *rt_rq)
+{
+ int more = 0;
+
+ if (rt_rq->rt_time > rt_rq->rt_runtime) {
+ spin_unlock(&rt_rq->rt_runtime_lock);
+ more = do_balance_runtime(rt_rq);
+ spin_lock(&rt_rq->rt_runtime_lock);
+ }
+
+ return more;
+}
+#else /* !CONFIG_SMP */
+static inline int balance_runtime(struct rt_rq *rt_rq)
+{
+ return 0;
+}
+#endif /* CONFIG_SMP */
+
+static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun)
+{
+ int i, idle = 1;
+ cpumask_t span;
+
+ if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
+ return 1;
+
+ span = sched_rt_period_mask();
+ for_each_cpu_mask(i, span) {
+ int enqueue = 0;
+ struct rt_rq *rt_rq = sched_rt_period_rt_rq(rt_b, i);
+ struct rq *rq = rq_of_rt_rq(rt_rq);
+
+ spin_lock(&rq->lock);
+ if (rt_rq->rt_time) {
+ u64 runtime;
+
+ spin_lock(&rt_rq->rt_runtime_lock);
+ if (rt_rq->rt_throttled)
+ balance_runtime(rt_rq);
+ runtime = rt_rq->rt_runtime;
+ rt_rq->rt_time -= min(rt_rq->rt_time, overrun*runtime);
+ if (rt_rq->rt_throttled && rt_rq->rt_time < runtime) {
+ rt_rq->rt_throttled = 0;
+ enqueue = 1;
+ }
+ if (rt_rq->rt_time || rt_rq->rt_nr_running)
+ idle = 0;
+ spin_unlock(&rt_rq->rt_runtime_lock);
+ } else if (rt_rq->rt_nr_running)
+ idle = 0;
+
+ if (enqueue)
+ sched_rt_rq_enqueue(rt_rq);
+ spin_unlock(&rq->lock);
+ }
+
+ return idle;
+}
+
+static inline int rt_se_prio(struct sched_rt_entity *rt_se)
+{
+#ifdef CONFIG_RT_GROUP_SCHED
+ struct rt_rq *rt_rq = group_rt_rq(rt_se);
+
+ if (rt_rq)
+ return rt_rq->highest_prio;
+#endif
+
+ return rt_task_of(rt_se)->prio;
+}
+
+static int sched_rt_runtime_exceeded(struct rt_rq *rt_rq)
+{
+ u64 runtime = sched_rt_runtime(rt_rq);
+
+ if (rt_rq->rt_throttled)
+ return rt_rq_throttled(rt_rq);
+
+ if (sched_rt_runtime(rt_rq) >= sched_rt_period(rt_rq))
+ return 0;
+
+ balance_runtime(rt_rq);
+ runtime = sched_rt_runtime(rt_rq);
+ if (runtime == RUNTIME_INF)
+ return 0;
+
+ if (rt_rq->rt_time > runtime) {
+ rt_rq->rt_throttled = 1;
+ if (rt_rq_throttled(rt_rq)) {
+ sched_rt_rq_dequeue(rt_rq);
+ return 1;
+ }
+ }
+
+ return 0;
+}
+
+/*
+ * Update the current task's runtime statistics. Skip current tasks that
+ * are not in our scheduling class.
+ */
+static void update_curr_rt(struct rq *rq)
+{
+ struct task_struct *curr = rq->curr;
+ struct sched_rt_entity *rt_se = &curr->rt;
+ struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
+ u64 delta_exec;
+
+ if (!task_has_rt_policy(curr))
+ return;
+
+ delta_exec = rq->clock - curr->se.exec_start;
+ if (unlikely((s64)delta_exec < 0))
+ delta_exec = 0;
+
+ schedstat_set(curr->se.exec_max, max(curr->se.exec_max, delta_exec));
+
+ curr->se.sum_exec_runtime += delta_exec;
+ account_group_exec_runtime(curr, delta_exec);
+
+ curr->se.exec_start = rq->clock;
+ cpuacct_charge(curr, delta_exec);
+
+ if (!rt_bandwidth_enabled())
+ return;
+
+ for_each_sched_rt_entity(rt_se) {
+ rt_rq = rt_rq_of_se(rt_se);
+
+ spin_lock(&rt_rq->rt_runtime_lock);
+ if (sched_rt_runtime(rt_rq) != RUNTIME_INF) {
+ rt_rq->rt_time += delta_exec;
+ if (sched_rt_runtime_exceeded(rt_rq))
+ resched_task(curr);
+ }
+ spin_unlock(&rt_rq->rt_runtime_lock);
+ }
+}
+
+static inline
+void inc_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+ WARN_ON(!rt_prio(rt_se_prio(rt_se)));
+ rt_rq->rt_nr_running++;
+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
+ if (rt_se_prio(rt_se) < rt_rq->highest_prio) {
+#ifdef CONFIG_SMP
+ struct rq *rq = rq_of_rt_rq(rt_rq);
+#endif
+
+ rt_rq->highest_prio = rt_se_prio(rt_se);
+#ifdef CONFIG_SMP
+ if (rq->online)
+ cpupri_set(&rq->rd->cpupri, rq->cpu,
+ rt_se_prio(rt_se));
+#endif
+ }
+#endif
+#ifdef CONFIG_SMP
+ if (rt_se->nr_cpus_allowed > 1) {
+ struct rq *rq = rq_of_rt_rq(rt_rq);
+
+ rq->rt.rt_nr_migratory++;
+ }
+
+ update_rt_migration(rq_of_rt_rq(rt_rq));
+#endif
+#ifdef CONFIG_RT_GROUP_SCHED
+ if (rt_se_boosted(rt_se))
+ rt_rq->rt_nr_boosted++;
+
+ if (rt_rq->tg)
+ start_rt_bandwidth(&rt_rq->tg->rt_bandwidth);
+#else
+ start_rt_bandwidth(&def_rt_bandwidth);
+#endif
+}
+
+static inline
+void dec_rt_tasks(struct sched_rt_entity *rt_se, struct rt_rq *rt_rq)
+{
+#ifdef CONFIG_SMP
+ int highest_prio = rt_rq->highest_prio;
+#endif
+
+ WARN_ON(!rt_prio(rt_se_prio(rt_se)));
+ WARN_ON(!rt_rq->rt_nr_running);
+ rt_rq->rt_nr_running--;
+#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
+ if (rt_rq->rt_nr_running) {
+ struct rt_prio_array *array;
+
+ WARN_ON(rt_se_prio(rt_se) < rt_rq->highest_prio);
+ if (rt_se_prio(rt_se) == rt_rq->highest_prio) {
+ /* recalculate */
+ array = &rt_rq->active;
+ rt_rq->highest_prio =
+ sched_find_first_bit(array->bitmap);
+ } /* otherwise leave rq->highest prio alone */
+ } else
+ rt_rq->highest_prio = MAX_RT_PRIO;
+#endif
+#ifdef CONFIG_SMP
+ if (rt_se->nr_cpus_allowed > 1) {
+ struct rq *rq = rq_of_rt_rq(rt_rq);
+ rq->rt.rt_nr_migratory--;
+ }
+
+ if (rt_rq->highest_prio != highest_prio) {
+ struct rq *rq = rq_of_rt_rq(rt_rq);
+
+ if (rq->online)
+ cpupri_set(&rq->rd->cpupri, rq->cpu,
+ rt_rq->highest_prio);
+ }
+
+ update_rt_migration(rq_of_rt_rq(rt_rq));
+#endif /* CONFIG_SMP */
+#ifdef CONFIG_RT_GROUP_SCHED
+ if (rt_se_boosted(rt_se))
+ rt_rq->rt_nr_boosted--;
+
+ WARN_ON(!rt_rq->rt_nr_running && rt_rq->rt_nr_boosted);
+#endif
+}
+
+static void __enqueue_rt_entity(struct sched_rt_entity *rt_se)
+{
+ struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
+ struct rt_prio_array *array = &rt_rq->active;
+ struct rt_rq *group_rq = group_rt_rq(rt_se);
+ struct list_head *queue = array->queue + rt_se_prio(rt_se);
+
+ /*
+ * Don't enqueue the group if its throttled, or when empty.
+ * The latter is a consequence of the former when a child group
+ * get throttled and the current group doesn't have any other
+ * active members.
+ */
+ if (group_rq && (rt_rq_throttled(group_rq) || !group_rq->rt_nr_running))
+ return;
+
+ list_add_tail(&rt_se->run_list, queue);
+ __set_bit(rt_se_prio(rt_se), array->bitmap);
+
+ inc_rt_tasks(rt_se, rt_rq);
+}
+
+static void __dequeue_rt_entity(struct sched_rt_entity *rt_se)
+{
+ struct rt_rq *rt_rq = rt_rq_of_se(rt_se);
+ struct rt_prio_array *array = &rt_rq->active;
+
+ list_del_init(&rt_se->run_list);
+ if (list_empty(array->queue + rt_se_prio(rt_se)))
+ __clear_bit(rt_se_prio(rt_se), array->bitmap);
+
+ dec_rt_tasks(rt_se, rt_rq);
+}
+
+/*
+ * Because the prio of an upper entry depends on the lower
+ * entries, we must remove entries top - down.
+ */
+static void dequeue_rt_stack(struct sched_rt_entity *rt_se)
+{
+ struct sched_rt_entity *back = NULL;
+
+ for_each_sched_rt_entity(rt_se) {
+ rt_se->back = back;
+ back = rt_se;
+ }
+
+ for (rt_se = back; rt_se; rt_se = rt_se->back) {
+ if (on_rt_rq(rt_se))
+ __dequeue_rt_entity(rt_se);
+ }
+}
+
+static void enqueue_rt_entity(struct sched_rt_entity *rt_se)
+{
+ dequeue_rt_stack(rt_se);
+ for_each_sched_rt_entity(rt_se)
+ __enqueue_rt_entity(rt_se);
+}
+
+static void dequeue_rt_entity(struct sched_rt_entity *rt_se)
+{
+ dequeue_rt_stack(rt_se);
+
+ for_each_sched_rt_entity(rt_se) {
+ struct rt_rq *rt_rq = group_rt_rq(rt_se);
+
+ if (rt_rq && rt_rq->rt_nr_running)
+ __enqueue_rt_entity(rt_se);
+ }
+}
+
+/*
+ * Adding/removing a task to/from a priority array:
+ */
+static void enqueue_task_rt(struct rq *rq, struct task_struct *p, int wakeup)
+{
+ struct sched_rt_entity *rt_se = &p->rt;
+
+ if (wakeup)
+ rt_se->timeout = 0;
+
+ enqueue_rt_entity(rt_se);
+
+ inc_cpu_load(rq, p->se.load.weight);
+}
+
+static void dequeue_task_rt(struct rq *rq, struct task_struct *p, int sleep)
+{
+ struct sched_rt_entity *rt_se = &p->rt;
+
+ update_curr_rt(rq);
+ dequeue_rt_entity(rt_se);
+
+ dec_cpu_load(rq, p->se.load.weight);
+}
+
+/*
+ * Put task to the end of the run list without the overhead of dequeue
+ * followed by enqueue.
+ */
+static void
+requeue_rt_entity(struct rt_rq *rt_rq, struct sched_rt_entity *rt_se, int head)
+{
+ if (on_rt_rq(rt_se)) {
+ struct rt_prio_array *array = &rt_rq->active;
+ struct list_head *queue = array->queue + rt_se_prio(rt_se);
+
+ if (head)
+ list_move(&rt_se->run_list, queue);
+ else
+ list_move_tail(&rt_se->run_list, queue);
+ }
+}
+
+static void requeue_task_rt(struct rq *rq, struct task_struct *p, int head)
+{
+ struct sched_rt_entity *rt_se = &p->rt;
+ struct rt_rq *rt_rq;
+
+ for_each_sched_rt_entity(rt_se) {
+ rt_rq = rt_rq_of_se(rt_se);
+ requeue_rt_entity(rt_rq, rt_se, head);
+ }
+}
+
+static void yield_task_rt(struct rq *rq)
+{
+ requeue_task_rt(rq, rq->curr, 0);
+}
+
+#ifdef CONFIG_SMP
+static int find_lowest_rq(struct task_struct *task);
+
+static int select_task_rq_rt(struct task_struct *p, int sync)
+{
+ struct rq *rq = task_rq(p);
+
+ /*
+ * If the current task is an RT task, then
+ * try to see if we can wake this RT task up on another
+ * runqueue. Otherwise simply start this RT task
+ * on its current runqueue.
+ *
+ * We want to avoid overloading runqueues. Even if
+ * the RT task is of higher priority than the current RT task.
+ * RT tasks behave differently than other tasks. If
+ * one gets preempted, we try to push it off to another queue.
+ * So trying to keep a preempting RT task on the same
+ * cache hot CPU will force the running RT task to
+ * a cold CPU. So we waste all the cache for the lower
+ * RT task in hopes of saving some of a RT task
+ * that is just being woken and probably will have
+ * cold cache anyway.
+ */
+ if (unlikely(rt_task(rq->curr)) &&
+ (p->rt.nr_cpus_allowed > 1)) {
+ int cpu = find_lowest_rq(p);
+
+ return (cpu == -1) ? task_cpu(p) : cpu;
+ }
+
+ /*
+ * Otherwise, just let it ride on the affined RQ and the
+ * post-schedule router will push the preempted task away
+ */
+ return task_cpu(p);
+}
+
+static void check_preempt_equal_prio(struct rq *rq, struct task_struct *p)
+{
+ cpumask_t mask;
+
+ if (rq->curr->rt.nr_cpus_allowed == 1)
+ return;
+
+ if (p->rt.nr_cpus_allowed != 1
+ && cpupri_find(&rq->rd->cpupri, p, &mask))
+ return;
+
+ if (!cpupri_find(&rq->rd->cpupri, rq->curr, &mask))
+ return;
+
+ /*
+ * There appears to be other cpus that can accept
+ * current and none to run 'p', so lets reschedule
+ * to try and push current away:
+ */
+ requeue_task_rt(rq, p, 1);
+ resched_task(rq->curr);
+}
+
+#endif /* CONFIG_SMP */
+
+/*
+ * Preempt the current task with a newly woken task if needed:
+ */
+static void check_preempt_curr_rt(struct rq *rq, struct task_struct *p, int sync)
+{
+ if (p->prio < rq->curr->prio) {
+ resched_task(rq->curr);
+ return;
+ }
+
+#ifdef CONFIG_SMP
+ /*
+ * If:
+ *
+ * - the newly woken task is of equal priority to the current task
+ * - the newly woken task is non-migratable while current is migratable
+ * - current will be preempted on the next reschedule
+ *
+ * we should check to see if current can readily move to a different
+ * cpu. If so, we will reschedule to allow the push logic to try
+ * to move current somewhere else, making room for our non-migratable
+ * task.
+ */
+ if (p->prio == rq->curr->prio && !need_resched())
+ check_preempt_equal_prio(rq, p);
+#endif
+}
+
+static struct sched_rt_entity *pick_next_rt_entity(struct rq *rq,
+ struct rt_rq *rt_rq)
+{
+ struct rt_prio_array *array = &rt_rq->active;
+ struct sched_rt_entity *next = NULL;
+ struct list_head *queue;
+ int idx;
+
+ idx = sched_find_first_bit(array->bitmap);
+ BUG_ON(idx >= MAX_RT_PRIO);
+
+ queue = array->queue + idx;
+ next = list_entry(queue->next, struct sched_rt_entity, run_list);
+
+ return next;
+}
+
+static struct task_struct *pick_next_task_rt(struct rq *rq)
+{
+ struct sched_rt_entity *rt_se;
+ struct task_struct *p;
+ struct rt_rq *rt_rq;
+
+ rt_rq = &rq->rt;
+
+ if (unlikely(!rt_rq->rt_nr_running))
+ return NULL;
+
+ if (rt_rq_throttled(rt_rq))
+ return NULL;
+
+ do {
+ rt_se = pick_next_rt_entity(rq, rt_rq);
+ BUG_ON(!rt_se);
+ rt_rq = group_rt_rq(rt_se);
+ } while (rt_rq);
+
+ p = rt_task_of(rt_se);
+ p->se.exec_start = rq->clock;
+ return p;
+}
+
+static void put_prev_task_rt(struct rq *rq, struct task_struct *p)
+{
+ update_curr_rt(rq);
+ p->se.exec_start = 0;
+}
+
+#ifdef CONFIG_SMP
+
+/* Only try algorithms three times */
+#define RT_MAX_TRIES 3
+
+static int double_lock_balance(struct rq *this_rq, struct rq *busiest);
+static void double_unlock_balance(struct rq *this_rq, struct rq *busiest);
+
+static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep);
+
+static int pick_rt_task(struct rq *rq, struct task_struct *p, int cpu)
+{
+ if (!task_running(rq, p) &&
+ (cpu < 0 || cpu_isset(cpu, p->cpus_allowed)) &&
+ (p->rt.nr_cpus_allowed > 1))
+ return 1;
+ return 0;
+}
+
+/* Return the second highest RT task, NULL otherwise */
+static struct task_struct *pick_next_highest_task_rt(struct rq *rq, int cpu)
+{
+ struct task_struct *next = NULL;
+ struct sched_rt_entity *rt_se;
+ struct rt_prio_array *array;
+ struct rt_rq *rt_rq;
+ int idx;
+
+ for_each_leaf_rt_rq(rt_rq, rq) {
+ array = &rt_rq->active;
+ idx = sched_find_first_bit(array->bitmap);
+ next_idx:
+ if (idx >= MAX_RT_PRIO)
+ continue;
+ if (next && next->prio < idx)
+ continue;
+ list_for_each_entry(rt_se, array->queue + idx, run_list) {
+ struct task_struct *p = rt_task_of(rt_se);
+ if (pick_rt_task(rq, p, cpu)) {
+ next = p;
+ break;
+ }
+ }
+ if (!next) {
+ idx = find_next_bit(array->bitmap, MAX_RT_PRIO, idx+1);
+ goto next_idx;
+ }
+ }
+
+ return next;
+}
+
+static DEFINE_PER_CPU(cpumask_t, local_cpu_mask);
+
+static inline int pick_optimal_cpu(int this_cpu, cpumask_t *mask)
+{
+ int first;
+
+ /* "this_cpu" is cheaper to preempt than a remote processor */
+ if ((this_cpu != -1) && cpu_isset(this_cpu, *mask))
+ return this_cpu;
+
+ first = first_cpu(*mask);
+ if (first != NR_CPUS)
+ return first;
+
+ return -1;
+}
+
+static int find_lowest_rq(struct task_struct *task)
+{
+ struct sched_domain *sd;
+ cpumask_t *lowest_mask = &__get_cpu_var(local_cpu_mask);
+ int this_cpu = smp_processor_id();
+ int cpu = task_cpu(task);
+
+ if (task->rt.nr_cpus_allowed == 1)
+ return -1; /* No other targets possible */
+
+ if (!cpupri_find(&task_rq(task)->rd->cpupri, task, lowest_mask))
+ return -1; /* No targets found */
+
+ /*
+ * Only consider CPUs that are usable for migration.
+ * I guess we might want to change cpupri_find() to ignore those
+ * in the first place.
+ */
+ cpus_and(*lowest_mask, *lowest_mask, cpu_active_map);
+
+ /*
+ * At this point we have built a mask of cpus representing the
+ * lowest priority tasks in the system. Now we want to elect
+ * the best one based on our affinity and topology.
+ *
+ * We prioritize the last cpu that the task executed on since
+ * it is most likely cache-hot in that location.
+ */
+ if (cpu_isset(cpu, *lowest_mask))
+ return cpu;
+
+ /*
+ * Otherwise, we consult the sched_domains span maps to figure
+ * out which cpu is logically closest to our hot cache data.
+ */
+ if (this_cpu == cpu)
+ this_cpu = -1; /* Skip this_cpu opt if the same */
+
+ for_each_domain(cpu, sd) {
+ if (sd->flags & SD_WAKE_AFFINE) {
+ cpumask_t domain_mask;
+ int best_cpu;
+
+ cpus_and(domain_mask, sd->span, *lowest_mask);
+
+ best_cpu = pick_optimal_cpu(this_cpu,
+ &domain_mask);
+ if (best_cpu != -1)
+ return best_cpu;
+ }
+ }
+
+ /*
+ * And finally, if there were no matches within the domains
+ * just give the caller *something* to work with from the compatible
+ * locations.
+ */
+ return pick_optimal_cpu(this_cpu, lowest_mask);
+}
+
+/* Will lock the rq it finds */
+static struct rq *find_lock_lowest_rq(struct task_struct *task, struct rq *rq)
+{
+ struct rq *lowest_rq = NULL;
+ int tries;
+ int cpu;
+
+ for (tries = 0; tries < RT_MAX_TRIES; tries++) {
+ cpu = find_lowest_rq(task);
+
+ if ((cpu == -1) || (cpu == rq->cpu))
+ break;
+
+ lowest_rq = cpu_rq(cpu);
+
+ /* if the prio of this runqueue changed, try again */
+ if (double_lock_balance(rq, lowest_rq)) {
+ /*
+ * We had to unlock the run queue. In
+ * the mean time, task could have
+ * migrated already or had its affinity changed.
+ * Also make sure that it wasn't scheduled on its rq.
+ */
+ if (unlikely(task_rq(task) != rq ||
+ !cpu_isset(lowest_rq->cpu,
+ task->cpus_allowed) ||
+ task_running(rq, task) ||
+ !task->se.on_rq)) {
+
+ spin_unlock(&lowest_rq->lock);
+ lowest_rq = NULL;
+ break;
+ }
+ }
+
+ /* If this rq is still suitable use it. */
+ if (lowest_rq->rt.highest_prio > task->prio)
+ break;
+
+ /* try again */
+ double_unlock_balance(rq, lowest_rq);
+ lowest_rq = NULL;
+ }
+
+ return lowest_rq;
+}
+
+/*
+ * If the current CPU has more than one RT task, see if the non
+ * running task can migrate over to a CPU that is running a task
+ * of lesser priority.
+ */
+static int push_rt_task(struct rq *rq)
+{
+ struct task_struct *next_task;
+ struct rq *lowest_rq;
+ int ret = 0;
+ int paranoid = RT_MAX_TRIES;
+
+ if (!rq->rt.overloaded)
+ return 0;
+
+ next_task = pick_next_highest_task_rt(rq, -1);
+ if (!next_task)
+ return 0;
+
+ retry:
+ if (unlikely(next_task == rq->curr)) {
+ WARN_ON(1);
+ return 0;
+ }
+
+ /*
+ * It's possible that the next_task slipped in of
+ * higher priority than current. If that's the case
+ * just reschedule current.
+ */
+ if (unlikely(next_task->prio < rq->curr->prio)) {
+ resched_task(rq->curr);
+ return 0;
+ }
+
+ /* We might release rq lock */
+ get_task_struct(next_task);
+
+ /* find_lock_lowest_rq locks the rq if found */
+ lowest_rq = find_lock_lowest_rq(next_task, rq);
+ if (!lowest_rq) {
+ struct task_struct *task;
+ /*
+ * find lock_lowest_rq releases rq->lock
+ * so it is possible that next_task has changed.
+ * If it has, then try again.
+ */
+ task = pick_next_highest_task_rt(rq, -1);
+ if (unlikely(task != next_task) && task && paranoid--) {
+ put_task_struct(next_task);
+ next_task = task;
+ goto retry;
+ }
+ goto out;
+ }
+
+ deactivate_task(rq, next_task, 0);
+ set_task_cpu(next_task, lowest_rq->cpu);
+ activate_task(lowest_rq, next_task, 0);
+
+ resched_task(lowest_rq->curr);
+
+ double_unlock_balance(rq, lowest_rq);
+
+ ret = 1;
+out:
+ put_task_struct(next_task);
+
+ return ret;
+}
+
+/*
+ * TODO: Currently we just use the second highest prio task on
+ * the queue, and stop when it can't migrate (or there's
+ * no more RT tasks). There may be a case where a lower
+ * priority RT task has a different affinity than the
+ * higher RT task. In this case the lower RT task could
+ * possibly be able to migrate where as the higher priority
+ * RT task could not. We currently ignore this issue.
+ * Enhancements are welcome!
+ */
+static void push_rt_tasks(struct rq *rq)
+{
+ /* push_rt_task will return true if it moved an RT */
+ while (push_rt_task(rq))
+ ;
+}
+
+static int pull_rt_task(struct rq *this_rq)
+{
+ int this_cpu = this_rq->cpu, ret = 0, cpu;
+ struct task_struct *p, *next;
+ struct rq *src_rq;
+
+ if (likely(!rt_overloaded(this_rq)))
+ return 0;
+
+ next = pick_next_task_rt(this_rq);
+
+ for_each_cpu_mask_nr(cpu, this_rq->rd->rto_mask) {
+ if (this_cpu == cpu)
+ continue;
+
+ src_rq = cpu_rq(cpu);
+ /*
+ * We can potentially drop this_rq's lock in
+ * double_lock_balance, and another CPU could
+ * steal our next task - hence we must cause
+ * the caller to recalculate the next task
+ * in that case:
+ */
+ if (double_lock_balance(this_rq, src_rq)) {
+ struct task_struct *old_next = next;
+
+ next = pick_next_task_rt(this_rq);
+ if (next != old_next)
+ ret = 1;
+ }
+
+ /*
+ * Are there still pullable RT tasks?
+ */
+ if (src_rq->rt.rt_nr_running <= 1)
+ goto skip;
+
+ p = pick_next_highest_task_rt(src_rq, this_cpu);
+
+ /*
+ * Do we have an RT task that preempts
+ * the to-be-scheduled task?
+ */
+ if (p && (!next || (p->prio < next->prio))) {
+ WARN_ON(p == src_rq->curr);
+ WARN_ON(!p->se.on_rq);
+
+ /*
+ * There's a chance that p is higher in priority
+ * than what's currently running on its cpu.
+ * This is just that p is wakeing up and hasn't
+ * had a chance to schedule. We only pull
+ * p if it is lower in priority than the
+ * current task on the run queue or
+ * this_rq next task is lower in prio than
+ * the current task on that rq.
+ */
+ if (p->prio < src_rq->curr->prio ||
+ (next && next->prio < src_rq->curr->prio))
+ goto skip;
+
+ ret = 1;
+
+ deactivate_task(src_rq, p, 0);
+ set_task_cpu(p, this_cpu);
+ activate_task(this_rq, p, 0);
+ /*
+ * We continue with the search, just in
+ * case there's an even higher prio task
+ * in another runqueue. (low likelyhood
+ * but possible)
+ *
+ * Update next so that we won't pick a task
+ * on another cpu with a priority lower (or equal)
+ * than the one we just picked.
+ */
+ next = p;
+
+ }
+ skip:
+ double_unlock_balance(this_rq, src_rq);
+ }
+
+ return ret;
+}
+
+static void pre_schedule_rt(struct rq *rq, struct task_struct *prev)
+{
+ /* Try to pull RT tasks here if we lower this rq's prio */
+ if (unlikely(rt_task(prev)) && rq->rt.highest_prio > prev->prio)
+ pull_rt_task(rq);
+}
+
+static void post_schedule_rt(struct rq *rq)
+{
+ /*
+ * If we have more than one rt_task queued, then
+ * see if we can push the other rt_tasks off to other CPUS.
+ * Note we may release the rq lock, and since
+ * the lock was owned by prev, we need to release it
+ * first via finish_lock_switch and then reaquire it here.
+ */
+ if (unlikely(rq->rt.overloaded)) {
+ spin_lock_irq(&rq->lock);
+ push_rt_tasks(rq);
+ spin_unlock_irq(&rq->lock);
+ }
+}
+
+/*
+ * If we are not running and we are not going to reschedule soon, we should
+ * try to push tasks away now
+ */
+static void task_wake_up_rt(struct rq *rq, struct task_struct *p)
+{
+ if (!task_running(rq, p) &&
+ !test_tsk_need_resched(rq->curr) &&
+ rq->rt.overloaded)
+ push_rt_tasks(rq);
+}
+
+static unsigned long
+load_balance_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
+ unsigned long max_load_move,
+ struct sched_domain *sd, enum cpu_idle_type idle,
+ int *all_pinned, int *this_best_prio)
+{
+ /* don't touch RT tasks */
+ return 0;
+}
+
+static int
+move_one_task_rt(struct rq *this_rq, int this_cpu, struct rq *busiest,
+ struct sched_domain *sd, enum cpu_idle_type idle)
+{
+ /* don't touch RT tasks */
+ return 0;
+}
+
+static void set_cpus_allowed_rt(struct task_struct *p,
+ const cpumask_t *new_mask)
+{
+ int weight = cpus_weight(*new_mask);
+
+ BUG_ON(!rt_task(p));
+
+ /*
+ * Update the migration status of the RQ if we have an RT task
+ * which is running AND changing its weight value.
+ */
+ if (p->se.on_rq && (weight != p->rt.nr_cpus_allowed)) {
+ struct rq *rq = task_rq(p);
+
+ if ((p->rt.nr_cpus_allowed <= 1) && (weight > 1)) {
+ rq->rt.rt_nr_migratory++;
+ } else if ((p->rt.nr_cpus_allowed > 1) && (weight <= 1)) {
+ BUG_ON(!rq->rt.rt_nr_migratory);
+ rq->rt.rt_nr_migratory--;
+ }
+
+ update_rt_migration(rq);
+ }
+
+ p->cpus_allowed = *new_mask;
+ p->rt.nr_cpus_allowed = weight;
+}
+
+/* Assumes rq->lock is held */
+static void rq_online_rt(struct rq *rq)
+{
+ if (rq->rt.overloaded)
+ rt_set_overload(rq);
+
+ __enable_runtime(rq);
+
+ cpupri_set(&rq->rd->cpupri, rq->cpu, rq->rt.highest_prio);
+}
+
+/* Assumes rq->lock is held */
+static void rq_offline_rt(struct rq *rq)
+{
+ if (rq->rt.overloaded)
+ rt_clear_overload(rq);
+
+ __disable_runtime(rq);
+
+ cpupri_set(&rq->rd->cpupri, rq->cpu, CPUPRI_INVALID);
+}
+
+/*
+ * When switch from the rt queue, we bring ourselves to a position
+ * that we might want to pull RT tasks from other runqueues.
+ */
+static void switched_from_rt(struct rq *rq, struct task_struct *p,
+ int running)
+{
+ /*
+ * If there are other RT tasks then we will reschedule
+ * and the scheduling of the other RT tasks will handle
+ * the balancing. But if we are the last RT task
+ * we may need to handle the pulling of RT tasks
+ * now.
+ */
+ if (!rq->rt.rt_nr_running)
+ pull_rt_task(rq);
+}
+#endif /* CONFIG_SMP */
+
+/*
+ * When switching a task to RT, we may overload the runqueue
+ * with RT tasks. In this case we try to push them off to
+ * other runqueues.
+ */
+static void switched_to_rt(struct rq *rq, struct task_struct *p,
+ int running)
+{
+ int check_resched = 1;
+
+ /*
+ * If we are already running, then there's nothing
+ * that needs to be done. But if we are not running
+ * we may need to preempt the current running task.
+ * If that current running task is also an RT task
+ * then see if we can move to another run queue.
+ */
+ if (!running) {
+#ifdef CONFIG_SMP
+ if (rq->rt.overloaded && push_rt_task(rq) &&
+ /* Don't resched if we changed runqueues */
+ rq != task_rq(p))
+ check_resched = 0;
+#endif /* CONFIG_SMP */
+ if (check_resched && p->prio < rq->curr->prio)
+ resched_task(rq->curr);
+ }
+}
+
+/*
+ * Priority of the task has changed. This may cause
+ * us to initiate a push or pull.
+ */
+static void prio_changed_rt(struct rq *rq, struct task_struct *p,
+ int oldprio, int running)
+{
+ if (running) {
+#ifdef CONFIG_SMP
+ /*
+ * If our priority decreases while running, we
+ * may need to pull tasks to this runqueue.
+ */
+ if (oldprio < p->prio)
+ pull_rt_task(rq);
+ /*
+ * If there's a higher priority task waiting to run
+ * then reschedule. Note, the above pull_rt_task
+ * can release the rq lock and p could migrate.
+ * Only reschedule if p is still on the same runqueue.
+ */
+ if (p->prio > rq->rt.highest_prio && rq->curr == p)
+ resched_task(p);
+#else
+ /* For UP simply resched on drop of prio */
+ if (oldprio < p->prio)
+ resched_task(p);
+#endif /* CONFIG_SMP */
+ } else {
+ /*
+ * This task is not running, but if it is
+ * greater than the current running task
+ * then reschedule.
+ */
+ if (p->prio < rq->curr->prio)
+ resched_task(rq->curr);
+ }
+}
+
+static void watchdog(struct rq *rq, struct task_struct *p)
+{
+ unsigned long soft, hard;
+
+ if (!p->signal)
+ return;
+
+ soft = p->signal->rlim[RLIMIT_RTTIME].rlim_cur;
+ hard = p->signal->rlim[RLIMIT_RTTIME].rlim_max;
+
+ if (soft != RLIM_INFINITY) {
+ unsigned long next;
+
+ p->rt.timeout++;
+ next = DIV_ROUND_UP(min(soft, hard), USEC_PER_SEC/HZ);
+ if (p->rt.timeout > next)
+ p->cputime_expires.sched_exp = p->se.sum_exec_runtime;
+ }
+}
+
+static void task_tick_rt(struct rq *rq, struct task_struct *p, int queued)
+{
+ update_curr_rt(rq);
+
+ watchdog(rq, p);
+
+ /*
+ * RR tasks need a special form of timeslice management.
+ * FIFO tasks have no timeslices.
+ */
+ if (p->policy != SCHED_RR)
+ return;
+
+ if (--p->rt.time_slice)
+ return;
+
+ p->rt.time_slice = DEF_TIMESLICE;
+
+ /*
+ * Requeue to the end of queue if we are not the only element
+ * on the queue:
+ */
+ if (p->rt.run_list.prev != p->rt.run_list.next) {
+ requeue_task_rt(rq, p, 0);
+ set_tsk_need_resched(p);
+ }
+}
+
+static void set_curr_task_rt(struct rq *rq)
+{
+ struct task_struct *p = rq->curr;
+
+ p->se.exec_start = rq->clock;
+}
+
+static const struct sched_class rt_sched_class = {
+ .next = &fair_sched_class,
+ .enqueue_task = enqueue_task_rt,
+ .dequeue_task = dequeue_task_rt,
+ .yield_task = yield_task_rt,
+
+ .check_preempt_curr = check_preempt_curr_rt,
+
+ .pick_next_task = pick_next_task_rt,
+ .put_prev_task = put_prev_task_rt,
+
+#ifdef CONFIG_SMP
+ .select_task_rq = select_task_rq_rt,
+
+ .load_balance = load_balance_rt,
+ .move_one_task = move_one_task_rt,
+ .set_cpus_allowed = set_cpus_allowed_rt,
+ .rq_online = rq_online_rt,
+ .rq_offline = rq_offline_rt,
+ .pre_schedule = pre_schedule_rt,
+ .post_schedule = post_schedule_rt,
+ .task_wake_up = task_wake_up_rt,
+ .switched_from = switched_from_rt,
+#endif
+
+ .set_curr_task = set_curr_task_rt,
+ .task_tick = task_tick_rt,
+
+ .prio_changed = prio_changed_rt,
+ .switched_to = switched_to_rt,
+};
+
+#ifdef CONFIG_SCHED_DEBUG
+extern void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq);
+
+static void print_rt_stats(struct seq_file *m, int cpu)
+{
+ struct rt_rq *rt_rq;
+
+ rcu_read_lock();
+ for_each_leaf_rt_rq(rt_rq, cpu_rq(cpu))
+ print_rt_rq(m, cpu, rt_rq);
+ rcu_read_unlock();
+}
+#endif /* CONFIG_SCHED_DEBUG */
OpenPOWER on IntegriCloud