summaryrefslogtreecommitdiffstats
path: root/sys/x86/iommu/intel_utils.c
blob: 96ee6944f3ca1765c914ed829677cd0b8f3bf676 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
/*-
 * Copyright (c) 2013 The FreeBSD Foundation
 * All rights reserved.
 *
 * This software was developed by Konstantin Belousov <kib@FreeBSD.org>
 * under sponsorship from the FreeBSD Foundation.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/memdesc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/queue.h>
#include <sys/rman.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/sf_buf.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/taskqueue.h>
#include <sys/time.h>
#include <sys/tree.h>
#include <sys/vmem.h>
#include <dev/pci/pcivar.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_pageout.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <machine/intr_machdep.h>
#include <x86/include/apicvar.h>
#include <x86/include/busdma_impl.h>
#include <x86/iommu/intel_reg.h>
#include <x86/iommu/busdma_dmar.h>
#include <x86/iommu/intel_dmar.h>

u_int
dmar_nd2mask(u_int nd)
{
	static const u_int masks[] = {
		0x000f,	/* nd == 0 */
		0x002f,	/* nd == 1 */
		0x00ff,	/* nd == 2 */
		0x02ff,	/* nd == 3 */
		0x0fff,	/* nd == 4 */
		0x2fff,	/* nd == 5 */
		0xffff,	/* nd == 6 */
		0x0000,	/* nd == 7 reserved */
	};

	KASSERT(nd <= 6, ("number of domains %d", nd));
	return (masks[nd]);
}

static const struct sagaw_bits_tag {
	int agaw;
	int cap;
	int awlvl;
	int pglvl;
} sagaw_bits[] = {
	{.agaw = 30, .cap = DMAR_CAP_SAGAW_2LVL, .awlvl = DMAR_CTX2_AW_2LVL,
	    .pglvl = 2},
	{.agaw = 39, .cap = DMAR_CAP_SAGAW_3LVL, .awlvl = DMAR_CTX2_AW_3LVL,
	    .pglvl = 3},
	{.agaw = 48, .cap = DMAR_CAP_SAGAW_4LVL, .awlvl = DMAR_CTX2_AW_4LVL,
	    .pglvl = 4},
	{.agaw = 57, .cap = DMAR_CAP_SAGAW_5LVL, .awlvl = DMAR_CTX2_AW_5LVL,
	    .pglvl = 5},
	{.agaw = 64, .cap = DMAR_CAP_SAGAW_6LVL, .awlvl = DMAR_CTX2_AW_6LVL,
	    .pglvl = 6}
};

bool
dmar_pglvl_supported(struct dmar_unit *unit, int pglvl)
{
	int i;

	for (i = 0; i < nitems(sagaw_bits); i++) {
		if (sagaw_bits[i].pglvl != pglvl)
			continue;
		if ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
			return (true);
	}
	return (false);
}

int
domain_set_agaw(struct dmar_domain *domain, int mgaw)
{
	int sagaw, i;

	domain->mgaw = mgaw;
	sagaw = DMAR_CAP_SAGAW(domain->dmar->hw_cap);
	for (i = 0; i < nitems(sagaw_bits); i++) {
		if (sagaw_bits[i].agaw >= mgaw) {
			domain->agaw = sagaw_bits[i].agaw;
			domain->pglvl = sagaw_bits[i].pglvl;
			domain->awlvl = sagaw_bits[i].awlvl;
			return (0);
		}
	}
	device_printf(domain->dmar->dev,
	    "context request mgaw %d: no agaw found, sagaw %x\n",
	    mgaw, sagaw);
	return (EINVAL);
}

/*
 * Find a best fit mgaw for the given maxaddr:
 *   - if allow_less is false, must find sagaw which maps all requested
 *     addresses (used by identity mappings);
 *   - if allow_less is true, and no supported sagaw can map all requested
 *     address space, accept the biggest sagaw, whatever is it.
 */
int
dmar_maxaddr2mgaw(struct dmar_unit *unit, dmar_gaddr_t maxaddr, bool allow_less)
{
	int i;

	for (i = 0; i < nitems(sagaw_bits); i++) {
		if ((1ULL << sagaw_bits[i].agaw) >= maxaddr &&
		    (DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap) != 0)
			break;
	}
	if (allow_less && i == nitems(sagaw_bits)) {
		do {
			i--;
		} while ((DMAR_CAP_SAGAW(unit->hw_cap) & sagaw_bits[i].cap)
		    == 0);
	}
	if (i < nitems(sagaw_bits))
		return (sagaw_bits[i].agaw);
	KASSERT(0, ("no mgaw for maxaddr %jx allow_less %d",
	    (uintmax_t) maxaddr, allow_less));
	return (-1);
}

/*
 * Calculate the total amount of page table pages needed to map the
 * whole bus address space on the context with the selected agaw.
 */
vm_pindex_t
pglvl_max_pages(int pglvl)
{
	vm_pindex_t res;
	int i;

	for (res = 0, i = pglvl; i > 0; i--) {
		res *= DMAR_NPTEPG;
		res++;
	}
	return (res);
}

/*
 * Return true if the page table level lvl supports the superpage for
 * the context ctx.
 */
int
domain_is_sp_lvl(struct dmar_domain *domain, int lvl)
{
	int alvl, cap_sps;
	static const int sagaw_sp[] = {
		DMAR_CAP_SPS_2M,
		DMAR_CAP_SPS_1G,
		DMAR_CAP_SPS_512G,
		DMAR_CAP_SPS_1T
	};

	alvl = domain->pglvl - lvl - 1;
	cap_sps = DMAR_CAP_SPS(domain->dmar->hw_cap);
	return (alvl < nitems(sagaw_sp) && (sagaw_sp[alvl] & cap_sps) != 0);
}

dmar_gaddr_t
pglvl_page_size(int total_pglvl, int lvl)
{
	int rlvl;
	static const dmar_gaddr_t pg_sz[] = {
		(dmar_gaddr_t)DMAR_PAGE_SIZE,
		(dmar_gaddr_t)DMAR_PAGE_SIZE << DMAR_NPTEPGSHIFT,
		(dmar_gaddr_t)DMAR_PAGE_SIZE << (2 * DMAR_NPTEPGSHIFT),
		(dmar_gaddr_t)DMAR_PAGE_SIZE << (3 * DMAR_NPTEPGSHIFT),
		(dmar_gaddr_t)DMAR_PAGE_SIZE << (4 * DMAR_NPTEPGSHIFT),
		(dmar_gaddr_t)DMAR_PAGE_SIZE << (5 * DMAR_NPTEPGSHIFT)
	};

	KASSERT(lvl >= 0 && lvl < total_pglvl,
	    ("total %d lvl %d", total_pglvl, lvl));
	rlvl = total_pglvl - lvl - 1;
	KASSERT(rlvl < nitems(pg_sz), ("sizeof pg_sz lvl %d", lvl));
	return (pg_sz[rlvl]);
}

dmar_gaddr_t
domain_page_size(struct dmar_domain *domain, int lvl)
{

	return (pglvl_page_size(domain->pglvl, lvl));
}

int
calc_am(struct dmar_unit *unit, dmar_gaddr_t base, dmar_gaddr_t size,
    dmar_gaddr_t *isizep)
{
	dmar_gaddr_t isize;
	int am;

	for (am = DMAR_CAP_MAMV(unit->hw_cap);; am--) {
		isize = 1ULL << (am + DMAR_PAGE_SHIFT);
		if ((base & (isize - 1)) == 0 && size >= isize)
			break;
		if (am == 0)
			break;
	}
	*isizep = isize;
	return (am);
}

dmar_haddr_t dmar_high;
int haw;
int dmar_tbl_pagecnt;

vm_page_t
dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags)
{
	vm_page_t m;
	int zeroed, aflags;

	zeroed = (flags & DMAR_PGF_ZERO) != 0 ? VM_ALLOC_ZERO : 0;
	aflags = zeroed | VM_ALLOC_NOBUSY | VM_ALLOC_SYSTEM | VM_ALLOC_NODUMP |
	    ((flags & DMAR_PGF_WAITOK) != 0 ? VM_ALLOC_WAITFAIL :
	    VM_ALLOC_NOWAIT);
	for (;;) {
		if ((flags & DMAR_PGF_OBJL) == 0)
			VM_OBJECT_WLOCK(obj);
		m = vm_page_lookup(obj, idx);
		if ((flags & DMAR_PGF_NOALLOC) != 0 || m != NULL) {
			if ((flags & DMAR_PGF_OBJL) == 0)
				VM_OBJECT_WUNLOCK(obj);
			break;
		}
		m = vm_page_alloc_contig(obj, idx, aflags, 1, 0,
		    dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
		if ((flags & DMAR_PGF_OBJL) == 0)
			VM_OBJECT_WUNLOCK(obj);
		if (m != NULL) {
			if (zeroed && (m->flags & PG_ZERO) == 0)
				pmap_zero_page(m);
			atomic_add_int(&dmar_tbl_pagecnt, 1);
			break;
		}
		if ((flags & DMAR_PGF_WAITOK) == 0)
			break;
	}
	return (m);
}

void
dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags)
{
	vm_page_t m;

	if ((flags & DMAR_PGF_OBJL) == 0)
		VM_OBJECT_WLOCK(obj);
	m = vm_page_lookup(obj, idx);
	if (m != NULL) {
		vm_page_free(m);
		atomic_subtract_int(&dmar_tbl_pagecnt, 1);
	}
	if ((flags & DMAR_PGF_OBJL) == 0)
		VM_OBJECT_WUNLOCK(obj);
}

void *
dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
    struct sf_buf **sf)
{
	vm_page_t m;
	bool allocated;

	if ((flags & DMAR_PGF_OBJL) == 0)
		VM_OBJECT_WLOCK(obj);
	m = vm_page_lookup(obj, idx);
	if (m == NULL && (flags & DMAR_PGF_ALLOC) != 0) {
		m = dmar_pgalloc(obj, idx, flags | DMAR_PGF_OBJL);
		allocated = true;
	} else
		allocated = false;
	if (m == NULL) {
		if ((flags & DMAR_PGF_OBJL) == 0)
			VM_OBJECT_WUNLOCK(obj);
		return (NULL);
	}
	/* Sleepable allocations cannot fail. */
	if ((flags & DMAR_PGF_WAITOK) != 0)
		VM_OBJECT_WUNLOCK(obj);
	sched_pin();
	*sf = sf_buf_alloc(m, SFB_CPUPRIVATE | ((flags & DMAR_PGF_WAITOK)
	    == 0 ? SFB_NOWAIT : 0));
	if (*sf == NULL) {
		sched_unpin();
		if (allocated) {
			VM_OBJECT_ASSERT_WLOCKED(obj);
			dmar_pgfree(obj, m->pindex, flags | DMAR_PGF_OBJL);
		}
		if ((flags & DMAR_PGF_OBJL) == 0)
			VM_OBJECT_WUNLOCK(obj);
		return (NULL);
	}
	if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) ==
	    (DMAR_PGF_WAITOK | DMAR_PGF_OBJL))
		VM_OBJECT_WLOCK(obj);
	else if ((flags & (DMAR_PGF_WAITOK | DMAR_PGF_OBJL)) == 0)
		VM_OBJECT_WUNLOCK(obj);
	return ((void *)sf_buf_kva(*sf));
}

void
dmar_unmap_pgtbl(struct sf_buf *sf)
{

	sf_buf_free(sf);
	sched_unpin();
}

static void
dmar_flush_transl_to_ram(struct dmar_unit *unit, void *dst, size_t sz)
{

	if (DMAR_IS_COHERENT(unit))
		return;
	/*
	 * If DMAR does not snoop paging structures accesses, flush
	 * CPU cache to memory.
	 */
	pmap_invalidate_cache_range((uintptr_t)dst, (uintptr_t)dst + sz,
	    TRUE);
}

void
dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst)
{

	dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
}

void
dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst)
{

	dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
}

void
dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst)
{

	dmar_flush_transl_to_ram(unit, dst, sizeof(*dst));
}

/*
 * Load the root entry pointer into the hardware, busily waiting for
 * the completion.
 */
int
dmar_load_root_entry_ptr(struct dmar_unit *unit)
{
	vm_page_t root_entry;
	int error;

	/*
	 * Access to the GCMD register must be serialized while the
	 * command is submitted.
	 */
	DMAR_ASSERT_LOCKED(unit);

	VM_OBJECT_RLOCK(unit->ctx_obj);
	root_entry = vm_page_lookup(unit->ctx_obj, 0);
	VM_OBJECT_RUNLOCK(unit->ctx_obj);
	dmar_write8(unit, DMAR_RTADDR_REG, VM_PAGE_TO_PHYS(root_entry));
	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SRTP);
	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_RTPS)
	    != 0));
	return (error);
}

/*
 * Globally invalidate the context entries cache, busily waiting for
 * the completion.
 */
int
dmar_inv_ctx_glob(struct dmar_unit *unit)
{
	int error;

	/*
	 * Access to the CCMD register must be serialized while the
	 * command is submitted.
	 */
	DMAR_ASSERT_LOCKED(unit);
	KASSERT(!unit->qi_enabled, ("QI enabled"));

	/*
	 * The DMAR_CCMD_ICC bit in the upper dword should be written
	 * after the low dword write is completed.  Amd64
	 * dmar_write8() does not have this issue, i386 dmar_write8()
	 * writes the upper dword last.
	 */
	dmar_write8(unit, DMAR_CCMD_REG, DMAR_CCMD_ICC | DMAR_CCMD_CIRG_GLOB);
	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_CCMD_REG + 4) & DMAR_CCMD_ICC32)
	    == 0));
	return (error);
}

/*
 * Globally invalidate the IOTLB, busily waiting for the completion.
 */
int
dmar_inv_iotlb_glob(struct dmar_unit *unit)
{
	int error, reg;

	DMAR_ASSERT_LOCKED(unit);
	KASSERT(!unit->qi_enabled, ("QI enabled"));

	reg = 16 * DMAR_ECAP_IRO(unit->hw_ecap);
	/* See a comment about DMAR_CCMD_ICC in dmar_inv_ctx_glob. */
	dmar_write8(unit, reg + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT |
	    DMAR_IOTLB_IIRG_GLB | DMAR_IOTLB_DR | DMAR_IOTLB_DW);
	DMAR_WAIT_UNTIL(((dmar_read4(unit, reg + DMAR_IOTLB_REG_OFF + 4) &
	    DMAR_IOTLB_IVT32) == 0));
	return (error);
}

/*
 * Flush the chipset write buffers.  See 11.1 "Write Buffer Flushing"
 * in the architecture specification.
 */
int
dmar_flush_write_bufs(struct dmar_unit *unit)
{
	int error;

	DMAR_ASSERT_LOCKED(unit);

	/*
	 * DMAR_GCMD_WBF is only valid when CAP_RWBF is reported.
	 */
	KASSERT((unit->hw_cap & DMAR_CAP_RWBF) != 0,
	    ("dmar%d: no RWBF", unit->unit));

	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_WBF);
	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_WBFS)
	    != 0));
	return (error);
}

int
dmar_enable_translation(struct dmar_unit *unit)
{
	int error;

	DMAR_ASSERT_LOCKED(unit);
	unit->hw_gcmd |= DMAR_GCMD_TE;
	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
	    != 0));
	return (error);
}

int
dmar_disable_translation(struct dmar_unit *unit)
{
	int error;

	DMAR_ASSERT_LOCKED(unit);
	unit->hw_gcmd &= ~DMAR_GCMD_TE;
	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_TES)
	    == 0));
	return (error);
}

int
dmar_load_irt_ptr(struct dmar_unit *unit)
{
	uint64_t irta, s;
	int error;

	DMAR_ASSERT_LOCKED(unit);
	irta = unit->irt_phys;
	if (DMAR_X2APIC(unit))
		irta |= DMAR_IRTA_EIME;
	s = fls(unit->irte_cnt) - 2;
	KASSERT(unit->irte_cnt >= 2 && s <= DMAR_IRTA_S_MASK &&
	    powerof2(unit->irte_cnt),
	    ("IRTA_REG_S overflow %x", unit->irte_cnt));
	irta |= s;
	dmar_write8(unit, DMAR_IRTA_REG, irta);
	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd | DMAR_GCMD_SIRTP);
	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRTPS)
	    != 0));
	return (error);
}

int
dmar_enable_ir(struct dmar_unit *unit)
{
	int error;

	DMAR_ASSERT_LOCKED(unit);
	unit->hw_gcmd |= DMAR_GCMD_IRE;
	unit->hw_gcmd &= ~DMAR_GCMD_CFI;
	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
	    != 0));
	return (error);
}

int
dmar_disable_ir(struct dmar_unit *unit)
{
	int error;

	DMAR_ASSERT_LOCKED(unit);
	unit->hw_gcmd &= ~DMAR_GCMD_IRE;
	dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
	DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_IRES)
	    == 0));
	return (error);
}

#define BARRIER_F				\
	u_int f_done, f_inproc, f_wakeup;	\
						\
	f_done = 1 << (barrier_id * 3);		\
	f_inproc = 1 << (barrier_id * 3 + 1);	\
	f_wakeup = 1 << (barrier_id * 3 + 2)

bool
dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id)
{
	BARRIER_F;

	DMAR_LOCK(dmar);
	if ((dmar->barrier_flags & f_done) != 0) {
		DMAR_UNLOCK(dmar);
		return (false);
	}

	if ((dmar->barrier_flags & f_inproc) != 0) {
		while ((dmar->barrier_flags & f_inproc) != 0) {
			dmar->barrier_flags |= f_wakeup;
			msleep(&dmar->barrier_flags, &dmar->lock, 0,
			    "dmarb", 0);
		}
		KASSERT((dmar->barrier_flags & f_done) != 0,
		    ("dmar%d barrier %d missing done", dmar->unit, barrier_id));
		DMAR_UNLOCK(dmar);
		return (false);
	}

	dmar->barrier_flags |= f_inproc;
	DMAR_UNLOCK(dmar);
	return (true);
}

void
dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id)
{
	BARRIER_F;

	DMAR_ASSERT_LOCKED(dmar);
	KASSERT((dmar->barrier_flags & (f_done | f_inproc)) == f_inproc,
	    ("dmar%d barrier %d missed entry", dmar->unit, barrier_id));
	dmar->barrier_flags |= f_done;
	if ((dmar->barrier_flags & f_wakeup) != 0)
		wakeup(&dmar->barrier_flags);
	dmar->barrier_flags &= ~(f_inproc | f_wakeup);
	DMAR_UNLOCK(dmar);
}

int dmar_match_verbose;
int dmar_batch_coalesce = 100;
struct timespec dmar_hw_timeout = {
	.tv_sec = 0,
	.tv_nsec = 1000000
};

static const uint64_t d = 1000000000;

void
dmar_update_timeout(uint64_t newval)
{

	/* XXXKIB not atomic */
	dmar_hw_timeout.tv_sec = newval / d;
	dmar_hw_timeout.tv_nsec = newval % d;
}

uint64_t
dmar_get_timeout(void)
{

	return ((uint64_t)dmar_hw_timeout.tv_sec * d +
	    dmar_hw_timeout.tv_nsec);
}

static int
dmar_timeout_sysctl(SYSCTL_HANDLER_ARGS)
{
	uint64_t val;
	int error;

	val = dmar_get_timeout();
	error = sysctl_handle_long(oidp, &val, 0, req);
	if (error != 0 || req->newptr == NULL)
		return (error);
	dmar_update_timeout(val);
	return (error);
}

static SYSCTL_NODE(_hw, OID_AUTO, dmar, CTLFLAG_RD, NULL, "");
SYSCTL_INT(_hw_dmar, OID_AUTO, tbl_pagecnt, CTLFLAG_RD,
    &dmar_tbl_pagecnt, 0,
    "Count of pages used for DMAR pagetables");
SYSCTL_INT(_hw_dmar, OID_AUTO, match_verbose, CTLFLAG_RWTUN,
    &dmar_match_verbose, 0,
    "Verbose matching of the PCI devices to DMAR paths");
SYSCTL_INT(_hw_dmar, OID_AUTO, batch_coalesce, CTLFLAG_RWTUN,
    &dmar_batch_coalesce, 0,
    "Number of qi batches between interrupt");
SYSCTL_PROC(_hw_dmar, OID_AUTO, timeout,
    CTLTYPE_U64 | CTLFLAG_RW | CTLFLAG_MPSAFE, 0, 0,
    dmar_timeout_sysctl, "QU",
    "Timeout for command wait, in nanoseconds");
#ifdef INVARIANTS
int dmar_check_free;
SYSCTL_INT(_hw_dmar, OID_AUTO, check_free, CTLFLAG_RWTUN,
    &dmar_check_free, 0,
    "Check the GPA RBtree for free_down and free_after validity");
#endif

OpenPOWER on IntegriCloud