summaryrefslogtreecommitdiffstats
path: root/usr.sbin/bhyve/task_switch.c
blob: ba6a9d26b0dfc5af155c6006457db97253e74d6b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
/*-
 * Copyright (c) 2014 Neel Natu <neel@freebsd.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/_iovec.h>
#include <sys/mman.h>

#include <x86/psl.h>
#include <x86/segments.h>
#include <x86/specialreg.h>
#include <machine/vmm.h>
#include <machine/vmm_instruction_emul.h>

#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <assert.h>
#include <errno.h>

#include <vmmapi.h>

#include "bhyverun.h"

/*
 * Using 'struct i386tss' is tempting but causes myriad sign extension
 * issues because all of its fields are defined as signed integers.
 */
struct tss32 {
	uint16_t	tss_link;
	uint16_t	rsvd1;
	uint32_t	tss_esp0;
	uint16_t	tss_ss0;
	uint16_t	rsvd2;
	uint32_t	tss_esp1;
	uint16_t	tss_ss1;
	uint16_t	rsvd3;
	uint32_t	tss_esp2;
	uint16_t	tss_ss2;
	uint16_t	rsvd4;
	uint32_t	tss_cr3;
	uint32_t	tss_eip;
	uint32_t	tss_eflags;
	uint32_t	tss_eax;
	uint32_t	tss_ecx;
	uint32_t	tss_edx;
	uint32_t	tss_ebx;
	uint32_t	tss_esp;
	uint32_t	tss_ebp;
	uint32_t	tss_esi;
	uint32_t	tss_edi;
	uint16_t	tss_es;
	uint16_t	rsvd5;
	uint16_t	tss_cs;
	uint16_t	rsvd6;
	uint16_t	tss_ss;
	uint16_t	rsvd7;
	uint16_t	tss_ds;
	uint16_t	rsvd8;
	uint16_t	tss_fs;
	uint16_t	rsvd9;
	uint16_t	tss_gs;
	uint16_t	rsvd10;
	uint16_t	tss_ldt;
	uint16_t	rsvd11;
	uint16_t	tss_trap;
	uint16_t	tss_iomap;
};
CTASSERT(sizeof(struct tss32) == 104);

#define	SEL_START(sel)	(((sel) & ~0x7))
#define	SEL_LIMIT(sel)	(((sel) | 0x7))
#define	TSS_BUSY(type)	(((type) & 0x2) != 0)

static uint64_t
GETREG(struct vmctx *ctx, int vcpu, int reg)
{
	uint64_t val;
	int error;

	error = vm_get_register(ctx, vcpu, reg, &val);
	assert(error == 0);
	return (val);
}

static void
SETREG(struct vmctx *ctx, int vcpu, int reg, uint64_t val)
{
	int error;

	error = vm_set_register(ctx, vcpu, reg, val);
	assert(error == 0);
}

static struct seg_desc
usd_to_seg_desc(struct user_segment_descriptor *usd)
{
	struct seg_desc seg_desc;

	seg_desc.base = (u_int)USD_GETBASE(usd);
	if (usd->sd_gran)
		seg_desc.limit = (u_int)(USD_GETLIMIT(usd) << 12) | 0xfff;
	else
		seg_desc.limit = (u_int)USD_GETLIMIT(usd);
	seg_desc.access = usd->sd_type | usd->sd_dpl << 5 | usd->sd_p << 7;
	seg_desc.access |= usd->sd_xx << 12;
	seg_desc.access |= usd->sd_def32 << 14;
	seg_desc.access |= usd->sd_gran << 15;

	return (seg_desc);
}

/*
 * Inject an exception with an error code that is a segment selector.
 * The format of the error code is described in section 6.13, "Error Code",
 * Intel SDM volume 3.
 *
 * Bit 0 (EXT) denotes whether the exception occurred during delivery
 * of an external event like an interrupt.
 *
 * Bit 1 (IDT) indicates whether the selector points to a gate descriptor
 * in the IDT.
 *
 * Bit 2(GDT/LDT) has the usual interpretation of Table Indicator (TI).
 */
static void
sel_exception(struct vmctx *ctx, int vcpu, int vector, uint16_t sel, int ext)
{
	/*
	 * Bit 2 from the selector is retained as-is in the error code.
	 *
	 * Bit 1 can be safely cleared because none of the selectors
	 * encountered during task switch emulation refer to a task
	 * gate in the IDT.
	 *
	 * Bit 0 is set depending on the value of 'ext'.
	 */
	sel &= ~0x3;
	if (ext)
		sel |= 0x1;
	vm_inject_fault(ctx, vcpu, vector, 1, sel);
}

/*
 * Return 0 if the selector 'sel' in within the limits of the GDT/LDT
 * and non-zero otherwise.
 */
static int
desc_table_limit_check(struct vmctx *ctx, int vcpu, uint16_t sel)
{
	uint64_t base;
	uint32_t limit, access;
	int error, reg;

	reg = ISLDT(sel) ? VM_REG_GUEST_LDTR : VM_REG_GUEST_GDTR;
	error = vm_get_desc(ctx, vcpu, reg, &base, &limit, &access);
	assert(error == 0);

	if (reg == VM_REG_GUEST_LDTR) {
		if (SEG_DESC_UNUSABLE(access) || !SEG_DESC_PRESENT(access))
			return (-1);
	}

	if (limit < SEL_LIMIT(sel))
		return (-1);
	else
		return (0);
}

/*
 * Read/write the segment descriptor 'desc' into the GDT/LDT slot referenced
 * by the selector 'sel'.
 *
 * Returns 0 on success.
 * Returns 1 if an exception was injected into the guest.
 * Returns -1 otherwise.
 */
static int
desc_table_rw(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
    uint16_t sel, struct user_segment_descriptor *desc, bool doread)
{
	struct iovec iov[2];
	uint64_t base;
	uint32_t limit, access;
	int error, reg;

	reg = ISLDT(sel) ? VM_REG_GUEST_LDTR : VM_REG_GUEST_GDTR;
	error = vm_get_desc(ctx, vcpu, reg, &base, &limit, &access);
	assert(error == 0);
	assert(limit >= SEL_LIMIT(sel));

	error = vm_copy_setup(ctx, vcpu, paging, base + SEL_START(sel),
	    sizeof(*desc), doread ? PROT_READ : PROT_WRITE, iov, nitems(iov));
	if (error == 0) {
		if (doread)
			vm_copyin(ctx, vcpu, iov, desc, sizeof(*desc));
		else
			vm_copyout(ctx, vcpu, desc, iov, sizeof(*desc));
	}
	return (error);
}

static int
desc_table_read(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
    uint16_t sel, struct user_segment_descriptor *desc)
{
	return (desc_table_rw(ctx, vcpu, paging, sel, desc, true));
}

static int
desc_table_write(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
    uint16_t sel, struct user_segment_descriptor *desc)
{
	return (desc_table_rw(ctx, vcpu, paging, sel, desc, false));
}

/*
 * Read the TSS descriptor referenced by 'sel' into 'desc'.
 *
 * Returns 0 on success.
 * Returns 1 if an exception was injected into the guest.
 * Returns -1 otherwise.
 */
static int
read_tss_descriptor(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts,
    uint16_t sel, struct user_segment_descriptor *desc)
{
	struct vm_guest_paging sup_paging;
	int error;

	assert(!ISLDT(sel));
	assert(IDXSEL(sel) != 0);

	/* Fetch the new TSS descriptor */
	if (desc_table_limit_check(ctx, vcpu, sel)) {
		if (ts->reason == TSR_IRET)
			sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
		else
			sel_exception(ctx, vcpu, IDT_GP, sel, ts->ext);
		return (1);
	}

	sup_paging = ts->paging;
	sup_paging.cpl = 0;		/* implicit supervisor mode */
	error = desc_table_read(ctx, vcpu, &sup_paging, sel, desc);
	return (error);
}

static bool
code_desc(int sd_type)
{
	/* code descriptor */
	return ((sd_type & 0x18) == 0x18);
}

static bool
stack_desc(int sd_type)
{
	/* writable data descriptor */
	return ((sd_type & 0x1A) == 0x12);
}

static bool
data_desc(int sd_type)
{
	/* data descriptor or a readable code descriptor */
	return ((sd_type & 0x18) == 0x10 || (sd_type & 0x1A) == 0x1A);
}

static bool
ldt_desc(int sd_type)
{

	return (sd_type == SDT_SYSLDT);
}

/*
 * Validate the descriptor 'seg_desc' associated with 'segment'.
 *
 * Returns 0 on success.
 * Returns 1 if an exception was injected into the guest.
 * Returns -1 otherwise.
 */
static int
validate_seg_desc(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts,
    int segment, struct seg_desc *seg_desc)
{
	struct vm_guest_paging sup_paging;
	struct user_segment_descriptor usd;
	int error, idtvec;
	int cpl, dpl, rpl;
	uint16_t sel, cs;
	bool ldtseg, codeseg, stackseg, dataseg, conforming;

	ldtseg = codeseg = stackseg = dataseg = false;
	switch (segment) {
	case VM_REG_GUEST_LDTR:
		ldtseg = true;
		break;
	case VM_REG_GUEST_CS:
		codeseg = true;
		break;
	case VM_REG_GUEST_SS:
		stackseg = true;
		break;
	case VM_REG_GUEST_DS:
	case VM_REG_GUEST_ES:
	case VM_REG_GUEST_FS:
	case VM_REG_GUEST_GS:
		dataseg = true;
		break;
	default:
		assert(0);
	}

	/* Get the segment selector */
	sel = GETREG(ctx, vcpu, segment);

	/* LDT selector must point into the GDT */
	if (ldtseg && ISLDT(sel)) {
		sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
		return (1);
	}

	/* Descriptor table limit check */
	if (desc_table_limit_check(ctx, vcpu, sel)) {
		sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
		return (1);
	}

	/* NULL selector */
	if (IDXSEL(sel) == 0) {
		/* Code and stack segment selectors cannot be NULL */
		if (codeseg || stackseg) {
			sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
			return (1);
		}
		seg_desc->base = 0;
		seg_desc->limit = 0;
		seg_desc->access = 0x10000;	/* unusable */
		return (0);
	}

	/* Read the descriptor from the GDT/LDT */
	sup_paging = ts->paging;
	sup_paging.cpl = 0;	/* implicit supervisor mode */
	error = desc_table_read(ctx, vcpu, &sup_paging, sel, &usd);
	if (error)
		return (error);

	/* Verify that the descriptor type is compatible with the segment */
	if ((ldtseg && !ldt_desc(usd.sd_type)) ||
	    (codeseg && !code_desc(usd.sd_type)) ||
	    (dataseg && !data_desc(usd.sd_type)) ||
	    (stackseg && !stack_desc(usd.sd_type))) {
		sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
		return (1);
	}

	/* Segment must be marked present */
	if (!usd.sd_p) {
		if (ldtseg)
			idtvec = IDT_TS;
		else if (stackseg)
			idtvec = IDT_SS;
		else
			idtvec = IDT_NP;
		sel_exception(ctx, vcpu, idtvec, sel, ts->ext);
		return (1);
	}

	cs = GETREG(ctx, vcpu, VM_REG_GUEST_CS);
	cpl = cs & SEL_RPL_MASK;
	rpl = sel & SEL_RPL_MASK;
	dpl = usd.sd_dpl;

	if (stackseg && (rpl != cpl || dpl != cpl)) {
		sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
		return (1);
	}

	if (codeseg) {
		conforming = (usd.sd_type & 0x4) ? true : false;
		if ((conforming && (cpl < dpl)) ||
		    (!conforming && (cpl != dpl))) {
			sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
			return (1);
		}
	}

	if (dataseg) {
		/*
		 * A data segment is always non-conforming except when it's
		 * descriptor is a readable, conforming code segment.
		 */
		if (code_desc(usd.sd_type) && (usd.sd_type & 0x4) != 0)
			conforming = true;
		else
			conforming = false;

		if (!conforming && (rpl > dpl || cpl > dpl)) {
			sel_exception(ctx, vcpu, IDT_TS, sel, ts->ext);
			return (1);
		}
	}
	*seg_desc = usd_to_seg_desc(&usd);
	return (0);
}

static void
tss32_save(struct vmctx *ctx, int vcpu, struct vm_task_switch *task_switch,
    uint32_t eip, struct tss32 *tss, struct iovec *iov)
{

	/* General purpose registers */
	tss->tss_eax = GETREG(ctx, vcpu, VM_REG_GUEST_RAX);
	tss->tss_ecx = GETREG(ctx, vcpu, VM_REG_GUEST_RCX);
	tss->tss_edx = GETREG(ctx, vcpu, VM_REG_GUEST_RDX);
	tss->tss_ebx = GETREG(ctx, vcpu, VM_REG_GUEST_RBX);
	tss->tss_esp = GETREG(ctx, vcpu, VM_REG_GUEST_RSP);
	tss->tss_ebp = GETREG(ctx, vcpu, VM_REG_GUEST_RBP);
	tss->tss_esi = GETREG(ctx, vcpu, VM_REG_GUEST_RSI);
	tss->tss_edi = GETREG(ctx, vcpu, VM_REG_GUEST_RDI);

	/* Segment selectors */
	tss->tss_es = GETREG(ctx, vcpu, VM_REG_GUEST_ES);
	tss->tss_cs = GETREG(ctx, vcpu, VM_REG_GUEST_CS);
	tss->tss_ss = GETREG(ctx, vcpu, VM_REG_GUEST_SS);
	tss->tss_ds = GETREG(ctx, vcpu, VM_REG_GUEST_DS);
	tss->tss_fs = GETREG(ctx, vcpu, VM_REG_GUEST_FS);
	tss->tss_gs = GETREG(ctx, vcpu, VM_REG_GUEST_GS);

	/* eflags and eip */
	tss->tss_eflags = GETREG(ctx, vcpu, VM_REG_GUEST_RFLAGS);
	if (task_switch->reason == TSR_IRET)
		tss->tss_eflags &= ~PSL_NT;
	tss->tss_eip = eip;

	/* Copy updated old TSS into guest memory */
	vm_copyout(ctx, vcpu, tss, iov, sizeof(struct tss32));
}

static void
update_seg_desc(struct vmctx *ctx, int vcpu, int reg, struct seg_desc *sd)
{
	int error;

	error = vm_set_desc(ctx, vcpu, reg, sd->base, sd->limit, sd->access);
	assert(error == 0);
}

/*
 * Update the vcpu registers to reflect the state of the new task.
 *
 * Returns 0 on success.
 * Returns 1 if an exception was injected into the guest.
 * Returns -1 otherwise.
 */
static int
tss32_restore(struct vmctx *ctx, int vcpu, struct vm_task_switch *ts,
    uint16_t ot_sel, struct tss32 *tss, struct iovec *iov)
{
	struct seg_desc seg_desc, seg_desc2;
	uint64_t *pdpte, maxphyaddr, reserved;
	uint32_t eflags;
	int error, i;
	bool nested;

	nested = false;
	if (ts->reason != TSR_IRET && ts->reason != TSR_JMP) {
		tss->tss_link = ot_sel;
		nested = true;
	}

	eflags = tss->tss_eflags;
	if (nested)
		eflags |= PSL_NT;

	/* LDTR */
	SETREG(ctx, vcpu, VM_REG_GUEST_LDTR, tss->tss_ldt);

	/* PBDR */
	if (ts->paging.paging_mode != PAGING_MODE_FLAT) {
		if (ts->paging.paging_mode == PAGING_MODE_PAE) {
			/*
			 * XXX Assuming 36-bit MAXPHYADDR.
			 */
			maxphyaddr = (1UL << 36) - 1;
			pdpte = paddr_guest2host(ctx, tss->tss_cr3 & ~0x1f, 32);
			for (i = 0; i < 4; i++) {
				/* Check reserved bits if the PDPTE is valid */
				if (!(pdpte[i] & 0x1))
					continue;
				/*
				 * Bits 2:1, 8:5 and bits above the processor's
				 * maximum physical address are reserved.
				 */
				reserved = ~maxphyaddr | 0x1E6;
				if (pdpte[i] & reserved) {
					vm_inject_gp(ctx, vcpu);
					return (1);
				}
			}
			SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE0, pdpte[0]);
			SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE1, pdpte[1]);
			SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE2, pdpte[2]);
			SETREG(ctx, vcpu, VM_REG_GUEST_PDPTE3, pdpte[3]);
		}
		SETREG(ctx, vcpu, VM_REG_GUEST_CR3, tss->tss_cr3);
		ts->paging.cr3 = tss->tss_cr3;
	}

	/* eflags and eip */
	SETREG(ctx, vcpu, VM_REG_GUEST_RFLAGS, eflags);
	SETREG(ctx, vcpu, VM_REG_GUEST_RIP, tss->tss_eip);

	/* General purpose registers */
	SETREG(ctx, vcpu, VM_REG_GUEST_RAX, tss->tss_eax);
	SETREG(ctx, vcpu, VM_REG_GUEST_RCX, tss->tss_ecx);
	SETREG(ctx, vcpu, VM_REG_GUEST_RDX, tss->tss_edx);
	SETREG(ctx, vcpu, VM_REG_GUEST_RBX, tss->tss_ebx);
	SETREG(ctx, vcpu, VM_REG_GUEST_RSP, tss->tss_esp);
	SETREG(ctx, vcpu, VM_REG_GUEST_RBP, tss->tss_ebp);
	SETREG(ctx, vcpu, VM_REG_GUEST_RSI, tss->tss_esi);
	SETREG(ctx, vcpu, VM_REG_GUEST_RDI, tss->tss_edi);

	/* Segment selectors */
	SETREG(ctx, vcpu, VM_REG_GUEST_ES, tss->tss_es);
	SETREG(ctx, vcpu, VM_REG_GUEST_CS, tss->tss_cs);
	SETREG(ctx, vcpu, VM_REG_GUEST_SS, tss->tss_ss);
	SETREG(ctx, vcpu, VM_REG_GUEST_DS, tss->tss_ds);
	SETREG(ctx, vcpu, VM_REG_GUEST_FS, tss->tss_fs);
	SETREG(ctx, vcpu, VM_REG_GUEST_GS, tss->tss_gs);

	/*
	 * If this is a nested task then write out the new TSS to update
	 * the previous link field.
	 */
	if (nested)
		vm_copyout(ctx, vcpu, tss, iov, sizeof(*tss));

	/* Validate segment descriptors */
	error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_LDTR, &seg_desc);
	if (error)
		return (error);
	update_seg_desc(ctx, vcpu, VM_REG_GUEST_LDTR, &seg_desc);

	/*
	 * Section "Checks on Guest Segment Registers", Intel SDM, Vol 3.
	 *
	 * The SS and CS attribute checks on VM-entry are inter-dependent so
	 * we need to make sure that both segments are valid before updating
	 * either of them. This ensures that the VMCS state can pass the
	 * VM-entry checks so the guest can handle any exception injected
	 * during task switch emulation.
	 */
	error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_CS, &seg_desc);
	if (error)
		return (error);
	error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_SS, &seg_desc2);
	if (error)
		return (error);
	update_seg_desc(ctx, vcpu, VM_REG_GUEST_CS, &seg_desc);
	update_seg_desc(ctx, vcpu, VM_REG_GUEST_SS, &seg_desc2);
	ts->paging.cpl = tss->tss_cs & SEL_RPL_MASK;

	error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_DS, &seg_desc);
	if (error)
		return (error);
	update_seg_desc(ctx, vcpu, VM_REG_GUEST_DS, &seg_desc);

	error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_ES, &seg_desc);
	if (error)
		return (error);
	update_seg_desc(ctx, vcpu, VM_REG_GUEST_ES, &seg_desc);

	error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_FS, &seg_desc);
	if (error)
		return (error);
	update_seg_desc(ctx, vcpu, VM_REG_GUEST_FS, &seg_desc);

	error = validate_seg_desc(ctx, vcpu, ts, VM_REG_GUEST_GS, &seg_desc);
	if (error)
		return (error);
	update_seg_desc(ctx, vcpu, VM_REG_GUEST_GS, &seg_desc);

	return (0);
}

/*
 * Push an error code on the stack of the new task. This is needed if the
 * task switch was triggered by a hardware exception that causes an error
 * code to be saved (e.g. #PF).
 *
 * Returns 0 on success.
 * Returns 1 if an exception was injected into the guest.
 * Returns -1 otherwise.
 */
static int
push_errcode(struct vmctx *ctx, int vcpu, struct vm_guest_paging *paging,
    int task_type, uint32_t errcode)
{
	struct iovec iov[2];
	struct seg_desc seg_desc;
	int stacksize, bytes, error;
	uint64_t gla, cr0, rflags;
	uint32_t esp;
	uint16_t stacksel;

	cr0 = GETREG(ctx, vcpu, VM_REG_GUEST_CR0);
	rflags = GETREG(ctx, vcpu, VM_REG_GUEST_RFLAGS);
	stacksel = GETREG(ctx, vcpu, VM_REG_GUEST_SS);

	error = vm_get_desc(ctx, vcpu, VM_REG_GUEST_SS, &seg_desc.base,
	    &seg_desc.limit, &seg_desc.access);
	assert(error == 0);

	/*
	 * Section "Error Code" in the Intel SDM vol 3: the error code is
	 * pushed on the stack as a doubleword or word (depending on the
	 * default interrupt, trap or task gate size).
	 */
	if (task_type == SDT_SYS386BSY || task_type == SDT_SYS386TSS)
		bytes = 4;
	else
		bytes = 2;

	/*
	 * PUSH instruction from Intel SDM vol 2: the 'B' flag in the
	 * stack-segment descriptor determines the size of the stack
	 * pointer outside of 64-bit mode.
	 */
	if (SEG_DESC_DEF32(seg_desc.access))
		stacksize = 4;
	else
		stacksize = 2;

	esp = GETREG(ctx, vcpu, VM_REG_GUEST_RSP);
	esp -= bytes;

	if (vie_calculate_gla(paging->cpu_mode, VM_REG_GUEST_SS,
	    &seg_desc, esp, bytes, stacksize, PROT_WRITE, &gla)) {
		sel_exception(ctx, vcpu, IDT_SS, stacksel, 1);
		return (1);
	}

	if (vie_alignment_check(paging->cpl, bytes, cr0, rflags, gla)) {
		vm_inject_ac(ctx, vcpu, 1);
		return (1);
	}

	error = vm_copy_setup(ctx, vcpu, paging, gla, bytes, PROT_WRITE,
	    iov, nitems(iov));
	if (error)
		return (error);

	vm_copyout(ctx, vcpu, &errcode, iov, bytes);
	SETREG(ctx, vcpu, VM_REG_GUEST_RSP, esp);
	return (0);
}

/*
 * Evaluate return value from helper functions and potentially return to
 * the VM run loop.
 *  0: success
 * +1: an exception was injected into the guest vcpu
 * -1: unrecoverable/programming error
 */
#define	CHKERR(x)							\
	do {								\
		assert(((x) == 0) || ((x) == 1) || ((x) == -1));	\
		if ((x) == -1)						\
			return (VMEXIT_ABORT);				\
		else if ((x) == 1)					\
			return (VMEXIT_CONTINUE);			\
	} while (0)

int
vmexit_task_switch(struct vmctx *ctx, struct vm_exit *vmexit, int *pvcpu)
{
	struct seg_desc nt;
	struct tss32 oldtss, newtss;
	struct vm_task_switch *task_switch;
	struct vm_guest_paging *paging, sup_paging;
	struct user_segment_descriptor nt_desc, ot_desc;
	struct iovec nt_iov[2], ot_iov[2];
	uint64_t cr0, ot_base;
	uint32_t eip, ot_lim, access;
	int error, ext, minlimit, nt_type, ot_type, vcpu;
	enum task_switch_reason reason;
	uint16_t nt_sel, ot_sel;

	task_switch = &vmexit->u.task_switch;
	nt_sel = task_switch->tsssel;
	ext = vmexit->u.task_switch.ext;
	reason = vmexit->u.task_switch.reason;
	paging = &vmexit->u.task_switch.paging;
	vcpu = *pvcpu;

	assert(paging->cpu_mode == CPU_MODE_PROTECTED);

	/*
	 * Calculate the instruction pointer to store in the old TSS.
	 */
	eip = vmexit->rip + vmexit->inst_length;

	/*
	 * Section 4.6, "Access Rights" in Intel SDM Vol 3.
	 * The following page table accesses are implicitly supervisor mode:
	 * - accesses to GDT or LDT to load segment descriptors
	 * - accesses to the task state segment during task switch
	 */
	sup_paging = *paging;
	sup_paging.cpl = 0;	/* implicit supervisor mode */

	/* Fetch the new TSS descriptor */
	error = read_tss_descriptor(ctx, vcpu, task_switch, nt_sel, &nt_desc);
	CHKERR(error);

	nt = usd_to_seg_desc(&nt_desc);

	/* Verify the type of the new TSS */
	nt_type = SEG_DESC_TYPE(nt.access);
	if (nt_type != SDT_SYS386BSY && nt_type != SDT_SYS386TSS &&
	    nt_type != SDT_SYS286BSY && nt_type != SDT_SYS286TSS) {
		sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext);
		goto done;
	}

	/* TSS descriptor must have present bit set */
	if (!SEG_DESC_PRESENT(nt.access)) {
		sel_exception(ctx, vcpu, IDT_NP, nt_sel, ext);
		goto done;
	}

	/*
	 * TSS must have a minimum length of 104 bytes for a 32-bit TSS and
	 * 44 bytes for a 16-bit TSS.
	 */
	if (nt_type == SDT_SYS386BSY || nt_type == SDT_SYS386TSS)
		minlimit = 104 - 1;
	else if (nt_type == SDT_SYS286BSY || nt_type == SDT_SYS286TSS)
		minlimit = 44 - 1;
	else
		minlimit = 0;

	assert(minlimit > 0);
	if (nt.limit < minlimit) {
		sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext);
		goto done;
	}

	/* TSS must be busy if task switch is due to IRET */
	if (reason == TSR_IRET && !TSS_BUSY(nt_type)) {
		sel_exception(ctx, vcpu, IDT_TS, nt_sel, ext);
		goto done;
	}

	/*
	 * TSS must be available (not busy) if task switch reason is
	 * CALL, JMP, exception or interrupt.
	 */
	if (reason != TSR_IRET && TSS_BUSY(nt_type)) {
		sel_exception(ctx, vcpu, IDT_GP, nt_sel, ext);
		goto done;
	}

	/* Fetch the new TSS */
	error = vm_copy_setup(ctx, vcpu, &sup_paging, nt.base, minlimit + 1,
	    PROT_READ | PROT_WRITE, nt_iov, nitems(nt_iov));
	CHKERR(error);
	vm_copyin(ctx, vcpu, nt_iov, &newtss, minlimit + 1);

	/* Get the old TSS selector from the guest's task register */
	ot_sel = GETREG(ctx, vcpu, VM_REG_GUEST_TR);
	if (ISLDT(ot_sel) || IDXSEL(ot_sel) == 0) {
		/*
		 * This might happen if a task switch was attempted without
		 * ever loading the task register with LTR. In this case the
		 * TR would contain the values from power-on:
		 * (sel = 0, base = 0, limit = 0xffff).
		 */
		sel_exception(ctx, vcpu, IDT_TS, ot_sel, task_switch->ext);
		goto done;
	}

	/* Get the old TSS base and limit from the guest's task register */
	error = vm_get_desc(ctx, vcpu, VM_REG_GUEST_TR, &ot_base, &ot_lim,
	    &access);
	assert(error == 0);
	assert(!SEG_DESC_UNUSABLE(access) && SEG_DESC_PRESENT(access));
	ot_type = SEG_DESC_TYPE(access);
	assert(ot_type == SDT_SYS386BSY || ot_type == SDT_SYS286BSY);

	/* Fetch the old TSS descriptor */
	error = read_tss_descriptor(ctx, vcpu, task_switch, ot_sel, &ot_desc);
	CHKERR(error);

	/* Get the old TSS */
	error = vm_copy_setup(ctx, vcpu, &sup_paging, ot_base, minlimit + 1,
	    PROT_READ | PROT_WRITE, ot_iov, nitems(ot_iov));
	CHKERR(error);
	vm_copyin(ctx, vcpu, ot_iov, &oldtss, minlimit + 1);

	/*
	 * Clear the busy bit in the old TSS descriptor if the task switch
	 * due to an IRET or JMP instruction.
	 */
	if (reason == TSR_IRET || reason == TSR_JMP) {
		ot_desc.sd_type &= ~0x2;
		error = desc_table_write(ctx, vcpu, &sup_paging, ot_sel,
		    &ot_desc);
		CHKERR(error);
	}

	if (nt_type == SDT_SYS286BSY || nt_type == SDT_SYS286TSS) {
		fprintf(stderr, "Task switch to 16-bit TSS not supported\n");
		return (VMEXIT_ABORT);
	}

	/* Save processor state in old TSS */
	tss32_save(ctx, vcpu, task_switch, eip, &oldtss, ot_iov);

	/*
	 * If the task switch was triggered for any reason other than IRET
	 * then set the busy bit in the new TSS descriptor.
	 */
	if (reason != TSR_IRET) {
		nt_desc.sd_type |= 0x2;
		error = desc_table_write(ctx, vcpu, &sup_paging, nt_sel,
		    &nt_desc);
		CHKERR(error);
	}

	/* Update task register to point at the new TSS */
	SETREG(ctx, vcpu, VM_REG_GUEST_TR, nt_sel);

	/* Update the hidden descriptor state of the task register */
	nt = usd_to_seg_desc(&nt_desc);
	update_seg_desc(ctx, vcpu, VM_REG_GUEST_TR, &nt);

	/* Set CR0.TS */
	cr0 = GETREG(ctx, vcpu, VM_REG_GUEST_CR0);
	SETREG(ctx, vcpu, VM_REG_GUEST_CR0, cr0 | CR0_TS);

	/*
	 * We are now committed to the task switch. Any exceptions encountered
	 * after this point will be handled in the context of the new task and
	 * the saved instruction pointer will belong to the new task.
	 */
	error = vm_set_register(ctx, vcpu, VM_REG_GUEST_RIP, newtss.tss_eip);
	assert(error == 0);

	/* Load processor state from new TSS */
	error = tss32_restore(ctx, vcpu, task_switch, ot_sel, &newtss, nt_iov);
	CHKERR(error);

	/*
	 * Section "Interrupt Tasks" in Intel SDM, Vol 3: if an exception
	 * caused an error code to be generated, this error code is copied
	 * to the stack of the new task.
	 */
	if (task_switch->errcode_valid) {
		assert(task_switch->ext);
		assert(task_switch->reason == TSR_IDT_GATE);
		error = push_errcode(ctx, vcpu, &task_switch->paging, nt_type,
		    task_switch->errcode);
		CHKERR(error);
	}

	/*
	 * Treatment of virtual-NMI blocking if NMI is delivered through
	 * a task gate.
	 *
	 * Section "Architectural State Before A VM Exit", Intel SDM, Vol3:
	 * If the virtual NMIs VM-execution control is 1, VM entry injects
	 * an NMI, and delivery of the NMI causes a task switch that causes
	 * a VM exit, virtual-NMI blocking is in effect before the VM exit
	 * commences.
	 *
	 * Thus, virtual-NMI blocking is in effect at the time of the task
	 * switch VM exit.
	 */

	/*
	 * Treatment of virtual-NMI unblocking on IRET from NMI handler task.
	 *
	 * Section "Changes to Instruction Behavior in VMX Non-Root Operation"
	 * If "virtual NMIs" control is 1 IRET removes any virtual-NMI blocking.
	 * This unblocking of virtual-NMI occurs even if IRET causes a fault.
	 *
	 * Thus, virtual-NMI blocking is cleared at the time of the task switch
	 * VM exit.
	 */

	/*
	 * If the task switch was triggered by an event delivered through
	 * the IDT then extinguish the pending event from the vcpu's
	 * exitintinfo.
	 */
	if (task_switch->reason == TSR_IDT_GATE) {
		error = vm_set_intinfo(ctx, vcpu, 0);
		assert(error == 0);
	}

	/*
	 * XXX should inject debug exception if 'T' bit is 1
	 */
done:
	return (VMEXIT_CONTINUE);
}
OpenPOWER on IntegriCloud