diff options
author | Timothy Pearson <tpearson@raptorengineering.com> | 2017-08-23 14:45:25 -0500 |
---|---|---|
committer | Timothy Pearson <tpearson@raptorengineering.com> | 2017-08-23 14:45:25 -0500 |
commit | fcbb27b0ec6dcbc5a5108cb8fb19eae64593d204 (patch) | |
tree | 22962a4387943edc841c72a4e636a068c66d58fd /fs/exec.c | |
download | ast2050-linux-kernel-fcbb27b0ec6dcbc5a5108cb8fb19eae64593d204.zip ast2050-linux-kernel-fcbb27b0ec6dcbc5a5108cb8fb19eae64593d204.tar.gz |
Initial import of modified Linux 2.6.28 tree
Original upstream URL:
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux-stable.git | branch linux-2.6.28.y
Diffstat (limited to 'fs/exec.c')
-rw-r--r-- | fs/exec.c | 1849 |
1 files changed, 1849 insertions, 0 deletions
diff --git a/fs/exec.c b/fs/exec.c new file mode 100644 index 0000000..c9f22cb --- /dev/null +++ b/fs/exec.c @@ -0,0 +1,1849 @@ +/* + * linux/fs/exec.c + * + * Copyright (C) 1991, 1992 Linus Torvalds + */ + +/* + * #!-checking implemented by tytso. + */ +/* + * Demand-loading implemented 01.12.91 - no need to read anything but + * the header into memory. The inode of the executable is put into + * "current->executable", and page faults do the actual loading. Clean. + * + * Once more I can proudly say that linux stood up to being changed: it + * was less than 2 hours work to get demand-loading completely implemented. + * + * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, + * current->executable is only used by the procfs. This allows a dispatch + * table to check for several different types of binary formats. We keep + * trying until we recognize the file or we run out of supported binary + * formats. + */ + +#include <linux/slab.h> +#include <linux/file.h> +#include <linux/fdtable.h> +#include <linux/mm.h> +#include <linux/stat.h> +#include <linux/fcntl.h> +#include <linux/smp_lock.h> +#include <linux/swap.h> +#include <linux/string.h> +#include <linux/init.h> +#include <linux/pagemap.h> +#include <linux/highmem.h> +#include <linux/spinlock.h> +#include <linux/key.h> +#include <linux/personality.h> +#include <linux/binfmts.h> +#include <linux/utsname.h> +#include <linux/pid_namespace.h> +#include <linux/module.h> +#include <linux/namei.h> +#include <linux/proc_fs.h> +#include <linux/mount.h> +#include <linux/security.h> +#include <linux/syscalls.h> +#include <linux/tsacct_kern.h> +#include <linux/cn_proc.h> +#include <linux/audit.h> +#include <linux/tracehook.h> +#include <linux/kmod.h> + +#include <asm/uaccess.h> +#include <asm/mmu_context.h> +#include <asm/tlb.h> + +#ifdef __alpha__ +/* for /sbin/loader handling in search_binary_handler() */ +#include <linux/a.out.h> +#endif + +int core_uses_pid; +char core_pattern[CORENAME_MAX_SIZE] = "core"; +int suid_dumpable = 0; + +/* The maximal length of core_pattern is also specified in sysctl.c */ + +static LIST_HEAD(formats); +static DEFINE_RWLOCK(binfmt_lock); + +int register_binfmt(struct linux_binfmt * fmt) +{ + if (!fmt) + return -EINVAL; + write_lock(&binfmt_lock); + list_add(&fmt->lh, &formats); + write_unlock(&binfmt_lock); + return 0; +} + +EXPORT_SYMBOL(register_binfmt); + +void unregister_binfmt(struct linux_binfmt * fmt) +{ + write_lock(&binfmt_lock); + list_del(&fmt->lh); + write_unlock(&binfmt_lock); +} + +EXPORT_SYMBOL(unregister_binfmt); + +static inline void put_binfmt(struct linux_binfmt * fmt) +{ + module_put(fmt->module); +} + +/* + * Note that a shared library must be both readable and executable due to + * security reasons. + * + * Also note that we take the address to load from from the file itself. + */ +SYSCALL_DEFINE1(uselib, const char __user *, library) +{ + struct file *file; + struct nameidata nd; + char *tmp = getname(library); + int error = PTR_ERR(tmp); + + if (!IS_ERR(tmp)) { + error = path_lookup_open(AT_FDCWD, tmp, + LOOKUP_FOLLOW, &nd, + FMODE_READ|FMODE_EXEC); + putname(tmp); + } + if (error) + goto out; + + error = -EINVAL; + if (!S_ISREG(nd.path.dentry->d_inode->i_mode)) + goto exit; + + error = -EACCES; + if (nd.path.mnt->mnt_flags & MNT_NOEXEC) + goto exit; + + error = vfs_permission(&nd, MAY_READ | MAY_EXEC | MAY_OPEN); + if (error) + goto exit; + + file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE); + error = PTR_ERR(file); + if (IS_ERR(file)) + goto out; + + error = -ENOEXEC; + if(file->f_op) { + struct linux_binfmt * fmt; + + read_lock(&binfmt_lock); + list_for_each_entry(fmt, &formats, lh) { + if (!fmt->load_shlib) + continue; + if (!try_module_get(fmt->module)) + continue; + read_unlock(&binfmt_lock); + error = fmt->load_shlib(file); + read_lock(&binfmt_lock); + put_binfmt(fmt); + if (error != -ENOEXEC) + break; + } + read_unlock(&binfmt_lock); + } + fput(file); +out: + return error; +exit: + release_open_intent(&nd); + path_put(&nd.path); + goto out; +} + +#ifdef CONFIG_MMU + +static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, + int write) +{ + struct page *page; + int ret; + +#ifdef CONFIG_STACK_GROWSUP + if (write) { + ret = expand_stack_downwards(bprm->vma, pos); + if (ret < 0) + return NULL; + } +#endif + ret = get_user_pages(current, bprm->mm, pos, + 1, write, 1, &page, NULL); + if (ret <= 0) + return NULL; + + if (write) { + unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start; + struct rlimit *rlim; + + /* + * We've historically supported up to 32 pages (ARG_MAX) + * of argument strings even with small stacks + */ + if (size <= ARG_MAX) + return page; + + /* + * Limit to 1/4-th the stack size for the argv+env strings. + * This ensures that: + * - the remaining binfmt code will not run out of stack space, + * - the program will have a reasonable amount of stack left + * to work from. + */ + rlim = current->signal->rlim; + if (size > rlim[RLIMIT_STACK].rlim_cur / 4) { + put_page(page); + return NULL; + } + } + + return page; +} + +static void put_arg_page(struct page *page) +{ + put_page(page); +} + +static void free_arg_page(struct linux_binprm *bprm, int i) +{ +} + +static void free_arg_pages(struct linux_binprm *bprm) +{ +} + +static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, + struct page *page) +{ + flush_cache_page(bprm->vma, pos, page_to_pfn(page)); +} + +static int __bprm_mm_init(struct linux_binprm *bprm) +{ + int err = -ENOMEM; + struct vm_area_struct *vma = NULL; + struct mm_struct *mm = bprm->mm; + + bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL); + if (!vma) + goto err; + + down_write(&mm->mmap_sem); + vma->vm_mm = mm; + + /* + * Place the stack at the largest stack address the architecture + * supports. Later, we'll move this to an appropriate place. We don't + * use STACK_TOP because that can depend on attributes which aren't + * configured yet. + */ + vma->vm_end = STACK_TOP_MAX; + vma->vm_start = vma->vm_end - PAGE_SIZE; + + vma->vm_flags = VM_STACK_FLAGS; + vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); + err = insert_vm_struct(mm, vma); + if (err) { + up_write(&mm->mmap_sem); + goto err; + } + + mm->stack_vm = mm->total_vm = 1; + up_write(&mm->mmap_sem); + + bprm->p = vma->vm_end - sizeof(void *); + + return 0; + +err: + if (vma) { + bprm->vma = NULL; + kmem_cache_free(vm_area_cachep, vma); + } + + return err; +} + +static bool valid_arg_len(struct linux_binprm *bprm, long len) +{ + return len <= MAX_ARG_STRLEN; +} + +#else + +static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, + int write) +{ + struct page *page; + + page = bprm->page[pos / PAGE_SIZE]; + if (!page && write) { + page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); + if (!page) + return NULL; + bprm->page[pos / PAGE_SIZE] = page; + } + + return page; +} + +static void put_arg_page(struct page *page) +{ +} + +static void free_arg_page(struct linux_binprm *bprm, int i) +{ + if (bprm->page[i]) { + __free_page(bprm->page[i]); + bprm->page[i] = NULL; + } +} + +static void free_arg_pages(struct linux_binprm *bprm) +{ + int i; + + for (i = 0; i < MAX_ARG_PAGES; i++) + free_arg_page(bprm, i); +} + +static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, + struct page *page) +{ +} + +static int __bprm_mm_init(struct linux_binprm *bprm) +{ + bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); + return 0; +} + +static bool valid_arg_len(struct linux_binprm *bprm, long len) +{ + return len <= bprm->p; +} + +#endif /* CONFIG_MMU */ + +/* + * Create a new mm_struct and populate it with a temporary stack + * vm_area_struct. We don't have enough context at this point to set the stack + * flags, permissions, and offset, so we use temporary values. We'll update + * them later in setup_arg_pages(). + */ +int bprm_mm_init(struct linux_binprm *bprm) +{ + int err; + struct mm_struct *mm = NULL; + + bprm->mm = mm = mm_alloc(); + err = -ENOMEM; + if (!mm) + goto err; + + err = init_new_context(current, mm); + if (err) + goto err; + + err = __bprm_mm_init(bprm); + if (err) + goto err; + + return 0; + +err: + if (mm) { + bprm->mm = NULL; + mmdrop(mm); + } + + return err; +} + +/* + * count() counts the number of strings in array ARGV. + */ +static int count(char __user * __user * argv, int max) +{ + int i = 0; + + if (argv != NULL) { + for (;;) { + char __user * p; + + if (get_user(p, argv)) + return -EFAULT; + if (!p) + break; + argv++; + if (i++ >= max) + return -E2BIG; + cond_resched(); + } + } + return i; +} + +/* + * 'copy_strings()' copies argument/environment strings from the old + * processes's memory to the new process's stack. The call to get_user_pages() + * ensures the destination page is created and not swapped out. + */ +static int copy_strings(int argc, char __user * __user * argv, + struct linux_binprm *bprm) +{ + struct page *kmapped_page = NULL; + char *kaddr = NULL; + unsigned long kpos = 0; + int ret; + + while (argc-- > 0) { + char __user *str; + int len; + unsigned long pos; + + if (get_user(str, argv+argc) || + !(len = strnlen_user(str, MAX_ARG_STRLEN))) { + ret = -EFAULT; + goto out; + } + + if (!valid_arg_len(bprm, len)) { + ret = -E2BIG; + goto out; + } + + /* We're going to work our way backwords. */ + pos = bprm->p; + str += len; + bprm->p -= len; + + while (len > 0) { + int offset, bytes_to_copy; + + offset = pos % PAGE_SIZE; + if (offset == 0) + offset = PAGE_SIZE; + + bytes_to_copy = offset; + if (bytes_to_copy > len) + bytes_to_copy = len; + + offset -= bytes_to_copy; + pos -= bytes_to_copy; + str -= bytes_to_copy; + len -= bytes_to_copy; + + if (!kmapped_page || kpos != (pos & PAGE_MASK)) { + struct page *page; + + page = get_arg_page(bprm, pos, 1); + if (!page) { + ret = -E2BIG; + goto out; + } + + if (kmapped_page) { + flush_kernel_dcache_page(kmapped_page); + kunmap(kmapped_page); + put_arg_page(kmapped_page); + } + kmapped_page = page; + kaddr = kmap(kmapped_page); + kpos = pos & PAGE_MASK; + flush_arg_page(bprm, kpos, kmapped_page); + } + if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { + ret = -EFAULT; + goto out; + } + } + } + ret = 0; +out: + if (kmapped_page) { + flush_kernel_dcache_page(kmapped_page); + kunmap(kmapped_page); + put_arg_page(kmapped_page); + } + return ret; +} + +/* + * Like copy_strings, but get argv and its values from kernel memory. + */ +int copy_strings_kernel(int argc,char ** argv, struct linux_binprm *bprm) +{ + int r; + mm_segment_t oldfs = get_fs(); + set_fs(KERNEL_DS); + r = copy_strings(argc, (char __user * __user *)argv, bprm); + set_fs(oldfs); + return r; +} +EXPORT_SYMBOL(copy_strings_kernel); + +#ifdef CONFIG_MMU + +/* + * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once + * the binfmt code determines where the new stack should reside, we shift it to + * its final location. The process proceeds as follows: + * + * 1) Use shift to calculate the new vma endpoints. + * 2) Extend vma to cover both the old and new ranges. This ensures the + * arguments passed to subsequent functions are consistent. + * 3) Move vma's page tables to the new range. + * 4) Free up any cleared pgd range. + * 5) Shrink the vma to cover only the new range. + */ +static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) +{ + struct mm_struct *mm = vma->vm_mm; + unsigned long old_start = vma->vm_start; + unsigned long old_end = vma->vm_end; + unsigned long length = old_end - old_start; + unsigned long new_start = old_start - shift; + unsigned long new_end = old_end - shift; + struct mmu_gather *tlb; + + BUG_ON(new_start > new_end); + + /* + * ensure there are no vmas between where we want to go + * and where we are + */ + if (vma != find_vma(mm, new_start)) + return -EFAULT; + + /* + * cover the whole range: [new_start, old_end) + */ + vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL); + + /* + * move the page tables downwards, on failure we rely on + * process cleanup to remove whatever mess we made. + */ + if (length != move_page_tables(vma, old_start, + vma, new_start, length)) + return -ENOMEM; + + lru_add_drain(); + tlb = tlb_gather_mmu(mm, 0); + if (new_end > old_start) { + /* + * when the old and new regions overlap clear from new_end. + */ + free_pgd_range(tlb, new_end, old_end, new_end, + vma->vm_next ? vma->vm_next->vm_start : 0); + } else { + /* + * otherwise, clean from old_start; this is done to not touch + * the address space in [new_end, old_start) some architectures + * have constraints on va-space that make this illegal (IA64) - + * for the others its just a little faster. + */ + free_pgd_range(tlb, old_start, old_end, new_end, + vma->vm_next ? vma->vm_next->vm_start : 0); + } + tlb_finish_mmu(tlb, new_end, old_end); + + /* + * shrink the vma to just the new range. + */ + vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); + + return 0; +} + +#define EXTRA_STACK_VM_PAGES 20 /* random */ + +/* + * Finalizes the stack vm_area_struct. The flags and permissions are updated, + * the stack is optionally relocated, and some extra space is added. + */ +int setup_arg_pages(struct linux_binprm *bprm, + unsigned long stack_top, + int executable_stack) +{ + unsigned long ret; + unsigned long stack_shift; + struct mm_struct *mm = current->mm; + struct vm_area_struct *vma = bprm->vma; + struct vm_area_struct *prev = NULL; + unsigned long vm_flags; + unsigned long stack_base; + +#ifdef CONFIG_STACK_GROWSUP + /* Limit stack size to 1GB */ + stack_base = current->signal->rlim[RLIMIT_STACK].rlim_max; + if (stack_base > (1 << 30)) + stack_base = 1 << 30; + + /* Make sure we didn't let the argument array grow too large. */ + if (vma->vm_end - vma->vm_start > stack_base) + return -ENOMEM; + + stack_base = PAGE_ALIGN(stack_top - stack_base); + + stack_shift = vma->vm_start - stack_base; + mm->arg_start = bprm->p - stack_shift; + bprm->p = vma->vm_end - stack_shift; +#else + stack_top = arch_align_stack(stack_top); + stack_top = PAGE_ALIGN(stack_top); + stack_shift = vma->vm_end - stack_top; + + bprm->p -= stack_shift; + mm->arg_start = bprm->p; +#endif + + if (bprm->loader) + bprm->loader -= stack_shift; + bprm->exec -= stack_shift; + + down_write(&mm->mmap_sem); + vm_flags = VM_STACK_FLAGS; + + /* + * Adjust stack execute permissions; explicitly enable for + * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone + * (arch default) otherwise. + */ + if (unlikely(executable_stack == EXSTACK_ENABLE_X)) + vm_flags |= VM_EXEC; + else if (executable_stack == EXSTACK_DISABLE_X) + vm_flags &= ~VM_EXEC; + vm_flags |= mm->def_flags; + + ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, + vm_flags); + if (ret) + goto out_unlock; + BUG_ON(prev != vma); + + /* Move stack pages down in memory. */ + if (stack_shift) { + ret = shift_arg_pages(vma, stack_shift); + if (ret) { + up_write(&mm->mmap_sem); + return ret; + } + } + +#ifdef CONFIG_STACK_GROWSUP + stack_base = vma->vm_end + EXTRA_STACK_VM_PAGES * PAGE_SIZE; +#else + stack_base = vma->vm_start - EXTRA_STACK_VM_PAGES * PAGE_SIZE; +#endif + ret = expand_stack(vma, stack_base); + if (ret) + ret = -EFAULT; + +out_unlock: + up_write(&mm->mmap_sem); + return 0; +} +EXPORT_SYMBOL(setup_arg_pages); + +#endif /* CONFIG_MMU */ + +struct file *open_exec(const char *name) +{ + struct nameidata nd; + struct file *file; + int err; + + err = path_lookup_open(AT_FDCWD, name, LOOKUP_FOLLOW, &nd, + FMODE_READ|FMODE_EXEC); + if (err) + goto out; + + err = -EACCES; + if (!S_ISREG(nd.path.dentry->d_inode->i_mode)) + goto out_path_put; + + if (nd.path.mnt->mnt_flags & MNT_NOEXEC) + goto out_path_put; + + err = vfs_permission(&nd, MAY_EXEC | MAY_OPEN); + if (err) + goto out_path_put; + + file = nameidata_to_filp(&nd, O_RDONLY|O_LARGEFILE); + if (IS_ERR(file)) + return file; + + err = deny_write_access(file); + if (err) { + fput(file); + goto out; + } + + return file; + + out_path_put: + release_open_intent(&nd); + path_put(&nd.path); + out: + return ERR_PTR(err); +} +EXPORT_SYMBOL(open_exec); + +int kernel_read(struct file *file, unsigned long offset, + char *addr, unsigned long count) +{ + mm_segment_t old_fs; + loff_t pos = offset; + int result; + + old_fs = get_fs(); + set_fs(get_ds()); + /* The cast to a user pointer is valid due to the set_fs() */ + result = vfs_read(file, (void __user *)addr, count, &pos); + set_fs(old_fs); + return result; +} + +EXPORT_SYMBOL(kernel_read); + +static int exec_mmap(struct mm_struct *mm) +{ + struct task_struct *tsk; + struct mm_struct * old_mm, *active_mm; + + /* Notify parent that we're no longer interested in the old VM */ + tsk = current; + old_mm = current->mm; + mm_release(tsk, old_mm); + + if (old_mm) { + /* + * Make sure that if there is a core dump in progress + * for the old mm, we get out and die instead of going + * through with the exec. We must hold mmap_sem around + * checking core_state and changing tsk->mm. + */ + down_read(&old_mm->mmap_sem); + if (unlikely(old_mm->core_state)) { + up_read(&old_mm->mmap_sem); + return -EINTR; + } + } + task_lock(tsk); + active_mm = tsk->active_mm; + tsk->mm = mm; + tsk->active_mm = mm; + activate_mm(active_mm, mm); + task_unlock(tsk); + arch_pick_mmap_layout(mm); + if (old_mm) { + up_read(&old_mm->mmap_sem); + BUG_ON(active_mm != old_mm); + mm_update_next_owner(old_mm); + mmput(old_mm); + return 0; + } + mmdrop(active_mm); + return 0; +} + +/* + * This function makes sure the current process has its own signal table, + * so that flush_signal_handlers can later reset the handlers without + * disturbing other processes. (Other processes might share the signal + * table via the CLONE_SIGHAND option to clone().) + */ +static int de_thread(struct task_struct *tsk) +{ + struct signal_struct *sig = tsk->signal; + struct sighand_struct *oldsighand = tsk->sighand; + spinlock_t *lock = &oldsighand->siglock; + struct task_struct *leader = NULL; + int count; + + if (thread_group_empty(tsk)) + goto no_thread_group; + + /* + * Kill all other threads in the thread group. + */ + spin_lock_irq(lock); + if (signal_group_exit(sig)) { + /* + * Another group action in progress, just + * return so that the signal is processed. + */ + spin_unlock_irq(lock); + return -EAGAIN; + } + sig->group_exit_task = tsk; + zap_other_threads(tsk); + + /* Account for the thread group leader hanging around: */ + count = thread_group_leader(tsk) ? 1 : 2; + sig->notify_count = count; + while (atomic_read(&sig->count) > count) { + __set_current_state(TASK_UNINTERRUPTIBLE); + spin_unlock_irq(lock); + schedule(); + spin_lock_irq(lock); + } + spin_unlock_irq(lock); + + /* + * At this point all other threads have exited, all we have to + * do is to wait for the thread group leader to become inactive, + * and to assume its PID: + */ + if (!thread_group_leader(tsk)) { + leader = tsk->group_leader; + + sig->notify_count = -1; /* for exit_notify() */ + for (;;) { + write_lock_irq(&tasklist_lock); + if (likely(leader->exit_state)) + break; + __set_current_state(TASK_UNINTERRUPTIBLE); + write_unlock_irq(&tasklist_lock); + schedule(); + } + + /* + * The only record we have of the real-time age of a + * process, regardless of execs it's done, is start_time. + * All the past CPU time is accumulated in signal_struct + * from sister threads now dead. But in this non-leader + * exec, nothing survives from the original leader thread, + * whose birth marks the true age of this process now. + * When we take on its identity by switching to its PID, we + * also take its birthdate (always earlier than our own). + */ + tsk->start_time = leader->start_time; + + BUG_ON(!same_thread_group(leader, tsk)); + BUG_ON(has_group_leader_pid(tsk)); + /* + * An exec() starts a new thread group with the + * TGID of the previous thread group. Rehash the + * two threads with a switched PID, and release + * the former thread group leader: + */ + + /* Become a process group leader with the old leader's pid. + * The old leader becomes a thread of the this thread group. + * Note: The old leader also uses this pid until release_task + * is called. Odd but simple and correct. + */ + detach_pid(tsk, PIDTYPE_PID); + tsk->pid = leader->pid; + attach_pid(tsk, PIDTYPE_PID, task_pid(leader)); + transfer_pid(leader, tsk, PIDTYPE_PGID); + transfer_pid(leader, tsk, PIDTYPE_SID); + list_replace_rcu(&leader->tasks, &tsk->tasks); + + tsk->group_leader = tsk; + leader->group_leader = tsk; + + tsk->exit_signal = SIGCHLD; + + BUG_ON(leader->exit_state != EXIT_ZOMBIE); + leader->exit_state = EXIT_DEAD; + + write_unlock_irq(&tasklist_lock); + } + + sig->group_exit_task = NULL; + sig->notify_count = 0; + +no_thread_group: + exit_itimers(sig); + flush_itimer_signals(); + if (leader) + release_task(leader); + + if (atomic_read(&oldsighand->count) != 1) { + struct sighand_struct *newsighand; + /* + * This ->sighand is shared with the CLONE_SIGHAND + * but not CLONE_THREAD task, switch to the new one. + */ + newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); + if (!newsighand) + return -ENOMEM; + + atomic_set(&newsighand->count, 1); + memcpy(newsighand->action, oldsighand->action, + sizeof(newsighand->action)); + + write_lock_irq(&tasklist_lock); + spin_lock(&oldsighand->siglock); + rcu_assign_pointer(tsk->sighand, newsighand); + spin_unlock(&oldsighand->siglock); + write_unlock_irq(&tasklist_lock); + + __cleanup_sighand(oldsighand); + } + + BUG_ON(!thread_group_leader(tsk)); + return 0; +} + +/* + * These functions flushes out all traces of the currently running executable + * so that a new one can be started + */ +static void flush_old_files(struct files_struct * files) +{ + long j = -1; + struct fdtable *fdt; + + spin_lock(&files->file_lock); + for (;;) { + unsigned long set, i; + + j++; + i = j * __NFDBITS; + fdt = files_fdtable(files); + if (i >= fdt->max_fds) + break; + set = fdt->close_on_exec->fds_bits[j]; + if (!set) + continue; + fdt->close_on_exec->fds_bits[j] = 0; + spin_unlock(&files->file_lock); + for ( ; set ; i++,set >>= 1) { + if (set & 1) { + sys_close(i); + } + } + spin_lock(&files->file_lock); + + } + spin_unlock(&files->file_lock); +} + +char *get_task_comm(char *buf, struct task_struct *tsk) +{ + /* buf must be at least sizeof(tsk->comm) in size */ + task_lock(tsk); + strncpy(buf, tsk->comm, sizeof(tsk->comm)); + task_unlock(tsk); + return buf; +} + +void set_task_comm(struct task_struct *tsk, char *buf) +{ + task_lock(tsk); + strlcpy(tsk->comm, buf, sizeof(tsk->comm)); + task_unlock(tsk); +} + +int flush_old_exec(struct linux_binprm * bprm) +{ + char * name; + int i, ch, retval; + char tcomm[sizeof(current->comm)]; + + /* + * Make sure we have a private signal table and that + * we are unassociated from the previous thread group. + */ + retval = de_thread(current); + if (retval) + goto out; + + set_mm_exe_file(bprm->mm, bprm->file); + + /* + * Release all of the old mmap stuff + */ + retval = exec_mmap(bprm->mm); + if (retval) + goto out; + + bprm->mm = NULL; /* We're using it now */ + + /* This is the point of no return */ + current->sas_ss_sp = current->sas_ss_size = 0; + + if (current->euid == current->uid && current->egid == current->gid) + set_dumpable(current->mm, 1); + else + set_dumpable(current->mm, suid_dumpable); + + name = bprm->filename; + + /* Copies the binary name from after last slash */ + for (i=0; (ch = *(name++)) != '\0';) { + if (ch == '/') + i = 0; /* overwrite what we wrote */ + else + if (i < (sizeof(tcomm) - 1)) + tcomm[i++] = ch; + } + tcomm[i] = '\0'; + set_task_comm(current, tcomm); + + current->flags &= ~PF_RANDOMIZE; + flush_thread(); + + /* Set the new mm task size. We have to do that late because it may + * depend on TIF_32BIT which is only updated in flush_thread() on + * some architectures like powerpc + */ + current->mm->task_size = TASK_SIZE; + + if (bprm->e_uid != current->euid || bprm->e_gid != current->egid) { + suid_keys(current); + set_dumpable(current->mm, suid_dumpable); + current->pdeath_signal = 0; + } else if (file_permission(bprm->file, MAY_READ) || + (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP)) { + suid_keys(current); + set_dumpable(current->mm, suid_dumpable); + } + + /* An exec changes our domain. We are no longer part of the thread + group */ + + current->self_exec_id++; + + flush_signal_handlers(current, 0); + flush_old_files(current->files); + + return 0; + +out: + return retval; +} + +EXPORT_SYMBOL(flush_old_exec); + +/* + * Fill the binprm structure from the inode. + * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes + */ +int prepare_binprm(struct linux_binprm *bprm) +{ + int mode; + struct inode * inode = bprm->file->f_path.dentry->d_inode; + int retval; + + mode = inode->i_mode; + if (bprm->file->f_op == NULL) + return -EACCES; + + bprm->e_uid = current->euid; + bprm->e_gid = current->egid; + + if(!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) { + /* Set-uid? */ + if (mode & S_ISUID) { + current->personality &= ~PER_CLEAR_ON_SETID; + bprm->e_uid = inode->i_uid; + } + + /* Set-gid? */ + /* + * If setgid is set but no group execute bit then this + * is a candidate for mandatory locking, not a setgid + * executable. + */ + if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { + current->personality &= ~PER_CLEAR_ON_SETID; + bprm->e_gid = inode->i_gid; + } + } + + /* fill in binprm security blob */ + retval = security_bprm_set(bprm); + if (retval) + return retval; + + memset(bprm->buf,0,BINPRM_BUF_SIZE); + return kernel_read(bprm->file,0,bprm->buf,BINPRM_BUF_SIZE); +} + +EXPORT_SYMBOL(prepare_binprm); + +static int unsafe_exec(struct task_struct *p) +{ + int unsafe = tracehook_unsafe_exec(p); + + if (atomic_read(&p->fs->count) > 1 || + atomic_read(&p->files->count) > 1 || + atomic_read(&p->sighand->count) > 1) + unsafe |= LSM_UNSAFE_SHARE; + + return unsafe; +} + +void compute_creds(struct linux_binprm *bprm) +{ + int unsafe; + + if (bprm->e_uid != current->uid) { + suid_keys(current); + current->pdeath_signal = 0; + } + exec_keys(current); + + task_lock(current); + unsafe = unsafe_exec(current); + security_bprm_apply_creds(bprm, unsafe); + task_unlock(current); + security_bprm_post_apply_creds(bprm); +} +EXPORT_SYMBOL(compute_creds); + +/* + * Arguments are '\0' separated strings found at the location bprm->p + * points to; chop off the first by relocating brpm->p to right after + * the first '\0' encountered. + */ +int remove_arg_zero(struct linux_binprm *bprm) +{ + int ret = 0; + unsigned long offset; + char *kaddr; + struct page *page; + + if (!bprm->argc) + return 0; + + do { + offset = bprm->p & ~PAGE_MASK; + page = get_arg_page(bprm, bprm->p, 0); + if (!page) { + ret = -EFAULT; + goto out; + } + kaddr = kmap_atomic(page, KM_USER0); + + for (; offset < PAGE_SIZE && kaddr[offset]; + offset++, bprm->p++) + ; + + kunmap_atomic(kaddr, KM_USER0); + put_arg_page(page); + + if (offset == PAGE_SIZE) + free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1); + } while (offset == PAGE_SIZE); + + bprm->p++; + bprm->argc--; + ret = 0; + +out: + return ret; +} +EXPORT_SYMBOL(remove_arg_zero); + +/* + * cycle the list of binary formats handler, until one recognizes the image + */ +int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs) +{ + unsigned int depth = bprm->recursion_depth; + int try,retval; + struct linux_binfmt *fmt; +#ifdef __alpha__ + /* handle /sbin/loader.. */ + { + struct exec * eh = (struct exec *) bprm->buf; + + if (!bprm->loader && eh->fh.f_magic == 0x183 && + (eh->fh.f_flags & 0x3000) == 0x3000) + { + struct file * file; + unsigned long loader; + + allow_write_access(bprm->file); + fput(bprm->file); + bprm->file = NULL; + + loader = bprm->vma->vm_end - sizeof(void *); + + file = open_exec("/sbin/loader"); + retval = PTR_ERR(file); + if (IS_ERR(file)) + return retval; + + /* Remember if the application is TASO. */ + bprm->taso = eh->ah.entry < 0x100000000UL; + + bprm->file = file; + bprm->loader = loader; + retval = prepare_binprm(bprm); + if (retval<0) + return retval; + /* should call search_binary_handler recursively here, + but it does not matter */ + } + } +#endif + retval = security_bprm_check(bprm); + if (retval) + return retval; + + /* kernel module loader fixup */ + /* so we don't try to load run modprobe in kernel space. */ + set_fs(USER_DS); + + retval = audit_bprm(bprm); + if (retval) + return retval; + + retval = -ENOENT; + for (try=0; try<2; try++) { + read_lock(&binfmt_lock); + list_for_each_entry(fmt, &formats, lh) { + int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary; + if (!fn) + continue; + if (!try_module_get(fmt->module)) + continue; + read_unlock(&binfmt_lock); + retval = fn(bprm, regs); + /* + * Restore the depth counter to its starting value + * in this call, so we don't have to rely on every + * load_binary function to restore it on return. + */ + bprm->recursion_depth = depth; + if (retval >= 0) { + if (depth == 0) + tracehook_report_exec(fmt, bprm, regs); + put_binfmt(fmt); + allow_write_access(bprm->file); + if (bprm->file) + fput(bprm->file); + bprm->file = NULL; + current->did_exec = 1; + proc_exec_connector(current); + return retval; + } + read_lock(&binfmt_lock); + put_binfmt(fmt); + if (retval != -ENOEXEC || bprm->mm == NULL) + break; + if (!bprm->file) { + read_unlock(&binfmt_lock); + return retval; + } + } + read_unlock(&binfmt_lock); + if (retval != -ENOEXEC || bprm->mm == NULL) { + break; +#ifdef CONFIG_MODULES + } else { +#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) + if (printable(bprm->buf[0]) && + printable(bprm->buf[1]) && + printable(bprm->buf[2]) && + printable(bprm->buf[3])) + break; /* -ENOEXEC */ + request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2])); +#endif + } + } + return retval; +} + +EXPORT_SYMBOL(search_binary_handler); + +void free_bprm(struct linux_binprm *bprm) +{ + free_arg_pages(bprm); + kfree(bprm); +} + +/* + * sys_execve() executes a new program. + */ +int do_execve(char * filename, + char __user *__user *argv, + char __user *__user *envp, + struct pt_regs * regs) +{ + struct linux_binprm *bprm; + struct file *file; + struct files_struct *displaced; + int retval; + + retval = unshare_files(&displaced); + if (retval) + goto out_ret; + + retval = -ENOMEM; + bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); + if (!bprm) + goto out_files; + + file = open_exec(filename); + retval = PTR_ERR(file); + if (IS_ERR(file)) + goto out_kfree; + + sched_exec(); + + bprm->file = file; + bprm->filename = filename; + bprm->interp = filename; + + retval = bprm_mm_init(bprm); + if (retval) + goto out_file; + + bprm->argc = count(argv, MAX_ARG_STRINGS); + if ((retval = bprm->argc) < 0) + goto out_mm; + + bprm->envc = count(envp, MAX_ARG_STRINGS); + if ((retval = bprm->envc) < 0) + goto out_mm; + + retval = security_bprm_alloc(bprm); + if (retval) + goto out; + + retval = prepare_binprm(bprm); + if (retval < 0) + goto out; + + retval = copy_strings_kernel(1, &bprm->filename, bprm); + if (retval < 0) + goto out; + + bprm->exec = bprm->p; + retval = copy_strings(bprm->envc, envp, bprm); + if (retval < 0) + goto out; + + retval = copy_strings(bprm->argc, argv, bprm); + if (retval < 0) + goto out; + + current->flags &= ~PF_KTHREAD; + retval = search_binary_handler(bprm,regs); + if (retval >= 0) { + /* execve success */ + security_bprm_free(bprm); + acct_update_integrals(current); + free_bprm(bprm); + if (displaced) + put_files_struct(displaced); + return retval; + } + +out: + if (bprm->security) + security_bprm_free(bprm); + +out_mm: + if (bprm->mm) + mmput (bprm->mm); + +out_file: + if (bprm->file) { + allow_write_access(bprm->file); + fput(bprm->file); + } +out_kfree: + free_bprm(bprm); + +out_files: + if (displaced) + reset_files_struct(displaced); +out_ret: + return retval; +} + +int set_binfmt(struct linux_binfmt *new) +{ + struct linux_binfmt *old = current->binfmt; + + if (new) { + if (!try_module_get(new->module)) + return -1; + } + current->binfmt = new; + if (old) + module_put(old->module); + return 0; +} + +EXPORT_SYMBOL(set_binfmt); + +/* format_corename will inspect the pattern parameter, and output a + * name into corename, which must have space for at least + * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator. + */ +static int format_corename(char *corename, long signr) +{ + const char *pat_ptr = core_pattern; + int ispipe = (*pat_ptr == '|'); + char *out_ptr = corename; + char *const out_end = corename + CORENAME_MAX_SIZE; + int rc; + int pid_in_pattern = 0; + + /* Repeat as long as we have more pattern to process and more output + space */ + while (*pat_ptr) { + if (*pat_ptr != '%') { + if (out_ptr == out_end) + goto out; + *out_ptr++ = *pat_ptr++; + } else { + switch (*++pat_ptr) { + case 0: + goto out; + /* Double percent, output one percent */ + case '%': + if (out_ptr == out_end) + goto out; + *out_ptr++ = '%'; + break; + /* pid */ + case 'p': + pid_in_pattern = 1; + rc = snprintf(out_ptr, out_end - out_ptr, + "%d", task_tgid_vnr(current)); + if (rc > out_end - out_ptr) + goto out; + out_ptr += rc; + break; + /* uid */ + case 'u': + rc = snprintf(out_ptr, out_end - out_ptr, + "%d", current->uid); + if (rc > out_end - out_ptr) + goto out; + out_ptr += rc; + break; + /* gid */ + case 'g': + rc = snprintf(out_ptr, out_end - out_ptr, + "%d", current->gid); + if (rc > out_end - out_ptr) + goto out; + out_ptr += rc; + break; + /* signal that caused the coredump */ + case 's': + rc = snprintf(out_ptr, out_end - out_ptr, + "%ld", signr); + if (rc > out_end - out_ptr) + goto out; + out_ptr += rc; + break; + /* UNIX time of coredump */ + case 't': { + struct timeval tv; + do_gettimeofday(&tv); + rc = snprintf(out_ptr, out_end - out_ptr, + "%lu", tv.tv_sec); + if (rc > out_end - out_ptr) + goto out; + out_ptr += rc; + break; + } + /* hostname */ + case 'h': + down_read(&uts_sem); + rc = snprintf(out_ptr, out_end - out_ptr, + "%s", utsname()->nodename); + up_read(&uts_sem); + if (rc > out_end - out_ptr) + goto out; + out_ptr += rc; + break; + /* executable */ + case 'e': + rc = snprintf(out_ptr, out_end - out_ptr, + "%s", current->comm); + if (rc > out_end - out_ptr) + goto out; + out_ptr += rc; + break; + /* core limit size */ + case 'c': + rc = snprintf(out_ptr, out_end - out_ptr, + "%lu", current->signal->rlim[RLIMIT_CORE].rlim_cur); + if (rc > out_end - out_ptr) + goto out; + out_ptr += rc; + break; + default: + break; + } + ++pat_ptr; + } + } + /* Backward compatibility with core_uses_pid: + * + * If core_pattern does not include a %p (as is the default) + * and core_uses_pid is set, then .%pid will be appended to + * the filename. Do not do this for piped commands. */ + if (!ispipe && !pid_in_pattern && core_uses_pid) { + rc = snprintf(out_ptr, out_end - out_ptr, + ".%d", task_tgid_vnr(current)); + if (rc > out_end - out_ptr) + goto out; + out_ptr += rc; + } +out: + *out_ptr = 0; + return ispipe; +} + +static int zap_process(struct task_struct *start) +{ + struct task_struct *t; + int nr = 0; + + start->signal->flags = SIGNAL_GROUP_EXIT; + start->signal->group_stop_count = 0; + + t = start; + do { + if (t != current && t->mm) { + sigaddset(&t->pending.signal, SIGKILL); + signal_wake_up(t, 1); + nr++; + } + } while_each_thread(start, t); + + return nr; +} + +static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm, + struct core_state *core_state, int exit_code) +{ + struct task_struct *g, *p; + unsigned long flags; + int nr = -EAGAIN; + + spin_lock_irq(&tsk->sighand->siglock); + if (!signal_group_exit(tsk->signal)) { + mm->core_state = core_state; + tsk->signal->group_exit_code = exit_code; + nr = zap_process(tsk); + } + spin_unlock_irq(&tsk->sighand->siglock); + if (unlikely(nr < 0)) + return nr; + + if (atomic_read(&mm->mm_users) == nr + 1) + goto done; + /* + * We should find and kill all tasks which use this mm, and we should + * count them correctly into ->nr_threads. We don't take tasklist + * lock, but this is safe wrt: + * + * fork: + * None of sub-threads can fork after zap_process(leader). All + * processes which were created before this point should be + * visible to zap_threads() because copy_process() adds the new + * process to the tail of init_task.tasks list, and lock/unlock + * of ->siglock provides a memory barrier. + * + * do_exit: + * The caller holds mm->mmap_sem. This means that the task which + * uses this mm can't pass exit_mm(), so it can't exit or clear + * its ->mm. + * + * de_thread: + * It does list_replace_rcu(&leader->tasks, ¤t->tasks), + * we must see either old or new leader, this does not matter. + * However, it can change p->sighand, so lock_task_sighand(p) + * must be used. Since p->mm != NULL and we hold ->mmap_sem + * it can't fail. + * + * Note also that "g" can be the old leader with ->mm == NULL + * and already unhashed and thus removed from ->thread_group. + * This is OK, __unhash_process()->list_del_rcu() does not + * clear the ->next pointer, we will find the new leader via + * next_thread(). + */ + rcu_read_lock(); + for_each_process(g) { + if (g == tsk->group_leader) + continue; + if (g->flags & PF_KTHREAD) + continue; + p = g; + do { + if (p->mm) { + if (unlikely(p->mm == mm)) { + lock_task_sighand(p, &flags); + nr += zap_process(p); + unlock_task_sighand(p, &flags); + } + break; + } + } while_each_thread(g, p); + } + rcu_read_unlock(); +done: + atomic_set(&core_state->nr_threads, nr); + return nr; +} + +static int coredump_wait(int exit_code, struct core_state *core_state) +{ + struct task_struct *tsk = current; + struct mm_struct *mm = tsk->mm; + struct completion *vfork_done; + int core_waiters; + + init_completion(&core_state->startup); + core_state->dumper.task = tsk; + core_state->dumper.next = NULL; + core_waiters = zap_threads(tsk, mm, core_state, exit_code); + up_write(&mm->mmap_sem); + + if (unlikely(core_waiters < 0)) + goto fail; + + /* + * Make sure nobody is waiting for us to release the VM, + * otherwise we can deadlock when we wait on each other + */ + vfork_done = tsk->vfork_done; + if (vfork_done) { + tsk->vfork_done = NULL; + complete(vfork_done); + } + + if (core_waiters) + wait_for_completion(&core_state->startup); +fail: + return core_waiters; +} + +static void coredump_finish(struct mm_struct *mm) +{ + struct core_thread *curr, *next; + struct task_struct *task; + + next = mm->core_state->dumper.next; + while ((curr = next) != NULL) { + next = curr->next; + task = curr->task; + /* + * see exit_mm(), curr->task must not see + * ->task == NULL before we read ->next. + */ + smp_mb(); + curr->task = NULL; + wake_up_process(task); + } + + mm->core_state = NULL; +} + +/* + * set_dumpable converts traditional three-value dumpable to two flags and + * stores them into mm->flags. It modifies lower two bits of mm->flags, but + * these bits are not changed atomically. So get_dumpable can observe the + * intermediate state. To avoid doing unexpected behavior, get get_dumpable + * return either old dumpable or new one by paying attention to the order of + * modifying the bits. + * + * dumpable | mm->flags (binary) + * old new | initial interim final + * ---------+----------------------- + * 0 1 | 00 01 01 + * 0 2 | 00 10(*) 11 + * 1 0 | 01 00 00 + * 1 2 | 01 11 11 + * 2 0 | 11 10(*) 00 + * 2 1 | 11 11 01 + * + * (*) get_dumpable regards interim value of 10 as 11. + */ +void set_dumpable(struct mm_struct *mm, int value) +{ + switch (value) { + case 0: + clear_bit(MMF_DUMPABLE, &mm->flags); + smp_wmb(); + clear_bit(MMF_DUMP_SECURELY, &mm->flags); + break; + case 1: + set_bit(MMF_DUMPABLE, &mm->flags); + smp_wmb(); + clear_bit(MMF_DUMP_SECURELY, &mm->flags); + break; + case 2: + set_bit(MMF_DUMP_SECURELY, &mm->flags); + smp_wmb(); + set_bit(MMF_DUMPABLE, &mm->flags); + break; + } +} + +int get_dumpable(struct mm_struct *mm) +{ + int ret; + + ret = mm->flags & 0x3; + return (ret >= 2) ? 2 : ret; +} + +int do_coredump(long signr, int exit_code, struct pt_regs * regs) +{ + struct core_state core_state; + char corename[CORENAME_MAX_SIZE + 1]; + struct mm_struct *mm = current->mm; + struct linux_binfmt * binfmt; + struct inode * inode; + struct file * file; + int retval = 0; + int fsuid = current->fsuid; + int flag = 0; + int ispipe = 0; + unsigned long core_limit = current->signal->rlim[RLIMIT_CORE].rlim_cur; + char **helper_argv = NULL; + int helper_argc = 0; + char *delimit; + + audit_core_dumps(signr); + + binfmt = current->binfmt; + if (!binfmt || !binfmt->core_dump) + goto fail; + down_write(&mm->mmap_sem); + /* + * If another thread got here first, or we are not dumpable, bail out. + */ + if (mm->core_state || !get_dumpable(mm)) { + up_write(&mm->mmap_sem); + goto fail; + } + + /* + * We cannot trust fsuid as being the "true" uid of the + * process nor do we know its entire history. We only know it + * was tainted so we dump it as root in mode 2. + */ + if (get_dumpable(mm) == 2) { /* Setuid core dump mode */ + flag = O_EXCL; /* Stop rewrite attacks */ + current->fsuid = 0; /* Dump root private */ + } + + retval = coredump_wait(exit_code, &core_state); + if (retval < 0) + goto fail; + + /* + * Clear any false indication of pending signals that might + * be seen by the filesystem code called to write the core file. + */ + clear_thread_flag(TIF_SIGPENDING); + + /* + * lock_kernel() because format_corename() is controlled by sysctl, which + * uses lock_kernel() + */ + lock_kernel(); + ispipe = format_corename(corename, signr); + unlock_kernel(); + /* + * Don't bother to check the RLIMIT_CORE value if core_pattern points + * to a pipe. Since we're not writing directly to the filesystem + * RLIMIT_CORE doesn't really apply, as no actual core file will be + * created unless the pipe reader choses to write out the core file + * at which point file size limits and permissions will be imposed + * as it does with any other process + */ + if ((!ispipe) && (core_limit < binfmt->min_coredump)) + goto fail_unlock; + + if (ispipe) { + helper_argv = argv_split(GFP_KERNEL, corename+1, &helper_argc); + /* Terminate the string before the first option */ + delimit = strchr(corename, ' '); + if (delimit) + *delimit = '\0'; + delimit = strrchr(helper_argv[0], '/'); + if (delimit) + delimit++; + else + delimit = helper_argv[0]; + if (!strcmp(delimit, current->comm)) { + printk(KERN_NOTICE "Recursive core dump detected, " + "aborting\n"); + goto fail_unlock; + } + + core_limit = RLIM_INFINITY; + + /* SIGPIPE can happen, but it's just never processed */ + if (call_usermodehelper_pipe(corename+1, helper_argv, NULL, + &file)) { + printk(KERN_INFO "Core dump to %s pipe failed\n", + corename); + goto fail_unlock; + } + } else + file = filp_open(corename, + O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag, + 0600); + if (IS_ERR(file)) + goto fail_unlock; + inode = file->f_path.dentry->d_inode; + if (inode->i_nlink > 1) + goto close_fail; /* multiple links - don't dump */ + if (!ispipe && d_unhashed(file->f_path.dentry)) + goto close_fail; + + /* AK: actually i see no reason to not allow this for named pipes etc., + but keep the previous behaviour for now. */ + if (!ispipe && !S_ISREG(inode->i_mode)) + goto close_fail; + /* + * Dont allow local users get cute and trick others to coredump + * into their pre-created files: + */ + if (inode->i_uid != current->fsuid) + goto close_fail; + if (!file->f_op) + goto close_fail; + if (!file->f_op->write) + goto close_fail; + if (!ispipe && do_truncate(file->f_path.dentry, 0, 0, file) != 0) + goto close_fail; + + retval = binfmt->core_dump(signr, regs, file, core_limit); + + if (retval) + current->signal->group_exit_code |= 0x80; +close_fail: + filp_close(file, NULL); +fail_unlock: + if (helper_argv) + argv_free(helper_argv); + + current->fsuid = fsuid; + coredump_finish(mm); +fail: + return retval; +} |