summaryrefslogtreecommitdiffstats
path: root/sys/vm/vm_page.c
blob: 888af4545849ef39ba0a4c9d828d0d30d1daab6e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
/*-
 * Copyright (c) 1991 Regents of the University of California.
 * All rights reserved.
 * Copyright (c) 1998 Matthew Dillon.  All Rights Reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * The Mach Operating System project at Carnegie-Mellon University.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from: @(#)vm_page.c	7.4 (Berkeley) 5/7/91
 */

/*-
 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/*
 *			GENERAL RULES ON VM_PAGE MANIPULATION
 *
 *	- A page queue lock is required when adding or removing a page from a
 *	  page queue regardless of other locks or the busy state of a page.
 *
 *		* In general, no thread besides the page daemon can acquire or
 *		  hold more than one page queue lock at a time.
 *
 *		* The page daemon can acquire and hold any pair of page queue
 *		  locks in any order.
 *
 *	- The object lock is required when inserting or removing
 *	  pages from an object (vm_page_insert() or vm_page_remove()).
 *
 */

/*
 *	Resident memory management module.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_vm.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/linker.h>
#include <sys/malloc.h>
#include <sys/mman.h>
#include <sys/msgbuf.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/sbuf.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/vmmeter.h>
#include <sys/vnode.h>

#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/vm_phys.h>
#include <vm/vm_radix.h>
#include <vm/vm_reserv.h>
#include <vm/vm_extern.h>
#include <vm/uma.h>
#include <vm/uma_int.h>

#include <machine/md_var.h>

/*
 *	Associated with page of user-allocatable memory is a
 *	page structure.
 */

struct vm_domain vm_dom[MAXMEMDOM];
struct mtx_padalign __exclusive_cache_line vm_page_queue_free_mtx;

struct mtx_padalign __exclusive_cache_line pa_lock[PA_LOCK_COUNT];

vm_page_t vm_page_array;
long vm_page_array_size;
long first_page;
int vm_page_zero_count;

static int boot_pages = UMA_BOOT_PAGES;
SYSCTL_INT(_vm, OID_AUTO, boot_pages, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
    &boot_pages, 0,
    "number of pages allocated for bootstrapping the VM system");

static int pa_tryrelock_restart;
SYSCTL_INT(_vm, OID_AUTO, tryrelock_restart, CTLFLAG_RD,
    &pa_tryrelock_restart, 0, "Number of tryrelock restarts");

static TAILQ_HEAD(, vm_page) blacklist_head;
static int sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS);
SYSCTL_PROC(_vm, OID_AUTO, page_blacklist, CTLTYPE_STRING | CTLFLAG_RD |
    CTLFLAG_MPSAFE, NULL, 0, sysctl_vm_page_blacklist, "A", "Blacklist pages");

/* Is the page daemon waiting for free pages? */
static int vm_pageout_pages_needed;

static uma_zone_t fakepg_zone;

static void vm_page_alloc_check(vm_page_t m);
static void vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits);
static void vm_page_enqueue(uint8_t queue, vm_page_t m);
static void vm_page_free_phys(vm_page_t m);
static void vm_page_free_wakeup(void);
static void vm_page_init_fakepg(void *dummy);
static int vm_page_insert_after(vm_page_t m, vm_object_t object,
    vm_pindex_t pindex, vm_page_t mpred);
static void vm_page_insert_radixdone(vm_page_t m, vm_object_t object,
    vm_page_t mpred);
static int vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
    vm_paddr_t high);

SYSINIT(vm_page, SI_SUB_VM, SI_ORDER_SECOND, vm_page_init_fakepg, NULL);

static void
vm_page_init_fakepg(void *dummy)
{

	fakepg_zone = uma_zcreate("fakepg", sizeof(struct vm_page), NULL, NULL,
	    NULL, NULL, UMA_ALIGN_PTR, UMA_ZONE_NOFREE | UMA_ZONE_VM);
}

/* Make sure that u_long is at least 64 bits when PAGE_SIZE is 32K. */
#if PAGE_SIZE == 32768
#ifdef CTASSERT
CTASSERT(sizeof(u_long) >= 8);
#endif
#endif

/*
 * Try to acquire a physical address lock while a pmap is locked.  If we
 * fail to trylock we unlock and lock the pmap directly and cache the
 * locked pa in *locked.  The caller should then restart their loop in case
 * the virtual to physical mapping has changed.
 */
int
vm_page_pa_tryrelock(pmap_t pmap, vm_paddr_t pa, vm_paddr_t *locked)
{
	vm_paddr_t lockpa;

	lockpa = *locked;
	*locked = pa;
	if (lockpa) {
		PA_LOCK_ASSERT(lockpa, MA_OWNED);
		if (PA_LOCKPTR(pa) == PA_LOCKPTR(lockpa))
			return (0);
		PA_UNLOCK(lockpa);
	}
	if (PA_TRYLOCK(pa))
		return (0);
	PMAP_UNLOCK(pmap);
	atomic_add_int(&pa_tryrelock_restart, 1);
	PA_LOCK(pa);
	PMAP_LOCK(pmap);
	return (EAGAIN);
}

/*
 *	vm_set_page_size:
 *
 *	Sets the page size, perhaps based upon the memory
 *	size.  Must be called before any use of page-size
 *	dependent functions.
 */
void
vm_set_page_size(void)
{
	if (vm_cnt.v_page_size == 0)
		vm_cnt.v_page_size = PAGE_SIZE;
	if (((vm_cnt.v_page_size - 1) & vm_cnt.v_page_size) != 0)
		panic("vm_set_page_size: page size not a power of two");
}

/*
 *	vm_page_blacklist_next:
 *
 *	Find the next entry in the provided string of blacklist
 *	addresses.  Entries are separated by space, comma, or newline.
 *	If an invalid integer is encountered then the rest of the
 *	string is skipped.  Updates the list pointer to the next
 *	character, or NULL if the string is exhausted or invalid.
 */
static vm_paddr_t
vm_page_blacklist_next(char **list, char *end)
{
	vm_paddr_t bad;
	char *cp, *pos;

	if (list == NULL || *list == NULL)
		return (0);
	if (**list =='\0') {
		*list = NULL;
		return (0);
	}

	/*
	 * If there's no end pointer then the buffer is coming from
	 * the kenv and we know it's null-terminated.
	 */
	if (end == NULL)
		end = *list + strlen(*list);

	/* Ensure that strtoq() won't walk off the end */
	if (*end != '\0') {
		if (*end == '\n' || *end == ' ' || *end  == ',')
			*end = '\0';
		else {
			printf("Blacklist not terminated, skipping\n");
			*list = NULL;
			return (0);
		}
	}

	for (pos = *list; *pos != '\0'; pos = cp) {
		bad = strtoq(pos, &cp, 0);
		if (*cp == '\0' || *cp == ' ' || *cp == ',' || *cp == '\n') {
			if (bad == 0) {
				if (++cp < end)
					continue;
				else
					break;
			}
		} else
			break;
		if (*cp == '\0' || ++cp >= end)
			*list = NULL;
		else
			*list = cp;
		return (trunc_page(bad));
	}
	printf("Garbage in RAM blacklist, skipping\n");
	*list = NULL;
	return (0);
}

/*
 *	vm_page_blacklist_check:
 *
 *	Iterate through the provided string of blacklist addresses, pulling
 *	each entry out of the physical allocator free list and putting it
 *	onto a list for reporting via the vm.page_blacklist sysctl.
 */
static void
vm_page_blacklist_check(char *list, char *end)
{
	vm_paddr_t pa;
	vm_page_t m;
	char *next;
	int ret;

	next = list;
	while (next != NULL) {
		if ((pa = vm_page_blacklist_next(&next, end)) == 0)
			continue;
		m = vm_phys_paddr_to_vm_page(pa);
		if (m == NULL)
			continue;
		mtx_lock(&vm_page_queue_free_mtx);
		ret = vm_phys_unfree_page(m);
		mtx_unlock(&vm_page_queue_free_mtx);
		if (ret == TRUE) {
			TAILQ_INSERT_TAIL(&blacklist_head, m, listq);
			if (bootverbose)
				printf("Skipping page with pa 0x%jx\n",
				    (uintmax_t)pa);
		}
	}
}

/*
 *	vm_page_blacklist_load:
 *
 *	Search for a special module named "ram_blacklist".  It'll be a
 *	plain text file provided by the user via the loader directive
 *	of the same name.
 */
static void
vm_page_blacklist_load(char **list, char **end)
{
	void *mod;
	u_char *ptr;
	u_int len;

	mod = NULL;
	ptr = NULL;

	mod = preload_search_by_type("ram_blacklist");
	if (mod != NULL) {
		ptr = preload_fetch_addr(mod);
		len = preload_fetch_size(mod);
        }
	*list = ptr;
	if (ptr != NULL)
		*end = ptr + len;
	else
		*end = NULL;
	return;
}

static int
sysctl_vm_page_blacklist(SYSCTL_HANDLER_ARGS)
{
	vm_page_t m;
	struct sbuf sbuf;
	int error, first;

	first = 1;
	error = sysctl_wire_old_buffer(req, 0);
	if (error != 0)
		return (error);
	sbuf_new_for_sysctl(&sbuf, NULL, 128, req);
	TAILQ_FOREACH(m, &blacklist_head, listq) {
		sbuf_printf(&sbuf, "%s%#jx", first ? "" : ",",
		    (uintmax_t)m->phys_addr);
		first = 0;
	}
	error = sbuf_finish(&sbuf);
	sbuf_delete(&sbuf);
	return (error);
}

static void
vm_page_domain_init(struct vm_domain *vmd)
{
	struct vm_pagequeue *pq;
	int i;

	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_name) =
	    "vm inactive pagequeue";
	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_INACTIVE].pq_vcnt) =
	    &vm_cnt.v_inactive_count;
	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_name) =
	    "vm active pagequeue";
	*__DECONST(u_int **, &vmd->vmd_pagequeues[PQ_ACTIVE].pq_vcnt) =
	    &vm_cnt.v_active_count;
	*__DECONST(char **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_name) =
	    "vm laundry pagequeue";
	*__DECONST(int **, &vmd->vmd_pagequeues[PQ_LAUNDRY].pq_vcnt) =
	    &vm_cnt.v_laundry_count;
	vmd->vmd_page_count = 0;
	vmd->vmd_free_count = 0;
	vmd->vmd_segs = 0;
	vmd->vmd_oom = FALSE;
	for (i = 0; i < PQ_COUNT; i++) {
		pq = &vmd->vmd_pagequeues[i];
		TAILQ_INIT(&pq->pq_pl);
		mtx_init(&pq->pq_mutex, pq->pq_name, "vm pagequeue",
		    MTX_DEF | MTX_DUPOK);
	}
}

/*
 * Initialize a physical page in preparation for adding it to the free
 * lists.
 */
static void
vm_page_init_page(vm_page_t m, vm_paddr_t pa, int segind)
{

	m->object = NULL;
	m->wire_count = 0;
	m->busy_lock = VPB_UNBUSIED;
	m->hold_count = 0;
	m->flags = 0;
	m->phys_addr = pa;
	m->queue = PQ_NONE;
	m->psind = 0;
	m->segind = segind;
	m->order = VM_NFREEORDER;
	m->pool = VM_FREEPOOL_DEFAULT;
	m->valid = m->dirty = 0;
	pmap_page_init(m);
}

/*
 *	vm_page_startup:
 *
 *	Initializes the resident memory module.  Allocates physical memory for
 *	bootstrapping UMA and some data structures that are used to manage
 *	physical pages.  Initializes these structures, and populates the free
 *	page queues.
 */
vm_offset_t
vm_page_startup(vm_offset_t vaddr)
{
	struct vm_domain *vmd;
	struct vm_phys_seg *seg;
	vm_page_t m;
	char *list, *listend;
	vm_offset_t mapped;
	vm_paddr_t end, high_avail, low_avail, new_end, page_range, size;
	vm_paddr_t biggestsize, last_pa, pa;
	u_long pagecount;
	int biggestone, i, pages_per_zone, segind;

	biggestsize = 0;
	biggestone = 0;
	vaddr = round_page(vaddr);

	for (i = 0; phys_avail[i + 1]; i += 2) {
		phys_avail[i] = round_page(phys_avail[i]);
		phys_avail[i + 1] = trunc_page(phys_avail[i + 1]);
	}
	for (i = 0; phys_avail[i + 1]; i += 2) {
		size = phys_avail[i + 1] - phys_avail[i];
		if (size > biggestsize) {
			biggestone = i;
			biggestsize = size;
		}
	}

	end = phys_avail[biggestone+1];

	/*
	 * Initialize the page and queue locks.
	 */
	mtx_init(&vm_page_queue_free_mtx, "vm page free queue", NULL, MTX_DEF);
	for (i = 0; i < PA_LOCK_COUNT; i++)
		mtx_init(&pa_lock[i], "vm page", NULL, MTX_DEF);
	for (i = 0; i < vm_ndomains; i++)
		vm_page_domain_init(&vm_dom[i]);

	/*
	 * Almost all of the pages needed for bootstrapping UMA are used
	 * for zone structures, so if the number of CPUs results in those
	 * structures taking more than one page each, we set aside more pages
	 * in proportion to the zone structure size.
	 */
	pages_per_zone = howmany(sizeof(struct uma_zone) +
	    sizeof(struct uma_cache) * (mp_maxid + 1) +
	    roundup2(sizeof(struct uma_slab), sizeof(void *)), UMA_SLAB_SIZE);
	if (pages_per_zone > 1) {
		/* Reserve more pages so that we don't run out. */
		boot_pages = UMA_BOOT_PAGES_ZONES * pages_per_zone;
	}

	/*
	 * Allocate memory for use when boot strapping the kernel memory
	 * allocator.
	 *
	 * CTFLAG_RDTUN doesn't work during the early boot process, so we must
	 * manually fetch the value.
	 */
	TUNABLE_INT_FETCH("vm.boot_pages", &boot_pages);
	new_end = end - (boot_pages * UMA_SLAB_SIZE);
	new_end = trunc_page(new_end);
	mapped = pmap_map(&vaddr, new_end, end,
	    VM_PROT_READ | VM_PROT_WRITE);
	bzero((void *)mapped, end - new_end);
	uma_startup((void *)mapped, boot_pages);

#if defined(__aarch64__) || defined(__amd64__) || defined(__arm__) || \
    defined(__i386__) || defined(__mips__)
	/*
	 * Allocate a bitmap to indicate that a random physical page
	 * needs to be included in a minidump.
	 *
	 * The amd64 port needs this to indicate which direct map pages
	 * need to be dumped, via calls to dump_add_page()/dump_drop_page().
	 *
	 * However, i386 still needs this workspace internally within the
	 * minidump code.  In theory, they are not needed on i386, but are
	 * included should the sf_buf code decide to use them.
	 */
	last_pa = 0;
	for (i = 0; dump_avail[i + 1] != 0; i += 2)
		if (dump_avail[i + 1] > last_pa)
			last_pa = dump_avail[i + 1];
	page_range = last_pa / PAGE_SIZE;
	vm_page_dump_size = round_page(roundup2(page_range, NBBY) / NBBY);
	new_end -= vm_page_dump_size;
	vm_page_dump = (void *)(uintptr_t)pmap_map(&vaddr, new_end,
	    new_end + vm_page_dump_size, VM_PROT_READ | VM_PROT_WRITE);
	bzero((void *)vm_page_dump, vm_page_dump_size);
#else
	(void)last_pa;
#endif
#if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
	/*
	 * Include the UMA bootstrap pages and vm_page_dump in a crash dump.
	 * When pmap_map() uses the direct map, they are not automatically 
	 * included.
	 */
	for (pa = new_end; pa < end; pa += PAGE_SIZE)
		dump_add_page(pa);
#endif
	phys_avail[biggestone + 1] = new_end;
#ifdef __amd64__
	/*
	 * Request that the physical pages underlying the message buffer be
	 * included in a crash dump.  Since the message buffer is accessed
	 * through the direct map, they are not automatically included.
	 */
	pa = DMAP_TO_PHYS((vm_offset_t)msgbufp->msg_ptr);
	last_pa = pa + round_page(msgbufsize);
	while (pa < last_pa) {
		dump_add_page(pa);
		pa += PAGE_SIZE;
	}
#endif
	/*
	 * Compute the number of pages of memory that will be available for
	 * use, taking into account the overhead of a page structure per page.
	 * In other words, solve
	 *	"available physical memory" - round_page(page_range *
	 *	    sizeof(struct vm_page)) = page_range * PAGE_SIZE 
	 * for page_range.  
	 */
	low_avail = phys_avail[0];
	high_avail = phys_avail[1];
	for (i = 0; i < vm_phys_nsegs; i++) {
		if (vm_phys_segs[i].start < low_avail)
			low_avail = vm_phys_segs[i].start;
		if (vm_phys_segs[i].end > high_avail)
			high_avail = vm_phys_segs[i].end;
	}
	/* Skip the first chunk.  It is already accounted for. */
	for (i = 2; phys_avail[i + 1] != 0; i += 2) {
		if (phys_avail[i] < low_avail)
			low_avail = phys_avail[i];
		if (phys_avail[i + 1] > high_avail)
			high_avail = phys_avail[i + 1];
	}
	first_page = low_avail / PAGE_SIZE;
#ifdef VM_PHYSSEG_SPARSE
	size = 0;
	for (i = 0; i < vm_phys_nsegs; i++)
		size += vm_phys_segs[i].end - vm_phys_segs[i].start;
	for (i = 0; phys_avail[i + 1] != 0; i += 2)
		size += phys_avail[i + 1] - phys_avail[i];
#elif defined(VM_PHYSSEG_DENSE)
	size = high_avail - low_avail;
#else
#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
#endif

#ifdef VM_PHYSSEG_DENSE
	/*
	 * In the VM_PHYSSEG_DENSE case, the number of pages can account for
	 * the overhead of a page structure per page only if vm_page_array is
	 * allocated from the last physical memory chunk.  Otherwise, we must
	 * allocate page structures representing the physical memory
	 * underlying vm_page_array, even though they will not be used.
	 */
	if (new_end != high_avail)
		page_range = size / PAGE_SIZE;
	else
#endif
	{
		page_range = size / (PAGE_SIZE + sizeof(struct vm_page));

		/*
		 * If the partial bytes remaining are large enough for
		 * a page (PAGE_SIZE) without a corresponding
		 * 'struct vm_page', then new_end will contain an
		 * extra page after subtracting the length of the VM
		 * page array.  Compensate by subtracting an extra
		 * page from new_end.
		 */
		if (size % (PAGE_SIZE + sizeof(struct vm_page)) >= PAGE_SIZE) {
			if (new_end == high_avail)
				high_avail -= PAGE_SIZE;
			new_end -= PAGE_SIZE;
		}
	}
	end = new_end;

	/*
	 * Reserve an unmapped guard page to trap access to vm_page_array[-1].
	 * However, because this page is allocated from KVM, out-of-bounds
	 * accesses using the direct map will not be trapped.
	 */
	vaddr += PAGE_SIZE;

	/*
	 * Allocate physical memory for the page structures, and map it.
	 */
	new_end = trunc_page(end - page_range * sizeof(struct vm_page));
	mapped = pmap_map(&vaddr, new_end, end,
	    VM_PROT_READ | VM_PROT_WRITE);
	vm_page_array = (vm_page_t)mapped;
	vm_page_array_size = page_range;

#if VM_NRESERVLEVEL > 0
	/*
	 * Allocate physical memory for the reservation management system's
	 * data structures, and map it.
	 */
	if (high_avail == end)
		high_avail = new_end;
	new_end = vm_reserv_startup(&vaddr, new_end, high_avail);
#endif
#if defined(__aarch64__) || defined(__amd64__) || defined(__mips__)
	/*
	 * Include vm_page_array and vm_reserv_array in a crash dump.
	 */
	for (pa = new_end; pa < end; pa += PAGE_SIZE)
		dump_add_page(pa);
#endif
	phys_avail[biggestone + 1] = new_end;

	/*
	 * Add physical memory segments corresponding to the available
	 * physical pages.
	 */
	for (i = 0; phys_avail[i + 1] != 0; i += 2)
		vm_phys_add_seg(phys_avail[i], phys_avail[i + 1]);

	/*
	 * Initialize the physical memory allocator.
	 */
	vm_phys_init();

	/*
	 * Initialize the page structures and add every available page to the
	 * physical memory allocator's free lists.
	 */
	vm_cnt.v_page_count = 0;
	vm_cnt.v_free_count = 0;
	for (segind = 0; segind < vm_phys_nsegs; segind++) {
		seg = &vm_phys_segs[segind];
		for (m = seg->first_page, pa = seg->start; pa < seg->end;
		    m++, pa += PAGE_SIZE)
			vm_page_init_page(m, pa, segind);

		/*
		 * Add the segment to the free lists only if it is covered by
		 * one of the ranges in phys_avail.  Because we've added the
		 * ranges to the vm_phys_segs array, we can assume that each
		 * segment is either entirely contained in one of the ranges,
		 * or doesn't overlap any of them.
		 */
		for (i = 0; phys_avail[i + 1] != 0; i += 2) {
			if (seg->start < phys_avail[i] ||
			    seg->end > phys_avail[i + 1])
				continue;

			m = seg->first_page;
			pagecount = (u_long)atop(seg->end - seg->start);

			mtx_lock(&vm_page_queue_free_mtx);
			vm_phys_free_contig(m, pagecount);
			vm_phys_freecnt_adj(m, (int)pagecount);
			mtx_unlock(&vm_page_queue_free_mtx);
			vm_cnt.v_page_count += (u_int)pagecount;

			vmd = &vm_dom[seg->domain];
			vmd->vmd_page_count += (u_int)pagecount;
			vmd->vmd_segs |= 1UL << m->segind;
			break;
		}
	}

	/*
	 * Remove blacklisted pages from the physical memory allocator.
	 */
	TAILQ_INIT(&blacklist_head);
	vm_page_blacklist_load(&list, &listend);
	vm_page_blacklist_check(list, listend);

	list = kern_getenv("vm.blacklist");
	vm_page_blacklist_check(list, NULL);

	freeenv(list);
#if VM_NRESERVLEVEL > 0
	/*
	 * Initialize the reservation management system.
	 */
	vm_reserv_init();
#endif
	return (vaddr);
}

void
vm_page_reference(vm_page_t m)
{

	vm_page_aflag_set(m, PGA_REFERENCED);
}

/*
 *	vm_page_busy_downgrade:
 *
 *	Downgrade an exclusive busy page into a single shared busy page.
 */
void
vm_page_busy_downgrade(vm_page_t m)
{
	u_int x;
	bool locked;

	vm_page_assert_xbusied(m);
	locked = mtx_owned(vm_page_lockptr(m));

	for (;;) {
		x = m->busy_lock;
		x &= VPB_BIT_WAITERS;
		if (x != 0 && !locked)
			vm_page_lock(m);
		if (atomic_cmpset_rel_int(&m->busy_lock,
		    VPB_SINGLE_EXCLUSIVER | x, VPB_SHARERS_WORD(1)))
			break;
		if (x != 0 && !locked)
			vm_page_unlock(m);
	}
	if (x != 0) {
		wakeup(m);
		if (!locked)
			vm_page_unlock(m);
	}
}

/*
 *	vm_page_sbusied:
 *
 *	Return a positive value if the page is shared busied, 0 otherwise.
 */
int
vm_page_sbusied(vm_page_t m)
{
	u_int x;

	x = m->busy_lock;
	return ((x & VPB_BIT_SHARED) != 0 && x != VPB_UNBUSIED);
}

/*
 *	vm_page_sunbusy:
 *
 *	Shared unbusy a page.
 */
void
vm_page_sunbusy(vm_page_t m)
{
	u_int x;

	vm_page_lock_assert(m, MA_NOTOWNED);
	vm_page_assert_sbusied(m);

	for (;;) {
		x = m->busy_lock;
		if (VPB_SHARERS(x) > 1) {
			if (atomic_cmpset_int(&m->busy_lock, x,
			    x - VPB_ONE_SHARER))
				break;
			continue;
		}
		if ((x & VPB_BIT_WAITERS) == 0) {
			KASSERT(x == VPB_SHARERS_WORD(1),
			    ("vm_page_sunbusy: invalid lock state"));
			if (atomic_cmpset_int(&m->busy_lock,
			    VPB_SHARERS_WORD(1), VPB_UNBUSIED))
				break;
			continue;
		}
		KASSERT(x == (VPB_SHARERS_WORD(1) | VPB_BIT_WAITERS),
		    ("vm_page_sunbusy: invalid lock state for waiters"));

		vm_page_lock(m);
		if (!atomic_cmpset_int(&m->busy_lock, x, VPB_UNBUSIED)) {
			vm_page_unlock(m);
			continue;
		}
		wakeup(m);
		vm_page_unlock(m);
		break;
	}
}

/*
 *	vm_page_busy_sleep:
 *
 *	Sleep and release the page lock, using the page pointer as wchan.
 *	This is used to implement the hard-path of busying mechanism.
 *
 *	The given page must be locked.
 *
 *	If nonshared is true, sleep only if the page is xbusy.
 */
void
vm_page_busy_sleep(vm_page_t m, const char *wmesg, bool nonshared)
{
	u_int x;

	vm_page_assert_locked(m);

	x = m->busy_lock;
	if (x == VPB_UNBUSIED || (nonshared && (x & VPB_BIT_SHARED) != 0) ||
	    ((x & VPB_BIT_WAITERS) == 0 &&
	    !atomic_cmpset_int(&m->busy_lock, x, x | VPB_BIT_WAITERS))) {
		vm_page_unlock(m);
		return;
	}
	msleep(m, vm_page_lockptr(m), PVM | PDROP, wmesg, 0);
}

/*
 *	vm_page_trysbusy:
 *
 *	Try to shared busy a page.
 *	If the operation succeeds 1 is returned otherwise 0.
 *	The operation never sleeps.
 */
int
vm_page_trysbusy(vm_page_t m)
{
	u_int x;

	for (;;) {
		x = m->busy_lock;
		if ((x & VPB_BIT_SHARED) == 0)
			return (0);
		if (atomic_cmpset_acq_int(&m->busy_lock, x, x + VPB_ONE_SHARER))
			return (1);
	}
}

static void
vm_page_xunbusy_locked(vm_page_t m)
{

	vm_page_assert_xbusied(m);
	vm_page_assert_locked(m);

	atomic_store_rel_int(&m->busy_lock, VPB_UNBUSIED);
	/* There is a waiter, do wakeup() instead of vm_page_flash(). */
	wakeup(m);
}

void
vm_page_xunbusy_maybelocked(vm_page_t m)
{
	bool lockacq;

	vm_page_assert_xbusied(m);

	/*
	 * Fast path for unbusy.  If it succeeds, we know that there
	 * are no waiters, so we do not need a wakeup.
	 */
	if (atomic_cmpset_rel_int(&m->busy_lock, VPB_SINGLE_EXCLUSIVER,
	    VPB_UNBUSIED))
		return;

	lockacq = !mtx_owned(vm_page_lockptr(m));
	if (lockacq)
		vm_page_lock(m);
	vm_page_xunbusy_locked(m);
	if (lockacq)
		vm_page_unlock(m);
}

/*
 *	vm_page_xunbusy_hard:
 *
 *	Called after the first try the exclusive unbusy of a page failed.
 *	It is assumed that the waiters bit is on.
 */
void
vm_page_xunbusy_hard(vm_page_t m)
{

	vm_page_assert_xbusied(m);

	vm_page_lock(m);
	vm_page_xunbusy_locked(m);
	vm_page_unlock(m);
}

/*
 *	vm_page_flash:
 *
 *	Wakeup anyone waiting for the page.
 *	The ownership bits do not change.
 *
 *	The given page must be locked.
 */
void
vm_page_flash(vm_page_t m)
{
	u_int x;

	vm_page_lock_assert(m, MA_OWNED);

	for (;;) {
		x = m->busy_lock;
		if ((x & VPB_BIT_WAITERS) == 0)
			return;
		if (atomic_cmpset_int(&m->busy_lock, x,
		    x & (~VPB_BIT_WAITERS)))
			break;
	}
	wakeup(m);
}

/*
 * Avoid releasing and reacquiring the same page lock.
 */
void
vm_page_change_lock(vm_page_t m, struct mtx **mtx)
{
	struct mtx *mtx1;

	mtx1 = vm_page_lockptr(m);
	if (*mtx == mtx1)
		return;
	if (*mtx != NULL)
		mtx_unlock(*mtx);
	*mtx = mtx1;
	mtx_lock(mtx1);
}

/*
 * Keep page from being freed by the page daemon
 * much of the same effect as wiring, except much lower
 * overhead and should be used only for *very* temporary
 * holding ("wiring").
 */
void
vm_page_hold(vm_page_t mem)
{

	vm_page_lock_assert(mem, MA_OWNED);
        mem->hold_count++;
}

void
vm_page_unhold(vm_page_t mem)
{

	vm_page_lock_assert(mem, MA_OWNED);
	KASSERT(mem->hold_count >= 1, ("vm_page_unhold: hold count < 0!!!"));
	--mem->hold_count;
	if (mem->hold_count == 0 && (mem->flags & PG_UNHOLDFREE) != 0)
		vm_page_free_toq(mem);
}

/*
 *	vm_page_unhold_pages:
 *
 *	Unhold each of the pages that is referenced by the given array.
 */
void
vm_page_unhold_pages(vm_page_t *ma, int count)
{
	struct mtx *mtx;

	mtx = NULL;
	for (; count != 0; count--) {
		vm_page_change_lock(*ma, &mtx);
		vm_page_unhold(*ma);
		ma++;
	}
	if (mtx != NULL)
		mtx_unlock(mtx);
}

vm_page_t
PHYS_TO_VM_PAGE(vm_paddr_t pa)
{
	vm_page_t m;

#ifdef VM_PHYSSEG_SPARSE
	m = vm_phys_paddr_to_vm_page(pa);
	if (m == NULL)
		m = vm_phys_fictitious_to_vm_page(pa);
	return (m);
#elif defined(VM_PHYSSEG_DENSE)
	long pi;

	pi = atop(pa);
	if (pi >= first_page && (pi - first_page) < vm_page_array_size) {
		m = &vm_page_array[pi - first_page];
		return (m);
	}
	return (vm_phys_fictitious_to_vm_page(pa));
#else
#error "Either VM_PHYSSEG_DENSE or VM_PHYSSEG_SPARSE must be defined."
#endif
}

/*
 *	vm_page_getfake:
 *
 *	Create a fictitious page with the specified physical address and
 *	memory attribute.  The memory attribute is the only the machine-
 *	dependent aspect of a fictitious page that must be initialized.
 */
vm_page_t
vm_page_getfake(vm_paddr_t paddr, vm_memattr_t memattr)
{
	vm_page_t m;

	m = uma_zalloc(fakepg_zone, M_WAITOK | M_ZERO);
	vm_page_initfake(m, paddr, memattr);
	return (m);
}

void
vm_page_initfake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
{

	if ((m->flags & PG_FICTITIOUS) != 0) {
		/*
		 * The page's memattr might have changed since the
		 * previous initialization.  Update the pmap to the
		 * new memattr.
		 */
		goto memattr;
	}
	m->phys_addr = paddr;
	m->queue = PQ_NONE;
	/* Fictitious pages don't use "segind". */
	m->flags = PG_FICTITIOUS;
	/* Fictitious pages don't use "order" or "pool". */
	m->oflags = VPO_UNMANAGED;
	m->busy_lock = VPB_SINGLE_EXCLUSIVER;
	m->wire_count = 1;
	pmap_page_init(m);
memattr:
	pmap_page_set_memattr(m, memattr);
}

/*
 *	vm_page_putfake:
 *
 *	Release a fictitious page.
 */
void
vm_page_putfake(vm_page_t m)
{

	KASSERT((m->oflags & VPO_UNMANAGED) != 0, ("managed %p", m));
	KASSERT((m->flags & PG_FICTITIOUS) != 0,
	    ("vm_page_putfake: bad page %p", m));
	uma_zfree(fakepg_zone, m);
}

/*
 *	vm_page_updatefake:
 *
 *	Update the given fictitious page to the specified physical address and
 *	memory attribute.
 */
void
vm_page_updatefake(vm_page_t m, vm_paddr_t paddr, vm_memattr_t memattr)
{

	KASSERT((m->flags & PG_FICTITIOUS) != 0,
	    ("vm_page_updatefake: bad page %p", m));
	m->phys_addr = paddr;
	pmap_page_set_memattr(m, memattr);
}

/*
 *	vm_page_free:
 *
 *	Free a page.
 */
void
vm_page_free(vm_page_t m)
{

	m->flags &= ~PG_ZERO;
	vm_page_free_toq(m);
}

/*
 *	vm_page_free_zero:
 *
 *	Free a page to the zerod-pages queue
 */
void
vm_page_free_zero(vm_page_t m)
{

	m->flags |= PG_ZERO;
	vm_page_free_toq(m);
}

/*
 * Unbusy and handle the page queueing for a page from a getpages request that
 * was optionally read ahead or behind.
 */
void
vm_page_readahead_finish(vm_page_t m)
{

	/* We shouldn't put invalid pages on queues. */
	KASSERT(m->valid != 0, ("%s: %p is invalid", __func__, m));

	/*
	 * Since the page is not the actually needed one, whether it should
	 * be activated or deactivated is not obvious.  Empirical results
	 * have shown that deactivating the page is usually the best choice,
	 * unless the page is wanted by another thread.
	 */
	vm_page_lock(m);
	if ((m->busy_lock & VPB_BIT_WAITERS) != 0)
		vm_page_activate(m);
	else
		vm_page_deactivate(m);
	vm_page_unlock(m);
	vm_page_xunbusy(m);
}

/*
 *	vm_page_sleep_if_busy:
 *
 *	Sleep and release the page queues lock if the page is busied.
 *	Returns TRUE if the thread slept.
 *
 *	The given page must be unlocked and object containing it must
 *	be locked.
 */
int
vm_page_sleep_if_busy(vm_page_t m, const char *msg)
{
	vm_object_t obj;

	vm_page_lock_assert(m, MA_NOTOWNED);
	VM_OBJECT_ASSERT_WLOCKED(m->object);

	if (vm_page_busied(m)) {
		/*
		 * The page-specific object must be cached because page
		 * identity can change during the sleep, causing the
		 * re-lock of a different object.
		 * It is assumed that a reference to the object is already
		 * held by the callers.
		 */
		obj = m->object;
		vm_page_lock(m);
		VM_OBJECT_WUNLOCK(obj);
		vm_page_busy_sleep(m, msg, false);
		VM_OBJECT_WLOCK(obj);
		return (TRUE);
	}
	return (FALSE);
}

/*
 *	vm_page_dirty_KBI:		[ internal use only ]
 *
 *	Set all bits in the page's dirty field.
 *
 *	The object containing the specified page must be locked if the
 *	call is made from the machine-independent layer.
 *
 *	See vm_page_clear_dirty_mask().
 *
 *	This function should only be called by vm_page_dirty().
 */
void
vm_page_dirty_KBI(vm_page_t m)
{

	/* Refer to this operation by its public name. */
	KASSERT(m->valid == VM_PAGE_BITS_ALL,
	    ("vm_page_dirty: page is invalid!"));
	m->dirty = VM_PAGE_BITS_ALL;
}

/*
 *	vm_page_insert:		[ internal use only ]
 *
 *	Inserts the given mem entry into the object and object list.
 *
 *	The object must be locked.
 */
int
vm_page_insert(vm_page_t m, vm_object_t object, vm_pindex_t pindex)
{
	vm_page_t mpred;

	VM_OBJECT_ASSERT_WLOCKED(object);
	mpred = vm_radix_lookup_le(&object->rtree, pindex);
	return (vm_page_insert_after(m, object, pindex, mpred));
}

/*
 *	vm_page_insert_after:
 *
 *	Inserts the page "m" into the specified object at offset "pindex".
 *
 *	The page "mpred" must immediately precede the offset "pindex" within
 *	the specified object.
 *
 *	The object must be locked.
 */
static int
vm_page_insert_after(vm_page_t m, vm_object_t object, vm_pindex_t pindex,
    vm_page_t mpred)
{
	vm_page_t msucc;

	VM_OBJECT_ASSERT_WLOCKED(object);
	KASSERT(m->object == NULL,
	    ("vm_page_insert_after: page already inserted"));
	if (mpred != NULL) {
		KASSERT(mpred->object == object,
		    ("vm_page_insert_after: object doesn't contain mpred"));
		KASSERT(mpred->pindex < pindex,
		    ("vm_page_insert_after: mpred doesn't precede pindex"));
		msucc = TAILQ_NEXT(mpred, listq);
	} else
		msucc = TAILQ_FIRST(&object->memq);
	if (msucc != NULL)
		KASSERT(msucc->pindex > pindex,
		    ("vm_page_insert_after: msucc doesn't succeed pindex"));

	/*
	 * Record the object/offset pair in this page
	 */
	m->object = object;
	m->pindex = pindex;

	/*
	 * Now link into the object's ordered list of backed pages.
	 */
	if (vm_radix_insert(&object->rtree, m)) {
		m->object = NULL;
		m->pindex = 0;
		return (1);
	}
	vm_page_insert_radixdone(m, object, mpred);
	return (0);
}

/*
 *	vm_page_insert_radixdone:
 *
 *	Complete page "m" insertion into the specified object after the
 *	radix trie hooking.
 *
 *	The page "mpred" must precede the offset "m->pindex" within the
 *	specified object.
 *
 *	The object must be locked.
 */
static void
vm_page_insert_radixdone(vm_page_t m, vm_object_t object, vm_page_t mpred)
{

	VM_OBJECT_ASSERT_WLOCKED(object);
	KASSERT(object != NULL && m->object == object,
	    ("vm_page_insert_radixdone: page %p has inconsistent object", m));
	if (mpred != NULL) {
		KASSERT(mpred->object == object,
		    ("vm_page_insert_after: object doesn't contain mpred"));
		KASSERT(mpred->pindex < m->pindex,
		    ("vm_page_insert_after: mpred doesn't precede pindex"));
	}

	if (mpred != NULL)
		TAILQ_INSERT_AFTER(&object->memq, mpred, m, listq);
	else
		TAILQ_INSERT_HEAD(&object->memq, m, listq);

	/*
	 * Show that the object has one more resident page.
	 */
	object->resident_page_count++;

	/*
	 * Hold the vnode until the last page is released.
	 */
	if (object->resident_page_count == 1 && object->type == OBJT_VNODE)
		vhold(object->handle);

	/*
	 * Since we are inserting a new and possibly dirty page,
	 * update the object's OBJ_MIGHTBEDIRTY flag.
	 */
	if (pmap_page_is_write_mapped(m))
		vm_object_set_writeable_dirty(object);
}

/*
 *	vm_page_remove:
 *
 *	Removes the specified page from its containing object, but does not
 *	invalidate any backing storage.
 *
 *	The object must be locked.  The page must be locked if it is managed.
 */
void
vm_page_remove(vm_page_t m)
{
	vm_object_t object;
	vm_page_t mrem;

	if ((m->oflags & VPO_UNMANAGED) == 0)
		vm_page_assert_locked(m);
	if ((object = m->object) == NULL)
		return;
	VM_OBJECT_ASSERT_WLOCKED(object);
	if (vm_page_xbusied(m))
		vm_page_xunbusy_maybelocked(m);
	mrem = vm_radix_remove(&object->rtree, m->pindex);
	KASSERT(mrem == m, ("removed page %p, expected page %p", mrem, m));

	/*
	 * Now remove from the object's list of backed pages.
	 */
	TAILQ_REMOVE(&object->memq, m, listq);

	/*
	 * And show that the object has one fewer resident page.
	 */
	object->resident_page_count--;

	/*
	 * The vnode may now be recycled.
	 */
	if (object->resident_page_count == 0 && object->type == OBJT_VNODE)
		vdrop(object->handle);

	m->object = NULL;
}

/*
 *	vm_page_lookup:
 *
 *	Returns the page associated with the object/offset
 *	pair specified; if none is found, NULL is returned.
 *
 *	The object must be locked.
 */
vm_page_t
vm_page_lookup(vm_object_t object, vm_pindex_t pindex)
{

	VM_OBJECT_ASSERT_LOCKED(object);
	return (vm_radix_lookup(&object->rtree, pindex));
}

/*
 *	vm_page_find_least:
 *
 *	Returns the page associated with the object with least pindex
 *	greater than or equal to the parameter pindex, or NULL.
 *
 *	The object must be locked.
 */
vm_page_t
vm_page_find_least(vm_object_t object, vm_pindex_t pindex)
{
	vm_page_t m;

	VM_OBJECT_ASSERT_LOCKED(object);
	if ((m = TAILQ_FIRST(&object->memq)) != NULL && m->pindex < pindex)
		m = vm_radix_lookup_ge(&object->rtree, pindex);
	return (m);
}

/*
 * Returns the given page's successor (by pindex) within the object if it is
 * resident; if none is found, NULL is returned.
 *
 * The object must be locked.
 */
vm_page_t
vm_page_next(vm_page_t m)
{
	vm_page_t next;

	VM_OBJECT_ASSERT_LOCKED(m->object);
	if ((next = TAILQ_NEXT(m, listq)) != NULL) {
		MPASS(next->object == m->object);
		if (next->pindex != m->pindex + 1)
			next = NULL;
	}
	return (next);
}

/*
 * Returns the given page's predecessor (by pindex) within the object if it is
 * resident; if none is found, NULL is returned.
 *
 * The object must be locked.
 */
vm_page_t
vm_page_prev(vm_page_t m)
{
	vm_page_t prev;

	VM_OBJECT_ASSERT_LOCKED(m->object);
	if ((prev = TAILQ_PREV(m, pglist, listq)) != NULL) {
		MPASS(prev->object == m->object);
		if (prev->pindex != m->pindex - 1)
			prev = NULL;
	}
	return (prev);
}

/*
 * Uses the page mnew as a replacement for an existing page at index
 * pindex which must be already present in the object.
 *
 * The existing page must not be on a paging queue.
 */
vm_page_t
vm_page_replace(vm_page_t mnew, vm_object_t object, vm_pindex_t pindex)
{
	vm_page_t mold;

	VM_OBJECT_ASSERT_WLOCKED(object);
	KASSERT(mnew->object == NULL,
	    ("vm_page_replace: page already in object"));

	/*
	 * This function mostly follows vm_page_insert() and
	 * vm_page_remove() without the radix, object count and vnode
	 * dance.  Double check such functions for more comments.
	 */

	mnew->object = object;
	mnew->pindex = pindex;
	mold = vm_radix_replace(&object->rtree, mnew);
	KASSERT(mold->queue == PQ_NONE,
	    ("vm_page_replace: mold is on a paging queue"));

	/* Keep the resident page list in sorted order. */
	TAILQ_INSERT_AFTER(&object->memq, mold, mnew, listq);
	TAILQ_REMOVE(&object->memq, mold, listq);

	mold->object = NULL;
	vm_page_xunbusy_maybelocked(mold);

	/*
	 * The object's resident_page_count does not change because we have
	 * swapped one page for another, but OBJ_MIGHTBEDIRTY.
	 */
	if (pmap_page_is_write_mapped(mnew))
		vm_object_set_writeable_dirty(object);
	return (mold);
}

/*
 *	vm_page_rename:
 *
 *	Move the given memory entry from its
 *	current object to the specified target object/offset.
 *
 *	Note: swap associated with the page must be invalidated by the move.  We
 *	      have to do this for several reasons:  (1) we aren't freeing the
 *	      page, (2) we are dirtying the page, (3) the VM system is probably
 *	      moving the page from object A to B, and will then later move
 *	      the backing store from A to B and we can't have a conflict.
 *
 *	Note: we *always* dirty the page.  It is necessary both for the
 *	      fact that we moved it, and because we may be invalidating
 *	      swap.
 *
 *	The objects must be locked.
 */
int
vm_page_rename(vm_page_t m, vm_object_t new_object, vm_pindex_t new_pindex)
{
	vm_page_t mpred;
	vm_pindex_t opidx;

	VM_OBJECT_ASSERT_WLOCKED(new_object);

	mpred = vm_radix_lookup_le(&new_object->rtree, new_pindex);
	KASSERT(mpred == NULL || mpred->pindex != new_pindex,
	    ("vm_page_rename: pindex already renamed"));

	/*
	 * Create a custom version of vm_page_insert() which does not depend
	 * by m_prev and can cheat on the implementation aspects of the
	 * function.
	 */
	opidx = m->pindex;
	m->pindex = new_pindex;
	if (vm_radix_insert(&new_object->rtree, m)) {
		m->pindex = opidx;
		return (1);
	}

	/*
	 * The operation cannot fail anymore.  The removal must happen before
	 * the listq iterator is tainted.
	 */
	m->pindex = opidx;
	vm_page_lock(m);
	vm_page_remove(m);

	/* Return back to the new pindex to complete vm_page_insert(). */
	m->pindex = new_pindex;
	m->object = new_object;
	vm_page_unlock(m);
	vm_page_insert_radixdone(m, new_object, mpred);
	vm_page_dirty(m);
	return (0);
}

/*
 *	vm_page_alloc:
 *
 *	Allocate and return a page that is associated with the specified
 *	object and offset pair.  By default, this page is exclusive busied.
 *
 *	The caller must always specify an allocation class.
 *
 *	allocation classes:
 *	VM_ALLOC_NORMAL		normal process request
 *	VM_ALLOC_SYSTEM		system *really* needs a page
 *	VM_ALLOC_INTERRUPT	interrupt time request
 *
 *	optional allocation flags:
 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
 *				intends to allocate
 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
 *	VM_ALLOC_NOOBJ		page is not associated with an object and
 *				should not be exclusive busy
 *	VM_ALLOC_SBUSY		shared busy the allocated page
 *	VM_ALLOC_WIRED		wire the allocated page
 *	VM_ALLOC_ZERO		prefer a zeroed page
 *
 *	This routine may not sleep.
 */
vm_page_t
vm_page_alloc(vm_object_t object, vm_pindex_t pindex, int req)
{

	return (vm_page_alloc_after(object, pindex, req, object != NULL ?
	    vm_radix_lookup_le(&object->rtree, pindex) : NULL));
}

/*
 * Allocate a page in the specified object with the given page index.  To
 * optimize insertion of the page into the object, the caller must also specifiy
 * the resident page in the object with largest index smaller than the given
 * page index, or NULL if no such page exists.
 */
vm_page_t
vm_page_alloc_after(vm_object_t object, vm_pindex_t pindex, int req,
    vm_page_t mpred)
{
	vm_page_t m;
	int flags, req_class;

	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
	    ("inconsistent object(%p)/req(%x)", object, req));
	KASSERT(mpred == NULL || mpred->pindex < pindex,
	    ("mpred %p doesn't precede pindex 0x%jx", mpred,
	    (uintmax_t)pindex));
	if (object != NULL)
		VM_OBJECT_ASSERT_WLOCKED(object);

	if (__predict_false((req & VM_ALLOC_IFCACHED) != 0))
		return (NULL);

	req_class = req & VM_ALLOC_CLASS_MASK;

	/*
	 * The page daemon is allowed to dig deeper into the free page list.
	 */
	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
		req_class = VM_ALLOC_SYSTEM;

	/*
	 * Allocate a page if the number of free pages exceeds the minimum
	 * for the request class.
	 */
	mtx_lock(&vm_page_queue_free_mtx);
	if (vm_cnt.v_free_count > vm_cnt.v_free_reserved ||
	    (req_class == VM_ALLOC_SYSTEM &&
	    vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) ||
	    (req_class == VM_ALLOC_INTERRUPT &&
	    vm_cnt.v_free_count > 0)) {
		/*
		 * Can we allocate the page from a reservation?
		 */
#if VM_NRESERVLEVEL > 0
		if (object == NULL || (object->flags & (OBJ_COLORED |
		    OBJ_FICTITIOUS)) != OBJ_COLORED || (m =
		    vm_reserv_alloc_page(object, pindex, mpred)) == NULL)
#endif
		{
			/*
			 * If not, allocate it from the free page queues.
			 */
			m = vm_phys_alloc_pages(object != NULL ?
			    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT, 0);
#if VM_NRESERVLEVEL > 0
			if (m == NULL && vm_reserv_reclaim_inactive()) {
				m = vm_phys_alloc_pages(object != NULL ?
				    VM_FREEPOOL_DEFAULT : VM_FREEPOOL_DIRECT,
				    0);
			}
#endif
		}
	} else {
		/*
		 * Not allocatable, give up.
		 */
		mtx_unlock(&vm_page_queue_free_mtx);
		atomic_add_int(&vm_pageout_deficit,
		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
		pagedaemon_wakeup();
		return (NULL);
	}

	/*
	 *  At this point we had better have found a good page.
	 */
	KASSERT(m != NULL, ("missing page"));
	vm_phys_freecnt_adj(m, -1);
	if ((m->flags & PG_ZERO) != 0)
		vm_page_zero_count--;
	mtx_unlock(&vm_page_queue_free_mtx);
	vm_page_alloc_check(m);

	/*
	 * Initialize the page.  Only the PG_ZERO flag is inherited.
	 */
	flags = 0;
	if ((req & VM_ALLOC_ZERO) != 0)
		flags = PG_ZERO;
	flags &= m->flags;
	if ((req & VM_ALLOC_NODUMP) != 0)
		flags |= PG_NODUMP;
	m->flags = flags;
	m->aflags = 0;
	m->oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
	    VPO_UNMANAGED : 0;
	m->busy_lock = VPB_UNBUSIED;
	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
		m->busy_lock = VPB_SINGLE_EXCLUSIVER;
	if ((req & VM_ALLOC_SBUSY) != 0)
		m->busy_lock = VPB_SHARERS_WORD(1);
	if (req & VM_ALLOC_WIRED) {
		/*
		 * The page lock is not required for wiring a page until that
		 * page is inserted into the object.
		 */
		atomic_add_int(&vm_cnt.v_wire_count, 1);
		m->wire_count = 1;
	}
	m->act_count = 0;

	if (object != NULL) {
		if (vm_page_insert_after(m, object, pindex, mpred)) {
			pagedaemon_wakeup();
			if (req & VM_ALLOC_WIRED) {
				atomic_subtract_int(&vm_cnt.v_wire_count, 1);
				m->wire_count = 0;
			}
			KASSERT(m->object == NULL, ("page %p has object", m));
			m->oflags = VPO_UNMANAGED;
			m->busy_lock = VPB_UNBUSIED;
			/* Don't change PG_ZERO. */
			vm_page_free_toq(m);
			return (NULL);
		}

		/* Ignore device objects; the pager sets "memattr" for them. */
		if (object->memattr != VM_MEMATTR_DEFAULT &&
		    (object->flags & OBJ_FICTITIOUS) == 0)
			pmap_page_set_memattr(m, object->memattr);
	} else
		m->pindex = pindex;

	/*
	 * Don't wakeup too often - wakeup the pageout daemon when
	 * we would be nearly out of memory.
	 */
	if (vm_paging_needed())
		pagedaemon_wakeup();

	return (m);
}

/*
 *	vm_page_alloc_contig:
 *
 *	Allocate a contiguous set of physical pages of the given size "npages"
 *	from the free lists.  All of the physical pages must be at or above
 *	the given physical address "low" and below the given physical address
 *	"high".  The given value "alignment" determines the alignment of the
 *	first physical page in the set.  If the given value "boundary" is
 *	non-zero, then the set of physical pages cannot cross any physical
 *	address boundary that is a multiple of that value.  Both "alignment"
 *	and "boundary" must be a power of two.
 *
 *	If the specified memory attribute, "memattr", is VM_MEMATTR_DEFAULT,
 *	then the memory attribute setting for the physical pages is configured
 *	to the object's memory attribute setting.  Otherwise, the memory
 *	attribute setting for the physical pages is configured to "memattr",
 *	overriding the object's memory attribute setting.  However, if the
 *	object's memory attribute setting is not VM_MEMATTR_DEFAULT, then the
 *	memory attribute setting for the physical pages cannot be configured
 *	to VM_MEMATTR_DEFAULT.
 *
 *	The specified object may not contain fictitious pages.
 *
 *	The caller must always specify an allocation class.
 *
 *	allocation classes:
 *	VM_ALLOC_NORMAL		normal process request
 *	VM_ALLOC_SYSTEM		system *really* needs a page
 *	VM_ALLOC_INTERRUPT	interrupt time request
 *
 *	optional allocation flags:
 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
 *	VM_ALLOC_NODUMP		do not include the page in a kernel core dump
 *	VM_ALLOC_NOOBJ		page is not associated with an object and
 *				should not be exclusive busy
 *	VM_ALLOC_SBUSY		shared busy the allocated page
 *	VM_ALLOC_WIRED		wire the allocated page
 *	VM_ALLOC_ZERO		prefer a zeroed page
 *
 *	This routine may not sleep.
 */
vm_page_t
vm_page_alloc_contig(vm_object_t object, vm_pindex_t pindex, int req,
    u_long npages, vm_paddr_t low, vm_paddr_t high, u_long alignment,
    vm_paddr_t boundary, vm_memattr_t memattr)
{
	vm_page_t m, m_ret, mpred;
	u_int busy_lock, flags, oflags;
	int req_class;

	mpred = NULL;	/* XXX: pacify gcc */
	KASSERT((object != NULL) == ((req & VM_ALLOC_NOOBJ) == 0) &&
	    (object != NULL || (req & VM_ALLOC_SBUSY) == 0) &&
	    ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) !=
	    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)),
	    ("vm_page_alloc_contig: inconsistent object(%p)/req(%x)", object,
	    req));
	if (object != NULL) {
		VM_OBJECT_ASSERT_WLOCKED(object);
		KASSERT((object->flags & OBJ_FICTITIOUS) == 0,
		    ("vm_page_alloc_contig: object %p has fictitious pages",
		    object));
	}
	KASSERT(npages > 0, ("vm_page_alloc_contig: npages is zero"));
	req_class = req & VM_ALLOC_CLASS_MASK;

	/*
	 * The page daemon is allowed to dig deeper into the free page list.
	 */
	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
		req_class = VM_ALLOC_SYSTEM;

	if (object != NULL) {
		mpred = vm_radix_lookup_le(&object->rtree, pindex);
		KASSERT(mpred == NULL || mpred->pindex != pindex,
		    ("vm_page_alloc_contig: pindex already allocated"));
	}

	/*
	 * Can we allocate the pages without the number of free pages falling
	 * below the lower bound for the allocation class?
	 */
	mtx_lock(&vm_page_queue_free_mtx);
	if (vm_cnt.v_free_count >= npages + vm_cnt.v_free_reserved ||
	    (req_class == VM_ALLOC_SYSTEM &&
	    vm_cnt.v_free_count >= npages + vm_cnt.v_interrupt_free_min) ||
	    (req_class == VM_ALLOC_INTERRUPT &&
	    vm_cnt.v_free_count >= npages)) {
		/*
		 * Can we allocate the pages from a reservation?
		 */
#if VM_NRESERVLEVEL > 0
retry:
		if (object == NULL || (object->flags & OBJ_COLORED) == 0 ||
		    (m_ret = vm_reserv_alloc_contig(object, pindex, npages,
		    low, high, alignment, boundary, mpred)) == NULL)
#endif
			/*
			 * If not, allocate them from the free page queues.
			 */
			m_ret = vm_phys_alloc_contig(npages, low, high,
			    alignment, boundary);
	} else {
		mtx_unlock(&vm_page_queue_free_mtx);
		atomic_add_int(&vm_pageout_deficit, npages);
		pagedaemon_wakeup();
		return (NULL);
	}
	if (m_ret != NULL) {
		vm_phys_freecnt_adj(m_ret, -npages);
		for (m = m_ret; m < &m_ret[npages]; m++)
			if ((m->flags & PG_ZERO) != 0)
				vm_page_zero_count--;
	} else {
#if VM_NRESERVLEVEL > 0
		if (vm_reserv_reclaim_contig(npages, low, high, alignment,
		    boundary))
			goto retry;
#endif
	}
	mtx_unlock(&vm_page_queue_free_mtx);
	if (m_ret == NULL)
		return (NULL);
	for (m = m_ret; m < &m_ret[npages]; m++)
		vm_page_alloc_check(m);

	/*
	 * Initialize the pages.  Only the PG_ZERO flag is inherited.
	 */
	flags = 0;
	if ((req & VM_ALLOC_ZERO) != 0)
		flags = PG_ZERO;
	if ((req & VM_ALLOC_NODUMP) != 0)
		flags |= PG_NODUMP;
	oflags = object == NULL || (object->flags & OBJ_UNMANAGED) != 0 ?
	    VPO_UNMANAGED : 0;
	busy_lock = VPB_UNBUSIED;
	if ((req & (VM_ALLOC_NOBUSY | VM_ALLOC_NOOBJ | VM_ALLOC_SBUSY)) == 0)
		busy_lock = VPB_SINGLE_EXCLUSIVER;
	if ((req & VM_ALLOC_SBUSY) != 0)
		busy_lock = VPB_SHARERS_WORD(1);
	if ((req & VM_ALLOC_WIRED) != 0)
		atomic_add_int(&vm_cnt.v_wire_count, npages);
	if (object != NULL) {
		if (object->memattr != VM_MEMATTR_DEFAULT &&
		    memattr == VM_MEMATTR_DEFAULT)
			memattr = object->memattr;
	}
	for (m = m_ret; m < &m_ret[npages]; m++) {
		m->aflags = 0;
		m->flags = (m->flags | PG_NODUMP) & flags;
		m->busy_lock = busy_lock;
		if ((req & VM_ALLOC_WIRED) != 0)
			m->wire_count = 1;
		m->act_count = 0;
		m->oflags = oflags;
		if (object != NULL) {
			if (vm_page_insert_after(m, object, pindex, mpred)) {
				pagedaemon_wakeup();
				if ((req & VM_ALLOC_WIRED) != 0)
					atomic_subtract_int(
					    &vm_cnt.v_wire_count, npages);
				KASSERT(m->object == NULL,
				    ("page %p has object", m));
				mpred = m;
				for (m = m_ret; m < &m_ret[npages]; m++) {
					if (m <= mpred &&
					    (req & VM_ALLOC_WIRED) != 0)
						m->wire_count = 0;
					m->oflags = VPO_UNMANAGED;
					m->busy_lock = VPB_UNBUSIED;
					/* Don't change PG_ZERO. */
					vm_page_free_toq(m);
				}
				return (NULL);
			}
			mpred = m;
		} else
			m->pindex = pindex;
		if (memattr != VM_MEMATTR_DEFAULT)
			pmap_page_set_memattr(m, memattr);
		pindex++;
	}
	if (vm_paging_needed())
		pagedaemon_wakeup();
	return (m_ret);
}

/*
 * Check a page that has been freshly dequeued from a freelist.
 */
static void
vm_page_alloc_check(vm_page_t m)
{

	KASSERT(m->object == NULL, ("page %p has object", m));
	KASSERT(m->queue == PQ_NONE,
	    ("page %p has unexpected queue %d", m, m->queue));
	KASSERT(m->wire_count == 0, ("page %p is wired", m));
	KASSERT(m->hold_count == 0, ("page %p is held", m));
	KASSERT(!vm_page_busied(m), ("page %p is busy", m));
	KASSERT(m->dirty == 0, ("page %p is dirty", m));
	KASSERT(pmap_page_get_memattr(m) == VM_MEMATTR_DEFAULT,
	    ("page %p has unexpected memattr %d",
	    m, pmap_page_get_memattr(m)));
	KASSERT(m->valid == 0, ("free page %p is valid", m));
}

/*
 * 	vm_page_alloc_freelist:
 *
 *	Allocate a physical page from the specified free page list.
 *
 *	The caller must always specify an allocation class.
 *
 *	allocation classes:
 *	VM_ALLOC_NORMAL		normal process request
 *	VM_ALLOC_SYSTEM		system *really* needs a page
 *	VM_ALLOC_INTERRUPT	interrupt time request
 *
 *	optional allocation flags:
 *	VM_ALLOC_COUNT(number)	the number of additional pages that the caller
 *				intends to allocate
 *	VM_ALLOC_WIRED		wire the allocated page
 *	VM_ALLOC_ZERO		prefer a zeroed page
 *
 *	This routine may not sleep.
 */
vm_page_t
vm_page_alloc_freelist(int flind, int req)
{
	vm_page_t m;
	u_int flags;
	int req_class;

	req_class = req & VM_ALLOC_CLASS_MASK;

	/*
	 * The page daemon is allowed to dig deeper into the free page list.
	 */
	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
		req_class = VM_ALLOC_SYSTEM;

	/*
	 * Do not allocate reserved pages unless the req has asked for it.
	 */
	mtx_lock(&vm_page_queue_free_mtx);
	if (vm_cnt.v_free_count > vm_cnt.v_free_reserved ||
	    (req_class == VM_ALLOC_SYSTEM &&
	    vm_cnt.v_free_count > vm_cnt.v_interrupt_free_min) ||
	    (req_class == VM_ALLOC_INTERRUPT &&
	    vm_cnt.v_free_count > 0))
		m = vm_phys_alloc_freelist_pages(flind, VM_FREEPOOL_DIRECT, 0);
	else {
		mtx_unlock(&vm_page_queue_free_mtx);
		atomic_add_int(&vm_pageout_deficit,
		    max((u_int)req >> VM_ALLOC_COUNT_SHIFT, 1));
		pagedaemon_wakeup();
		return (NULL);
	}
	if (m == NULL) {
		mtx_unlock(&vm_page_queue_free_mtx);
		return (NULL);
	}
	vm_phys_freecnt_adj(m, -1);
	if ((m->flags & PG_ZERO) != 0)
		vm_page_zero_count--;
	mtx_unlock(&vm_page_queue_free_mtx);
	vm_page_alloc_check(m);

	/*
	 * Initialize the page.  Only the PG_ZERO flag is inherited.
	 */
	m->aflags = 0;
	flags = 0;
	if ((req & VM_ALLOC_ZERO) != 0)
		flags = PG_ZERO;
	m->flags &= flags;
	if ((req & VM_ALLOC_WIRED) != 0) {
		/*
		 * The page lock is not required for wiring a page that does
		 * not belong to an object.
		 */
		atomic_add_int(&vm_cnt.v_wire_count, 1);
		m->wire_count = 1;
	}
	/* Unmanaged pages don't use "act_count". */
	m->oflags = VPO_UNMANAGED;
	if (vm_paging_needed())
		pagedaemon_wakeup();
	return (m);
}

#define	VPSC_ANY	0	/* No restrictions. */
#define	VPSC_NORESERV	1	/* Skip reservations; implies VPSC_NOSUPER. */
#define	VPSC_NOSUPER	2	/* Skip superpages. */

/*
 *	vm_page_scan_contig:
 *
 *	Scan vm_page_array[] between the specified entries "m_start" and
 *	"m_end" for a run of contiguous physical pages that satisfy the
 *	specified conditions, and return the lowest page in the run.  The
 *	specified "alignment" determines the alignment of the lowest physical
 *	page in the run.  If the specified "boundary" is non-zero, then the
 *	run of physical pages cannot span a physical address that is a
 *	multiple of "boundary".
 *
 *	"m_end" is never dereferenced, so it need not point to a vm_page
 *	structure within vm_page_array[].
 *
 *	"npages" must be greater than zero.  "m_start" and "m_end" must not
 *	span a hole (or discontiguity) in the physical address space.  Both
 *	"alignment" and "boundary" must be a power of two.
 */
vm_page_t
vm_page_scan_contig(u_long npages, vm_page_t m_start, vm_page_t m_end,
    u_long alignment, vm_paddr_t boundary, int options)
{
	struct mtx *m_mtx;
	vm_object_t object;
	vm_paddr_t pa;
	vm_page_t m, m_run;
#if VM_NRESERVLEVEL > 0
	int level;
#endif
	int m_inc, order, run_ext, run_len;

	KASSERT(npages > 0, ("npages is 0"));
	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
	m_run = NULL;
	run_len = 0;
	m_mtx = NULL;
	for (m = m_start; m < m_end && run_len < npages; m += m_inc) {
		KASSERT((m->flags & PG_MARKER) == 0,
		    ("page %p is PG_MARKER", m));
		KASSERT((m->flags & PG_FICTITIOUS) == 0 || m->wire_count == 1,
		    ("fictitious page %p has invalid wire count", m));

		/*
		 * If the current page would be the start of a run, check its
		 * physical address against the end, alignment, and boundary
		 * conditions.  If it doesn't satisfy these conditions, either
		 * terminate the scan or advance to the next page that
		 * satisfies the failed condition.
		 */
		if (run_len == 0) {
			KASSERT(m_run == NULL, ("m_run != NULL"));
			if (m + npages > m_end)
				break;
			pa = VM_PAGE_TO_PHYS(m);
			if ((pa & (alignment - 1)) != 0) {
				m_inc = atop(roundup2(pa, alignment) - pa);
				continue;
			}
			if (rounddown2(pa ^ (pa + ptoa(npages) - 1),
			    boundary) != 0) {
				m_inc = atop(roundup2(pa, boundary) - pa);
				continue;
			}
		} else
			KASSERT(m_run != NULL, ("m_run == NULL"));

		vm_page_change_lock(m, &m_mtx);
		m_inc = 1;
retry:
		if (m->wire_count != 0 || m->hold_count != 0)
			run_ext = 0;
#if VM_NRESERVLEVEL > 0
		else if ((level = vm_reserv_level(m)) >= 0 &&
		    (options & VPSC_NORESERV) != 0) {
			run_ext = 0;
			/* Advance to the end of the reservation. */
			pa = VM_PAGE_TO_PHYS(m);
			m_inc = atop(roundup2(pa + 1, vm_reserv_size(level)) -
			    pa);
		}
#endif
		else if ((object = m->object) != NULL) {
			/*
			 * The page is considered eligible for relocation if
			 * and only if it could be laundered or reclaimed by
			 * the page daemon.
			 */
			if (!VM_OBJECT_TRYRLOCK(object)) {
				mtx_unlock(m_mtx);
				VM_OBJECT_RLOCK(object);
				mtx_lock(m_mtx);
				if (m->object != object) {
					/*
					 * The page may have been freed.
					 */
					VM_OBJECT_RUNLOCK(object);
					goto retry;
				} else if (m->wire_count != 0 ||
				    m->hold_count != 0) {
					run_ext = 0;
					goto unlock;
				}
			}
			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
			    ("page %p is PG_UNHOLDFREE", m));
			/* Don't care: PG_NODUMP, PG_ZERO. */
			if (object->type != OBJT_DEFAULT &&
			    object->type != OBJT_SWAP &&
			    object->type != OBJT_VNODE) {
				run_ext = 0;
#if VM_NRESERVLEVEL > 0
			} else if ((options & VPSC_NOSUPER) != 0 &&
			    (level = vm_reserv_level_iffullpop(m)) >= 0) {
				run_ext = 0;
				/* Advance to the end of the superpage. */
				pa = VM_PAGE_TO_PHYS(m);
				m_inc = atop(roundup2(pa + 1,
				    vm_reserv_size(level)) - pa);
#endif
			} else if (object->memattr == VM_MEMATTR_DEFAULT &&
			    m->queue != PQ_NONE && !vm_page_busied(m)) {
				/*
				 * The page is allocated but eligible for
				 * relocation.  Extend the current run by one
				 * page.
				 */
				KASSERT(pmap_page_get_memattr(m) ==
				    VM_MEMATTR_DEFAULT,
				    ("page %p has an unexpected memattr", m));
				KASSERT((m->oflags & (VPO_SWAPINPROG |
				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
				    ("page %p has unexpected oflags", m));
				/* Don't care: VPO_NOSYNC. */
				run_ext = 1;
			} else
				run_ext = 0;
unlock:
			VM_OBJECT_RUNLOCK(object);
#if VM_NRESERVLEVEL > 0
		} else if (level >= 0) {
			/*
			 * The page is reserved but not yet allocated.  In
			 * other words, it is still free.  Extend the current
			 * run by one page.
			 */
			run_ext = 1;
#endif
		} else if ((order = m->order) < VM_NFREEORDER) {
			/*
			 * The page is enqueued in the physical memory
			 * allocator's free page queues.  Moreover, it is the
			 * first page in a power-of-two-sized run of
			 * contiguous free pages.  Add these pages to the end
			 * of the current run, and jump ahead.
			 */
			run_ext = 1 << order;
			m_inc = 1 << order;
		} else {
			/*
			 * Skip the page for one of the following reasons: (1)
			 * It is enqueued in the physical memory allocator's
			 * free page queues.  However, it is not the first
			 * page in a run of contiguous free pages.  (This case
			 * rarely occurs because the scan is performed in
			 * ascending order.) (2) It is not reserved, and it is
			 * transitioning from free to allocated.  (Conversely,
			 * the transition from allocated to free for managed
			 * pages is blocked by the page lock.) (3) It is
			 * allocated but not contained by an object and not
			 * wired, e.g., allocated by Xen's balloon driver.
			 */
			run_ext = 0;
		}

		/*
		 * Extend or reset the current run of pages.
		 */
		if (run_ext > 0) {
			if (run_len == 0)
				m_run = m;
			run_len += run_ext;
		} else {
			if (run_len > 0) {
				m_run = NULL;
				run_len = 0;
			}
		}
	}
	if (m_mtx != NULL)
		mtx_unlock(m_mtx);
	if (run_len >= npages)
		return (m_run);
	return (NULL);
}

/*
 *	vm_page_reclaim_run:
 *
 *	Try to relocate each of the allocated virtual pages within the
 *	specified run of physical pages to a new physical address.  Free the
 *	physical pages underlying the relocated virtual pages.  A virtual page
 *	is relocatable if and only if it could be laundered or reclaimed by
 *	the page daemon.  Whenever possible, a virtual page is relocated to a
 *	physical address above "high".
 *
 *	Returns 0 if every physical page within the run was already free or
 *	just freed by a successful relocation.  Otherwise, returns a non-zero
 *	value indicating why the last attempt to relocate a virtual page was
 *	unsuccessful.
 *
 *	"req_class" must be an allocation class.
 */
static int
vm_page_reclaim_run(int req_class, u_long npages, vm_page_t m_run,
    vm_paddr_t high)
{
	struct mtx *m_mtx;
	struct spglist free;
	vm_object_t object;
	vm_paddr_t pa;
	vm_page_t m, m_end, m_new;
	int error, order, req;

	KASSERT((req_class & VM_ALLOC_CLASS_MASK) == req_class,
	    ("req_class is not an allocation class"));
	SLIST_INIT(&free);
	error = 0;
	m = m_run;
	m_end = m_run + npages;
	m_mtx = NULL;
	for (; error == 0 && m < m_end; m++) {
		KASSERT((m->flags & (PG_FICTITIOUS | PG_MARKER)) == 0,
		    ("page %p is PG_FICTITIOUS or PG_MARKER", m));

		/*
		 * Avoid releasing and reacquiring the same page lock.
		 */
		vm_page_change_lock(m, &m_mtx);
retry:
		if (m->wire_count != 0 || m->hold_count != 0)
			error = EBUSY;
		else if ((object = m->object) != NULL) {
			/*
			 * The page is relocated if and only if it could be
			 * laundered or reclaimed by the page daemon.
			 */
			if (!VM_OBJECT_TRYWLOCK(object)) {
				mtx_unlock(m_mtx);
				VM_OBJECT_WLOCK(object);
				mtx_lock(m_mtx);
				if (m->object != object) {
					/*
					 * The page may have been freed.
					 */
					VM_OBJECT_WUNLOCK(object);
					goto retry;
				} else if (m->wire_count != 0 ||
				    m->hold_count != 0) {
					error = EBUSY;
					goto unlock;
				}
			}
			KASSERT((m->flags & PG_UNHOLDFREE) == 0,
			    ("page %p is PG_UNHOLDFREE", m));
			/* Don't care: PG_NODUMP, PG_ZERO. */
			if (object->type != OBJT_DEFAULT &&
			    object->type != OBJT_SWAP &&
			    object->type != OBJT_VNODE)
				error = EINVAL;
			else if (object->memattr != VM_MEMATTR_DEFAULT)
				error = EINVAL;
			else if (m->queue != PQ_NONE && !vm_page_busied(m)) {
				KASSERT(pmap_page_get_memattr(m) ==
				    VM_MEMATTR_DEFAULT,
				    ("page %p has an unexpected memattr", m));
				KASSERT((m->oflags & (VPO_SWAPINPROG |
				    VPO_SWAPSLEEP | VPO_UNMANAGED)) == 0,
				    ("page %p has unexpected oflags", m));
				/* Don't care: VPO_NOSYNC. */
				if (m->valid != 0) {
					/*
					 * First, try to allocate a new page
					 * that is above "high".  Failing
					 * that, try to allocate a new page
					 * that is below "m_run".  Allocate
					 * the new page between the end of
					 * "m_run" and "high" only as a last
					 * resort.
					 */
					req = req_class | VM_ALLOC_NOOBJ;
					if ((m->flags & PG_NODUMP) != 0)
						req |= VM_ALLOC_NODUMP;
					if (trunc_page(high) !=
					    ~(vm_paddr_t)PAGE_MASK) {
						m_new = vm_page_alloc_contig(
						    NULL, 0, req, 1,
						    round_page(high),
						    ~(vm_paddr_t)0,
						    PAGE_SIZE, 0,
						    VM_MEMATTR_DEFAULT);
					} else
						m_new = NULL;
					if (m_new == NULL) {
						pa = VM_PAGE_TO_PHYS(m_run);
						m_new = vm_page_alloc_contig(
						    NULL, 0, req, 1,
						    0, pa - 1, PAGE_SIZE, 0,
						    VM_MEMATTR_DEFAULT);
					}
					if (m_new == NULL) {
						pa += ptoa(npages);
						m_new = vm_page_alloc_contig(
						    NULL, 0, req, 1,
						    pa, high, PAGE_SIZE, 0,
						    VM_MEMATTR_DEFAULT);
					}
					if (m_new == NULL) {
						error = ENOMEM;
						goto unlock;
					}
					KASSERT(m_new->wire_count == 0,
					    ("page %p is wired", m));

					/*
					 * Replace "m" with the new page.  For
					 * vm_page_replace(), "m" must be busy
					 * and dequeued.  Finally, change "m"
					 * as if vm_page_free() was called.
					 */
					if (object->ref_count != 0)
						pmap_remove_all(m);
					m_new->aflags = m->aflags;
					KASSERT(m_new->oflags == VPO_UNMANAGED,
					    ("page %p is managed", m));
					m_new->oflags = m->oflags & VPO_NOSYNC;
					pmap_copy_page(m, m_new);
					m_new->valid = m->valid;
					m_new->dirty = m->dirty;
					m->flags &= ~PG_ZERO;
					vm_page_xbusy(m);
					vm_page_remque(m);
					vm_page_replace_checked(m_new, object,
					    m->pindex, m);
					m->valid = 0;
					vm_page_undirty(m);

					/*
					 * The new page must be deactivated
					 * before the object is unlocked.
					 */
					vm_page_change_lock(m_new, &m_mtx);
					vm_page_deactivate(m_new);
				} else {
					m->flags &= ~PG_ZERO;
					vm_page_remque(m);
					vm_page_remove(m);
					KASSERT(m->dirty == 0,
					    ("page %p is dirty", m));
				}
				SLIST_INSERT_HEAD(&free, m, plinks.s.ss);
			} else
				error = EBUSY;
unlock:
			VM_OBJECT_WUNLOCK(object);
		} else {
			mtx_lock(&vm_page_queue_free_mtx);
			order = m->order;
			if (order < VM_NFREEORDER) {
				/*
				 * The page is enqueued in the physical memory
				 * allocator's free page queues.  Moreover, it
				 * is the first page in a power-of-two-sized
				 * run of contiguous free pages.  Jump ahead
				 * to the last page within that run, and
				 * continue from there.
				 */
				m += (1 << order) - 1;
			}
#if VM_NRESERVLEVEL > 0
			else if (vm_reserv_is_page_free(m))
				order = 0;
#endif
			mtx_unlock(&vm_page_queue_free_mtx);
			if (order == VM_NFREEORDER)
				error = EINVAL;
		}
	}
	if (m_mtx != NULL)
		mtx_unlock(m_mtx);
	if ((m = SLIST_FIRST(&free)) != NULL) {
		mtx_lock(&vm_page_queue_free_mtx);
		do {
			SLIST_REMOVE_HEAD(&free, plinks.s.ss);
			vm_page_free_phys(m);
		} while ((m = SLIST_FIRST(&free)) != NULL);
		vm_page_zero_idle_wakeup();
		vm_page_free_wakeup();
		mtx_unlock(&vm_page_queue_free_mtx);
	}
	return (error);
}

#define	NRUNS	16

CTASSERT(powerof2(NRUNS));

#define	RUN_INDEX(count)	((count) & (NRUNS - 1))

#define	MIN_RECLAIM	8

/*
 *	vm_page_reclaim_contig:
 *
 *	Reclaim allocated, contiguous physical memory satisfying the specified
 *	conditions by relocating the virtual pages using that physical memory.
 *	Returns true if reclamation is successful and false otherwise.  Since
 *	relocation requires the allocation of physical pages, reclamation may
 *	fail due to a shortage of free pages.  When reclamation fails, callers
 *	are expected to perform VM_WAIT before retrying a failed allocation
 *	operation, e.g., vm_page_alloc_contig().
 *
 *	The caller must always specify an allocation class through "req".
 *
 *	allocation classes:
 *	VM_ALLOC_NORMAL		normal process request
 *	VM_ALLOC_SYSTEM		system *really* needs a page
 *	VM_ALLOC_INTERRUPT	interrupt time request
 *
 *	The optional allocation flags are ignored.
 *
 *	"npages" must be greater than zero.  Both "alignment" and "boundary"
 *	must be a power of two.
 */
bool
vm_page_reclaim_contig(int req, u_long npages, vm_paddr_t low, vm_paddr_t high,
    u_long alignment, vm_paddr_t boundary)
{
	vm_paddr_t curr_low;
	vm_page_t m_run, m_runs[NRUNS];
	u_long count, reclaimed;
	int error, i, options, req_class;

	KASSERT(npages > 0, ("npages is 0"));
	KASSERT(powerof2(alignment), ("alignment is not a power of 2"));
	KASSERT(powerof2(boundary), ("boundary is not a power of 2"));
	req_class = req & VM_ALLOC_CLASS_MASK;

	/*
	 * The page daemon is allowed to dig deeper into the free page list.
	 */
	if (curproc == pageproc && req_class != VM_ALLOC_INTERRUPT)
		req_class = VM_ALLOC_SYSTEM;

	/*
	 * Return if the number of free pages cannot satisfy the requested
	 * allocation.
	 */
	count = vm_cnt.v_free_count;
	if (count < npages + vm_cnt.v_free_reserved || (count < npages +
	    vm_cnt.v_interrupt_free_min && req_class == VM_ALLOC_SYSTEM) ||
	    (count < npages && req_class == VM_ALLOC_INTERRUPT))
		return (false);

	/*
	 * Scan up to three times, relaxing the restrictions ("options") on
	 * the reclamation of reservations and superpages each time.
	 */
	for (options = VPSC_NORESERV;;) {
		/*
		 * Find the highest runs that satisfy the given constraints
		 * and restrictions, and record them in "m_runs".
		 */
		curr_low = low;
		count = 0;
		for (;;) {
			m_run = vm_phys_scan_contig(npages, curr_low, high,
			    alignment, boundary, options);
			if (m_run == NULL)
				break;
			curr_low = VM_PAGE_TO_PHYS(m_run) + ptoa(npages);
			m_runs[RUN_INDEX(count)] = m_run;
			count++;
		}

		/*
		 * Reclaim the highest runs in LIFO (descending) order until
		 * the number of reclaimed pages, "reclaimed", is at least
		 * MIN_RECLAIM.  Reset "reclaimed" each time because each
		 * reclamation is idempotent, and runs will (likely) recur
		 * from one scan to the next as restrictions are relaxed.
		 */
		reclaimed = 0;
		for (i = 0; count > 0 && i < NRUNS; i++) {
			count--;
			m_run = m_runs[RUN_INDEX(count)];
			error = vm_page_reclaim_run(req_class, npages, m_run,
			    high);
			if (error == 0) {
				reclaimed += npages;
				if (reclaimed >= MIN_RECLAIM)
					return (true);
			}
		}

		/*
		 * Either relax the restrictions on the next scan or return if
		 * the last scan had no restrictions.
		 */
		if (options == VPSC_NORESERV)
			options = VPSC_NOSUPER;
		else if (options == VPSC_NOSUPER)
			options = VPSC_ANY;
		else if (options == VPSC_ANY)
			return (reclaimed != 0);
	}
}

/*
 *	vm_wait:	(also see VM_WAIT macro)
 *
 *	Sleep until free pages are available for allocation.
 *	- Called in various places before memory allocations.
 */
void
vm_wait(void)
{

	mtx_lock(&vm_page_queue_free_mtx);
	if (curproc == pageproc) {
		vm_pageout_pages_needed = 1;
		msleep(&vm_pageout_pages_needed, &vm_page_queue_free_mtx,
		    PDROP | PSWP, "VMWait", 0);
	} else {
		if (__predict_false(pageproc == NULL))
			panic("vm_wait in early boot");
		if (!vm_pageout_wanted) {
			vm_pageout_wanted = true;
			wakeup(&vm_pageout_wanted);
		}
		vm_pages_needed = true;
		msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PVM,
		    "vmwait", 0);
	}
}

/*
 *	vm_waitpfault:	(also see VM_WAITPFAULT macro)
 *
 *	Sleep until free pages are available for allocation.
 *	- Called only in vm_fault so that processes page faulting
 *	  can be easily tracked.
 *	- Sleeps at a lower priority than vm_wait() so that vm_wait()ing
 *	  processes will be able to grab memory first.  Do not change
 *	  this balance without careful testing first.
 */
void
vm_waitpfault(void)
{

	mtx_lock(&vm_page_queue_free_mtx);
	if (!vm_pageout_wanted) {
		vm_pageout_wanted = true;
		wakeup(&vm_pageout_wanted);
	}
	vm_pages_needed = true;
	msleep(&vm_cnt.v_free_count, &vm_page_queue_free_mtx, PDROP | PUSER,
	    "pfault", 0);
}

struct vm_pagequeue *
vm_page_pagequeue(vm_page_t m)
{

	if (vm_page_in_laundry(m))
		return (&vm_dom[0].vmd_pagequeues[m->queue]);
	else
		return (&vm_phys_domain(m)->vmd_pagequeues[m->queue]);
}

/*
 *	vm_page_dequeue:
 *
 *	Remove the given page from its current page queue.
 *
 *	The page must be locked.
 */
void
vm_page_dequeue(vm_page_t m)
{
	struct vm_pagequeue *pq;

	vm_page_assert_locked(m);
	KASSERT(m->queue < PQ_COUNT, ("vm_page_dequeue: page %p is not queued",
	    m));
	pq = vm_page_pagequeue(m);
	vm_pagequeue_lock(pq);
	m->queue = PQ_NONE;
	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
	vm_pagequeue_cnt_dec(pq);
	vm_pagequeue_unlock(pq);
}

/*
 *	vm_page_dequeue_locked:
 *
 *	Remove the given page from its current page queue.
 *
 *	The page and page queue must be locked.
 */
void
vm_page_dequeue_locked(vm_page_t m)
{
	struct vm_pagequeue *pq;

	vm_page_lock_assert(m, MA_OWNED);
	pq = vm_page_pagequeue(m);
	vm_pagequeue_assert_locked(pq);
	m->queue = PQ_NONE;
	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
	vm_pagequeue_cnt_dec(pq);
}

/*
 *	vm_page_enqueue:
 *
 *	Add the given page to the specified page queue.
 *
 *	The page must be locked.
 */
static void
vm_page_enqueue(uint8_t queue, vm_page_t m)
{
	struct vm_pagequeue *pq;

	vm_page_lock_assert(m, MA_OWNED);
	KASSERT(queue < PQ_COUNT,
	    ("vm_page_enqueue: invalid queue %u request for page %p",
	    queue, m));
	if (queue == PQ_LAUNDRY)
		pq = &vm_dom[0].vmd_pagequeues[queue];
	else
		pq = &vm_phys_domain(m)->vmd_pagequeues[queue];
	vm_pagequeue_lock(pq);
	m->queue = queue;
	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
	vm_pagequeue_cnt_inc(pq);
	vm_pagequeue_unlock(pq);
}

/*
 *	vm_page_requeue:
 *
 *	Move the given page to the tail of its current page queue.
 *
 *	The page must be locked.
 */
void
vm_page_requeue(vm_page_t m)
{
	struct vm_pagequeue *pq;

	vm_page_lock_assert(m, MA_OWNED);
	KASSERT(m->queue != PQ_NONE,
	    ("vm_page_requeue: page %p is not queued", m));
	pq = vm_page_pagequeue(m);
	vm_pagequeue_lock(pq);
	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
	vm_pagequeue_unlock(pq);
}

/*
 *	vm_page_requeue_locked:
 *
 *	Move the given page to the tail of its current page queue.
 *
 *	The page queue must be locked.
 */
void
vm_page_requeue_locked(vm_page_t m)
{
	struct vm_pagequeue *pq;

	KASSERT(m->queue != PQ_NONE,
	    ("vm_page_requeue_locked: page %p is not queued", m));
	pq = vm_page_pagequeue(m);
	vm_pagequeue_assert_locked(pq);
	TAILQ_REMOVE(&pq->pq_pl, m, plinks.q);
	TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
}

/*
 *	vm_page_activate:
 *
 *	Put the specified page on the active list (if appropriate).
 *	Ensure that act_count is at least ACT_INIT but do not otherwise
 *	mess with it.
 *
 *	The page must be locked.
 */
void
vm_page_activate(vm_page_t m)
{
	int queue;

	vm_page_lock_assert(m, MA_OWNED);
	if ((queue = m->queue) != PQ_ACTIVE) {
		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
			if (m->act_count < ACT_INIT)
				m->act_count = ACT_INIT;
			if (queue != PQ_NONE)
				vm_page_dequeue(m);
			vm_page_enqueue(PQ_ACTIVE, m);
		} else
			KASSERT(queue == PQ_NONE,
			    ("vm_page_activate: wired page %p is queued", m));
	} else {
		if (m->act_count < ACT_INIT)
			m->act_count = ACT_INIT;
	}
}

/*
 *	vm_page_free_wakeup:
 *
 *	Helper routine for vm_page_free_toq().  This routine is called
 *	when a page is added to the free queues.
 *
 *	The page queues must be locked.
 */
static void
vm_page_free_wakeup(void)
{

	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);
	/*
	 * if pageout daemon needs pages, then tell it that there are
	 * some free.
	 */
	if (vm_pageout_pages_needed &&
	    vm_cnt.v_free_count >= vm_cnt.v_pageout_free_min) {
		wakeup(&vm_pageout_pages_needed);
		vm_pageout_pages_needed = 0;
	}
	/*
	 * wakeup processes that are waiting on memory if we hit a
	 * high water mark. And wakeup scheduler process if we have
	 * lots of memory. this process will swapin processes.
	 */
	if (vm_pages_needed && !vm_page_count_min()) {
		vm_pages_needed = false;
		wakeup(&vm_cnt.v_free_count);
	}
}

/*
 *	vm_page_free_prep:
 *
 *	Prepares the given page to be put on the free list,
 *	disassociating it from any VM object. The caller may return
 *	the page to the free list only if this function returns true.
 *
 *	The object must be locked.  The page must be locked if it is
 *	managed.  For a queued managed page, the pagequeue_locked
 *	argument specifies whether the page queue is already locked.
 */
bool
vm_page_free_prep(vm_page_t m, bool pagequeue_locked)
{

#if defined(DIAGNOSTIC) && defined(PHYS_TO_DMAP)
	if ((m->flags & PG_ZERO) != 0) {
		uint64_t *p;
		int i;
		p = (uint64_t *)PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m));
		for (i = 0; i < PAGE_SIZE / sizeof(uint64_t); i++, p++)
			KASSERT(*p == 0, ("vm_page_free_prep %p PG_ZERO %d %jx",
			    m, i, (uintmax_t)*p));
	}
#endif
	if ((m->oflags & VPO_UNMANAGED) == 0) {
		vm_page_lock_assert(m, MA_OWNED);
		KASSERT(!pmap_page_is_mapped(m),
		    ("vm_page_free_toq: freeing mapped page %p", m));
	} else
		KASSERT(m->queue == PQ_NONE,
		    ("vm_page_free_toq: unmanaged page %p is queued", m));
	PCPU_INC(cnt.v_tfree);

	if (vm_page_sbusied(m))
		panic("vm_page_free: freeing busy page %p", m);

	/*
	 * Unqueue, then remove page.  Note that we cannot destroy
	 * the page here because we do not want to call the pager's
	 * callback routine until after we've put the page on the
	 * appropriate free queue.
	 */
	if (m->queue != PQ_NONE) {
		if (pagequeue_locked)
			vm_page_dequeue_locked(m);
		else
			vm_page_dequeue(m);
	}
	vm_page_remove(m);

	/*
	 * If fictitious remove object association and
	 * return, otherwise delay object association removal.
	 */
	if ((m->flags & PG_FICTITIOUS) != 0)
		return (false);

	m->valid = 0;
	vm_page_undirty(m);

	if (m->wire_count != 0)
		panic("vm_page_free: freeing wired page %p", m);
	if (m->hold_count != 0) {
		m->flags &= ~PG_ZERO;
		KASSERT((m->flags & PG_UNHOLDFREE) == 0,
		    ("vm_page_free: freeing PG_UNHOLDFREE page %p", m));
		m->flags |= PG_UNHOLDFREE;
		return (false);
	}

	/*
	 * Restore the default memory attribute to the page.
	 */
	if (pmap_page_get_memattr(m) != VM_MEMATTR_DEFAULT)
		pmap_page_set_memattr(m, VM_MEMATTR_DEFAULT);

	return (true);
}

/*
 * Insert the page into the physical memory allocator's free page
 * queues.  This is the last step to free a page.
 */
static void
vm_page_free_phys(vm_page_t m)
{

	mtx_assert(&vm_page_queue_free_mtx, MA_OWNED);

	vm_phys_freecnt_adj(m, 1);
#if VM_NRESERVLEVEL > 0
	if (!vm_reserv_free_page(m))
#endif
			vm_phys_free_pages(m, 0);
	if ((m->flags & PG_ZERO) != 0)
		++vm_page_zero_count;
	else
		vm_page_zero_idle_wakeup();
}

void
vm_page_free_phys_pglist(struct pglist *tq)
{
	vm_page_t m;

	if (TAILQ_EMPTY(tq))
		return;
	mtx_lock(&vm_page_queue_free_mtx);
	TAILQ_FOREACH(m, tq, listq)
		vm_page_free_phys(m);
	vm_page_free_wakeup();
	mtx_unlock(&vm_page_queue_free_mtx);
}

/*
 *	vm_page_free_toq:
 *
 *	Returns the given page to the free list, disassociating it
 *	from any VM object.
 *
 *	The object must be locked.  The page must be locked if it is
 *	managed.
 */
void
vm_page_free_toq(vm_page_t m)
{

	if (!vm_page_free_prep(m, false))
		return;
	mtx_lock(&vm_page_queue_free_mtx);
	vm_page_free_phys(m);
	vm_page_free_wakeup();
	mtx_unlock(&vm_page_queue_free_mtx);
}

/*
 *	vm_page_wire:
 *
 *	Mark this page as wired down by yet
 *	another map, removing it from paging queues
 *	as necessary.
 *
 *	If the page is fictitious, then its wire count must remain one.
 *
 *	The page must be locked.
 */
void
vm_page_wire(vm_page_t m)
{

	/*
	 * Only bump the wire statistics if the page is not already wired,
	 * and only unqueue the page if it is on some queue (if it is unmanaged
	 * it is already off the queues).
	 */
	vm_page_lock_assert(m, MA_OWNED);
	if ((m->flags & PG_FICTITIOUS) != 0) {
		KASSERT(m->wire_count == 1,
		    ("vm_page_wire: fictitious page %p's wire count isn't one",
		    m));
		return;
	}
	if (m->wire_count == 0) {
		KASSERT((m->oflags & VPO_UNMANAGED) == 0 ||
		    m->queue == PQ_NONE,
		    ("vm_page_wire: unmanaged page %p is queued", m));
		vm_page_remque(m);
		atomic_add_int(&vm_cnt.v_wire_count, 1);
	}
	m->wire_count++;
	KASSERT(m->wire_count != 0, ("vm_page_wire: wire_count overflow m=%p", m));
}

/*
 * vm_page_unwire:
 *
 * Release one wiring of the specified page, potentially allowing it to be
 * paged out.  Returns TRUE if the number of wirings transitions to zero and
 * FALSE otherwise.
 *
 * Only managed pages belonging to an object can be paged out.  If the number
 * of wirings transitions to zero and the page is eligible for page out, then
 * the page is added to the specified paging queue (unless PQ_NONE is
 * specified).
 *
 * If a page is fictitious, then its wire count must always be one.
 *
 * A managed page must be locked.
 */
boolean_t
vm_page_unwire(vm_page_t m, uint8_t queue)
{

	KASSERT(queue < PQ_COUNT || queue == PQ_NONE,
	    ("vm_page_unwire: invalid queue %u request for page %p",
	    queue, m));
	if ((m->oflags & VPO_UNMANAGED) == 0)
		vm_page_assert_locked(m);
	if ((m->flags & PG_FICTITIOUS) != 0) {
		KASSERT(m->wire_count == 1,
	    ("vm_page_unwire: fictitious page %p's wire count isn't one", m));
		return (FALSE);
	}
	if (m->wire_count > 0) {
		m->wire_count--;
		if (m->wire_count == 0) {
			atomic_subtract_int(&vm_cnt.v_wire_count, 1);
			if ((m->oflags & VPO_UNMANAGED) == 0 &&
			    m->object != NULL && queue != PQ_NONE)
				vm_page_enqueue(queue, m);
			return (TRUE);
		} else
			return (FALSE);
	} else
		panic("vm_page_unwire: page %p's wire count is zero", m);
}

/*
 * Move the specified page to the inactive queue.
 *
 * Normally, "noreuse" is FALSE, resulting in LRU ordering of the inactive
 * queue.  However, setting "noreuse" to TRUE will accelerate the specified
 * page's reclamation, but it will not unmap the page from any address space.
 * This is implemented by inserting the page near the head of the inactive
 * queue, using a marker page to guide FIFO insertion ordering.
 *
 * The page must be locked.
 */
static inline void
_vm_page_deactivate(vm_page_t m, boolean_t noreuse)
{
	struct vm_pagequeue *pq;
	int queue;

	vm_page_assert_locked(m);

	/*
	 * Ignore if the page is already inactive, unless it is unlikely to be
	 * reactivated.
	 */
	if ((queue = m->queue) == PQ_INACTIVE && !noreuse)
		return;
	if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
		pq = &vm_phys_domain(m)->vmd_pagequeues[PQ_INACTIVE];
		/* Avoid multiple acquisitions of the inactive queue lock. */
		if (queue == PQ_INACTIVE) {
			vm_pagequeue_lock(pq);
			vm_page_dequeue_locked(m);
		} else {
			if (queue != PQ_NONE)
				vm_page_dequeue(m);
			vm_pagequeue_lock(pq);
		}
		m->queue = PQ_INACTIVE;
		if (noreuse)
			TAILQ_INSERT_BEFORE(&vm_phys_domain(m)->vmd_inacthead,
			    m, plinks.q);
		else
			TAILQ_INSERT_TAIL(&pq->pq_pl, m, plinks.q);
		vm_pagequeue_cnt_inc(pq);
		vm_pagequeue_unlock(pq);
	}
}

/*
 * Move the specified page to the inactive queue.
 *
 * The page must be locked.
 */
void
vm_page_deactivate(vm_page_t m)
{

	_vm_page_deactivate(m, FALSE);
}

/*
 * Move the specified page to the inactive queue with the expectation
 * that it is unlikely to be reused.
 *
 * The page must be locked.
 */
void
vm_page_deactivate_noreuse(vm_page_t m)
{

	_vm_page_deactivate(m, TRUE);
}

/*
 * vm_page_launder
 *
 * 	Put a page in the laundry.
 */
void
vm_page_launder(vm_page_t m)
{
	int queue;

	vm_page_assert_locked(m);
	if ((queue = m->queue) != PQ_LAUNDRY) {
		if (m->wire_count == 0 && (m->oflags & VPO_UNMANAGED) == 0) {
			if (queue != PQ_NONE)
				vm_page_dequeue(m);
			vm_page_enqueue(PQ_LAUNDRY, m);
		} else
			KASSERT(queue == PQ_NONE,
			    ("wired page %p is queued", m));
	}
}

/*
 * vm_page_try_to_free()
 *
 *	Attempt to free the page.  If we cannot free it, we do nothing.
 *	true is returned on success, false on failure.
 */
bool
vm_page_try_to_free(vm_page_t m)
{

	vm_page_assert_locked(m);
	if (m->object != NULL)
		VM_OBJECT_ASSERT_WLOCKED(m->object);
	if (m->dirty != 0 || m->hold_count != 0 || m->wire_count != 0 ||
	    (m->oflags & VPO_UNMANAGED) != 0 || vm_page_busied(m))
		return (false);
	if (m->object != NULL && m->object->ref_count != 0) {
		pmap_remove_all(m);
		if (m->dirty != 0)
			return (false);
	}
	vm_page_free(m);
	return (true);
}

/*
 * vm_page_advise
 *
 * 	Apply the specified advice to the given page.
 *
 *	The object and page must be locked.
 */
void
vm_page_advise(vm_page_t m, int advice)
{

	vm_page_assert_locked(m);
	VM_OBJECT_ASSERT_WLOCKED(m->object);
	if (advice == MADV_FREE)
		/*
		 * Mark the page clean.  This will allow the page to be freed
		 * without first paging it out.  MADV_FREE pages are often
		 * quickly reused by malloc(3), so we do not do anything that
		 * would result in a page fault on a later access.
		 */
		vm_page_undirty(m);
	else if (advice != MADV_DONTNEED) {
		if (advice == MADV_WILLNEED)
			vm_page_activate(m);
		return;
	}

	/*
	 * Clear any references to the page.  Otherwise, the page daemon will
	 * immediately reactivate the page.
	 */
	vm_page_aflag_clear(m, PGA_REFERENCED);

	if (advice != MADV_FREE && m->dirty == 0 && pmap_is_modified(m))
		vm_page_dirty(m);

	/*
	 * Place clean pages near the head of the inactive queue rather than
	 * the tail, thus defeating the queue's LRU operation and ensuring that
	 * the page will be reused quickly.  Dirty pages not already in the
	 * laundry are moved there.
	 */
	if (m->dirty == 0)
		vm_page_deactivate_noreuse(m);
	else
		vm_page_launder(m);
}

/*
 * Grab a page, waiting until we are waken up due to the page
 * changing state.  We keep on waiting, if the page continues
 * to be in the object.  If the page doesn't exist, first allocate it
 * and then conditionally zero it.
 *
 * This routine may sleep.
 *
 * The object must be locked on entry.  The lock will, however, be released
 * and reacquired if the routine sleeps.
 */
vm_page_t
vm_page_grab(vm_object_t object, vm_pindex_t pindex, int allocflags)
{
	vm_page_t m;
	int sleep;

	VM_OBJECT_ASSERT_WLOCKED(object);
	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
	    ("vm_page_grab: VM_ALLOC_SBUSY/VM_ALLOC_IGN_SBUSY mismatch"));
retrylookup:
	if ((m = vm_page_lookup(object, pindex)) != NULL) {
		sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
		    vm_page_xbusied(m) : vm_page_busied(m);
		if (sleep) {
			if ((allocflags & VM_ALLOC_NOWAIT) != 0)
				return (NULL);
			/*
			 * Reference the page before unlocking and
			 * sleeping so that the page daemon is less
			 * likely to reclaim it.
			 */
			vm_page_aflag_set(m, PGA_REFERENCED);
			vm_page_lock(m);
			VM_OBJECT_WUNLOCK(object);
			vm_page_busy_sleep(m, "pgrbwt", (allocflags &
			    VM_ALLOC_IGN_SBUSY) != 0);
			VM_OBJECT_WLOCK(object);
			goto retrylookup;
		} else {
			if ((allocflags & VM_ALLOC_WIRED) != 0) {
				vm_page_lock(m);
				vm_page_wire(m);
				vm_page_unlock(m);
			}
			if ((allocflags &
			    (VM_ALLOC_NOBUSY | VM_ALLOC_SBUSY)) == 0)
				vm_page_xbusy(m);
			if ((allocflags & VM_ALLOC_SBUSY) != 0)
				vm_page_sbusy(m);
			return (m);
		}
	}
	m = vm_page_alloc(object, pindex, allocflags);
	if (m == NULL) {
		if ((allocflags & VM_ALLOC_NOWAIT) != 0)
			return (NULL);
		VM_OBJECT_WUNLOCK(object);
		VM_WAIT;
		VM_OBJECT_WLOCK(object);
		goto retrylookup;
	}
	if (allocflags & VM_ALLOC_ZERO && (m->flags & PG_ZERO) == 0)
		pmap_zero_page(m);
	return (m);
}

/*
 * Return the specified range of pages from the given object.  For each
 * page offset within the range, if a page already exists within the object
 * at that offset and it is busy, then wait for it to change state.  If,
 * instead, the page doesn't exist, then allocate it.
 *
 * The caller must always specify an allocation class.
 *
 * allocation classes:
 *	VM_ALLOC_NORMAL		normal process request
 *	VM_ALLOC_SYSTEM		system *really* needs the pages
 *
 * The caller must always specify that the pages are to be busied and/or
 * wired.
 *
 * optional allocation flags:
 *	VM_ALLOC_IGN_SBUSY	do not sleep on soft busy pages
 *	VM_ALLOC_NOBUSY		do not exclusive busy the page
 *	VM_ALLOC_NOWAIT		do not sleep
 *	VM_ALLOC_SBUSY		set page to sbusy state
 *	VM_ALLOC_WIRED		wire the pages
 *	VM_ALLOC_ZERO		zero and validate any invalid pages
 *
 * If VM_ALLOC_NOWAIT is not specified, this routine may sleep.  Otherwise, it
 * may return a partial prefix of the requested range.
 */
int
vm_page_grab_pages(vm_object_t object, vm_pindex_t pindex, int allocflags,
    vm_page_t *ma, int count)
{
	vm_page_t m, mpred;
	int i;
	bool sleep;

	VM_OBJECT_ASSERT_WLOCKED(object);
	KASSERT(((u_int)allocflags >> VM_ALLOC_COUNT_SHIFT) == 0,
	    ("vm_page_grap_pages: VM_ALLOC_COUNT() is not allowed"));
	KASSERT((allocflags & VM_ALLOC_NOBUSY) == 0 ||
	    (allocflags & VM_ALLOC_WIRED) != 0,
	    ("vm_page_grab_pages: the pages must be busied or wired"));
	KASSERT((allocflags & VM_ALLOC_SBUSY) == 0 ||
	    (allocflags & VM_ALLOC_IGN_SBUSY) != 0,
	    ("vm_page_grab_pages: VM_ALLOC_SBUSY/IGN_SBUSY mismatch"));
	if (count == 0)
		return (0);
	i = 0;
retrylookup:
	m = vm_radix_lookup_le(&object->rtree, pindex + i);
	if (m == NULL || m->pindex != pindex + i) {
		mpred = m;
		m = NULL;
	} else
		mpred = TAILQ_PREV(m, pglist, listq);
	for (; i < count; i++) {
		if (m != NULL) {
			sleep = (allocflags & VM_ALLOC_IGN_SBUSY) != 0 ?
			    vm_page_xbusied(m) : vm_page_busied(m);
			if (sleep) {
				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
					break;
				/*
				 * Reference the page before unlocking and
				 * sleeping so that the page daemon is less
				 * likely to reclaim it.
				 */
				vm_page_aflag_set(m, PGA_REFERENCED);
				vm_page_lock(m);
				VM_OBJECT_WUNLOCK(object);
				vm_page_busy_sleep(m, "grbmaw", (allocflags &
				    VM_ALLOC_IGN_SBUSY) != 0);
				VM_OBJECT_WLOCK(object);
				goto retrylookup;
			}
			if ((allocflags & VM_ALLOC_WIRED) != 0) {
				vm_page_lock(m);
				vm_page_wire(m);
				vm_page_unlock(m);
			}
			if ((allocflags & (VM_ALLOC_NOBUSY |
			    VM_ALLOC_SBUSY)) == 0)
				vm_page_xbusy(m);
			if ((allocflags & VM_ALLOC_SBUSY) != 0)
				vm_page_sbusy(m);
		} else {
			m = vm_page_alloc_after(object, pindex + i,
			    (allocflags & ~VM_ALLOC_IGN_SBUSY) |
			    VM_ALLOC_COUNT(count - i), mpred);
			if (m == NULL) {
				if ((allocflags & VM_ALLOC_NOWAIT) != 0)
					break;
				VM_OBJECT_WUNLOCK(object);
				VM_WAIT;
				VM_OBJECT_WLOCK(object);
				goto retrylookup;
			}
		}
		if (m->valid == 0 && (allocflags & VM_ALLOC_ZERO) != 0) {
			if ((m->flags & PG_ZERO) == 0)
				pmap_zero_page(m);
			m->valid = VM_PAGE_BITS_ALL;
		}
		ma[i] = mpred = m;
		m = vm_page_next(m);
	}
	return (i);
}

/*
 * Mapping function for valid or dirty bits in a page.
 *
 * Inputs are required to range within a page.
 */
vm_page_bits_t
vm_page_bits(int base, int size)
{
	int first_bit;
	int last_bit;

	KASSERT(
	    base + size <= PAGE_SIZE,
	    ("vm_page_bits: illegal base/size %d/%d", base, size)
	);

	if (size == 0)		/* handle degenerate case */
		return (0);

	first_bit = base >> DEV_BSHIFT;
	last_bit = (base + size - 1) >> DEV_BSHIFT;

	return (((vm_page_bits_t)2 << last_bit) -
	    ((vm_page_bits_t)1 << first_bit));
}

/*
 *	vm_page_set_valid_range:
 *
 *	Sets portions of a page valid.  The arguments are expected
 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
 *	of any partial chunks touched by the range.  The invalid portion of
 *	such chunks will be zeroed.
 *
 *	(base + size) must be less then or equal to PAGE_SIZE.
 */
void
vm_page_set_valid_range(vm_page_t m, int base, int size)
{
	int endoff, frag;

	VM_OBJECT_ASSERT_WLOCKED(m->object);
	if (size == 0)	/* handle degenerate case */
		return;

	/*
	 * If the base is not DEV_BSIZE aligned and the valid
	 * bit is clear, we have to zero out a portion of the
	 * first block.
	 */
	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
	    (m->valid & (1 << (base >> DEV_BSHIFT))) == 0)
		pmap_zero_page_area(m, frag, base - frag);

	/*
	 * If the ending offset is not DEV_BSIZE aligned and the
	 * valid bit is clear, we have to zero out a portion of
	 * the last block.
	 */
	endoff = base + size;
	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
	    (m->valid & (1 << (endoff >> DEV_BSHIFT))) == 0)
		pmap_zero_page_area(m, endoff,
		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));

	/*
	 * Assert that no previously invalid block that is now being validated
	 * is already dirty.
	 */
	KASSERT((~m->valid & vm_page_bits(base, size) & m->dirty) == 0,
	    ("vm_page_set_valid_range: page %p is dirty", m));

	/*
	 * Set valid bits inclusive of any overlap.
	 */
	m->valid |= vm_page_bits(base, size);
}

/*
 * Clear the given bits from the specified page's dirty field.
 */
static __inline void
vm_page_clear_dirty_mask(vm_page_t m, vm_page_bits_t pagebits)
{
	uintptr_t addr;
#if PAGE_SIZE < 16384
	int shift;
#endif

	/*
	 * If the object is locked and the page is neither exclusive busy nor
	 * write mapped, then the page's dirty field cannot possibly be
	 * set by a concurrent pmap operation.
	 */
	VM_OBJECT_ASSERT_WLOCKED(m->object);
	if (!vm_page_xbusied(m) && !pmap_page_is_write_mapped(m))
		m->dirty &= ~pagebits;
	else {
		/*
		 * The pmap layer can call vm_page_dirty() without
		 * holding a distinguished lock.  The combination of
		 * the object's lock and an atomic operation suffice
		 * to guarantee consistency of the page dirty field.
		 *
		 * For PAGE_SIZE == 32768 case, compiler already
		 * properly aligns the dirty field, so no forcible
		 * alignment is needed. Only require existence of
		 * atomic_clear_64 when page size is 32768.
		 */
		addr = (uintptr_t)&m->dirty;
#if PAGE_SIZE == 32768
		atomic_clear_64((uint64_t *)addr, pagebits);
#elif PAGE_SIZE == 16384
		atomic_clear_32((uint32_t *)addr, pagebits);
#else		/* PAGE_SIZE <= 8192 */
		/*
		 * Use a trick to perform a 32-bit atomic on the
		 * containing aligned word, to not depend on the existence
		 * of atomic_clear_{8, 16}.
		 */
		shift = addr & (sizeof(uint32_t) - 1);
#if BYTE_ORDER == BIG_ENDIAN
		shift = (sizeof(uint32_t) - sizeof(m->dirty) - shift) * NBBY;
#else
		shift *= NBBY;
#endif
		addr &= ~(sizeof(uint32_t) - 1);
		atomic_clear_32((uint32_t *)addr, pagebits << shift);
#endif		/* PAGE_SIZE */
	}
}

/*
 *	vm_page_set_validclean:
 *
 *	Sets portions of a page valid and clean.  The arguments are expected
 *	to be DEV_BSIZE aligned but if they aren't the bitmap is inclusive
 *	of any partial chunks touched by the range.  The invalid portion of
 *	such chunks will be zero'd.
 *
 *	(base + size) must be less then or equal to PAGE_SIZE.
 */
void
vm_page_set_validclean(vm_page_t m, int base, int size)
{
	vm_page_bits_t oldvalid, pagebits;
	int endoff, frag;

	VM_OBJECT_ASSERT_WLOCKED(m->object);
	if (size == 0)	/* handle degenerate case */
		return;

	/*
	 * If the base is not DEV_BSIZE aligned and the valid
	 * bit is clear, we have to zero out a portion of the
	 * first block.
	 */
	if ((frag = rounddown2(base, DEV_BSIZE)) != base &&
	    (m->valid & ((vm_page_bits_t)1 << (base >> DEV_BSHIFT))) == 0)
		pmap_zero_page_area(m, frag, base - frag);

	/*
	 * If the ending offset is not DEV_BSIZE aligned and the
	 * valid bit is clear, we have to zero out a portion of
	 * the last block.
	 */
	endoff = base + size;
	if ((frag = rounddown2(endoff, DEV_BSIZE)) != endoff &&
	    (m->valid & ((vm_page_bits_t)1 << (endoff >> DEV_BSHIFT))) == 0)
		pmap_zero_page_area(m, endoff,
		    DEV_BSIZE - (endoff & (DEV_BSIZE - 1)));

	/*
	 * Set valid, clear dirty bits.  If validating the entire
	 * page we can safely clear the pmap modify bit.  We also
	 * use this opportunity to clear the VPO_NOSYNC flag.  If a process
	 * takes a write fault on a MAP_NOSYNC memory area the flag will
	 * be set again.
	 *
	 * We set valid bits inclusive of any overlap, but we can only
	 * clear dirty bits for DEV_BSIZE chunks that are fully within
	 * the range.
	 */
	oldvalid = m->valid;
	pagebits = vm_page_bits(base, size);
	m->valid |= pagebits;
#if 0	/* NOT YET */
	if ((frag = base & (DEV_BSIZE - 1)) != 0) {
		frag = DEV_BSIZE - frag;
		base += frag;
		size -= frag;
		if (size < 0)
			size = 0;
	}
	pagebits = vm_page_bits(base, size & (DEV_BSIZE - 1));
#endif
	if (base == 0 && size == PAGE_SIZE) {
		/*
		 * The page can only be modified within the pmap if it is
		 * mapped, and it can only be mapped if it was previously
		 * fully valid.
		 */
		if (oldvalid == VM_PAGE_BITS_ALL)
			/*
			 * Perform the pmap_clear_modify() first.  Otherwise,
			 * a concurrent pmap operation, such as
			 * pmap_protect(), could clear a modification in the
			 * pmap and set the dirty field on the page before
			 * pmap_clear_modify() had begun and after the dirty
			 * field was cleared here.
			 */
			pmap_clear_modify(m);
		m->dirty = 0;
		m->oflags &= ~VPO_NOSYNC;
	} else if (oldvalid != VM_PAGE_BITS_ALL)
		m->dirty &= ~pagebits;
	else
		vm_page_clear_dirty_mask(m, pagebits);
}

void
vm_page_clear_dirty(vm_page_t m, int base, int size)
{

	vm_page_clear_dirty_mask(m, vm_page_bits(base, size));
}

/*
 *	vm_page_set_invalid:
 *
 *	Invalidates DEV_BSIZE'd chunks within a page.  Both the
 *	valid and dirty bits for the effected areas are cleared.
 */
void
vm_page_set_invalid(vm_page_t m, int base, int size)
{
	vm_page_bits_t bits;
	vm_object_t object;

	object = m->object;
	VM_OBJECT_ASSERT_WLOCKED(object);
	if (object->type == OBJT_VNODE && base == 0 && IDX_TO_OFF(m->pindex) +
	    size >= object->un_pager.vnp.vnp_size)
		bits = VM_PAGE_BITS_ALL;
	else
		bits = vm_page_bits(base, size);
	if (object->ref_count != 0 && m->valid == VM_PAGE_BITS_ALL &&
	    bits != 0)
		pmap_remove_all(m);
	KASSERT((bits == 0 && m->valid == VM_PAGE_BITS_ALL) ||
	    !pmap_page_is_mapped(m),
	    ("vm_page_set_invalid: page %p is mapped", m));
	m->valid &= ~bits;
	m->dirty &= ~bits;
}

/*
 * vm_page_zero_invalid()
 *
 *	The kernel assumes that the invalid portions of a page contain
 *	garbage, but such pages can be mapped into memory by user code.
 *	When this occurs, we must zero out the non-valid portions of the
 *	page so user code sees what it expects.
 *
 *	Pages are most often semi-valid when the end of a file is mapped
 *	into memory and the file's size is not page aligned.
 */
void
vm_page_zero_invalid(vm_page_t m, boolean_t setvalid)
{
	int b;
	int i;

	VM_OBJECT_ASSERT_WLOCKED(m->object);
	/*
	 * Scan the valid bits looking for invalid sections that
	 * must be zeroed.  Invalid sub-DEV_BSIZE'd areas ( where the
	 * valid bit may be set ) have already been zeroed by
	 * vm_page_set_validclean().
	 */
	for (b = i = 0; i <= PAGE_SIZE / DEV_BSIZE; ++i) {
		if (i == (PAGE_SIZE / DEV_BSIZE) ||
		    (m->valid & ((vm_page_bits_t)1 << i))) {
			if (i > b) {
				pmap_zero_page_area(m,
				    b << DEV_BSHIFT, (i - b) << DEV_BSHIFT);
			}
			b = i + 1;
		}
	}

	/*
	 * setvalid is TRUE when we can safely set the zero'd areas
	 * as being valid.  We can do this if there are no cache consistancy
	 * issues.  e.g. it is ok to do with UFS, but not ok to do with NFS.
	 */
	if (setvalid)
		m->valid = VM_PAGE_BITS_ALL;
}

/*
 *	vm_page_is_valid:
 *
 *	Is (partial) page valid?  Note that the case where size == 0
 *	will return FALSE in the degenerate case where the page is
 *	entirely invalid, and TRUE otherwise.
 */
int
vm_page_is_valid(vm_page_t m, int base, int size)
{
	vm_page_bits_t bits;

	VM_OBJECT_ASSERT_LOCKED(m->object);
	bits = vm_page_bits(base, size);
	return (m->valid != 0 && (m->valid & bits) == bits);
}

/*
 * Returns true if all of the specified predicates are true for the entire
 * (super)page and false otherwise.
 */
bool
vm_page_ps_test(vm_page_t m, int flags, vm_page_t skip_m)
{
	vm_object_t object;
	int i, npages;

	object = m->object;
	VM_OBJECT_ASSERT_LOCKED(object);
	npages = atop(pagesizes[m->psind]);

	/*
	 * The physically contiguous pages that make up a superpage, i.e., a
	 * page with a page size index ("psind") greater than zero, will
	 * occupy adjacent entries in vm_page_array[].
	 */
	for (i = 0; i < npages; i++) {
		/* Always test object consistency, including "skip_m". */
		if (m[i].object != object)
			return (false);
		if (&m[i] == skip_m)
			continue;
		if ((flags & PS_NONE_BUSY) != 0 && vm_page_busied(&m[i]))
			return (false);
		if ((flags & PS_ALL_DIRTY) != 0) {
			/*
			 * Calling vm_page_test_dirty() or pmap_is_modified()
			 * might stop this case from spuriously returning
			 * "false".  However, that would require a write lock
			 * on the object containing "m[i]".
			 */
			if (m[i].dirty != VM_PAGE_BITS_ALL)
				return (false);
		}
		if ((flags & PS_ALL_VALID) != 0 &&
		    m[i].valid != VM_PAGE_BITS_ALL)
			return (false);
	}
	return (true);
}

/*
 * Set the page's dirty bits if the page is modified.
 */
void
vm_page_test_dirty(vm_page_t m)
{

	VM_OBJECT_ASSERT_WLOCKED(m->object);
	if (m->dirty != VM_PAGE_BITS_ALL && pmap_is_modified(m))
		vm_page_dirty(m);
}

void
vm_page_lock_KBI(vm_page_t m, const char *file, int line)
{

	mtx_lock_flags_(vm_page_lockptr(m), 0, file, line);
}

void
vm_page_unlock_KBI(vm_page_t m, const char *file, int line)
{

	mtx_unlock_flags_(vm_page_lockptr(m), 0, file, line);
}

int
vm_page_trylock_KBI(vm_page_t m, const char *file, int line)
{

	return (mtx_trylock_flags_(vm_page_lockptr(m), 0, file, line));
}

#if defined(INVARIANTS) || defined(INVARIANT_SUPPORT)
void
vm_page_assert_locked_KBI(vm_page_t m, const char *file, int line)
{

	vm_page_lock_assert_KBI(m, MA_OWNED, file, line);
}

void
vm_page_lock_assert_KBI(vm_page_t m, int a, const char *file, int line)
{

	mtx_assert_(vm_page_lockptr(m), a, file, line);
}
#endif

#ifdef INVARIANTS
void
vm_page_object_lock_assert(vm_page_t m)
{

	/*
	 * Certain of the page's fields may only be modified by the
	 * holder of the containing object's lock or the exclusive busy.
	 * holder.  Unfortunately, the holder of the write busy is
	 * not recorded, and thus cannot be checked here.
	 */
	if (m->object != NULL && !vm_page_xbusied(m))
		VM_OBJECT_ASSERT_WLOCKED(m->object);
}

void
vm_page_assert_pga_writeable(vm_page_t m, uint8_t bits)
{

	if ((bits & PGA_WRITEABLE) == 0)
		return;

	/*
	 * The PGA_WRITEABLE flag can only be set if the page is
	 * managed, is exclusively busied or the object is locked.
	 * Currently, this flag is only set by pmap_enter().
	 */
	KASSERT((m->oflags & VPO_UNMANAGED) == 0,
	    ("PGA_WRITEABLE on unmanaged page"));
	if (!vm_page_xbusied(m))
		VM_OBJECT_ASSERT_LOCKED(m->object);
}
#endif

#include "opt_ddb.h"
#ifdef DDB
#include <sys/kernel.h>

#include <ddb/ddb.h>

DB_SHOW_COMMAND(page, vm_page_print_page_info)
{

	db_printf("vm_cnt.v_free_count: %d\n", vm_cnt.v_free_count);
	db_printf("vm_cnt.v_inactive_count: %d\n", vm_cnt.v_inactive_count);
	db_printf("vm_cnt.v_active_count: %d\n", vm_cnt.v_active_count);
	db_printf("vm_cnt.v_laundry_count: %d\n", vm_cnt.v_laundry_count);
	db_printf("vm_cnt.v_wire_count: %d\n", vm_cnt.v_wire_count);
	db_printf("vm_cnt.v_free_reserved: %d\n", vm_cnt.v_free_reserved);
	db_printf("vm_cnt.v_free_min: %d\n", vm_cnt.v_free_min);
	db_printf("vm_cnt.v_free_target: %d\n", vm_cnt.v_free_target);
	db_printf("vm_cnt.v_inactive_target: %d\n", vm_cnt.v_inactive_target);
}

DB_SHOW_COMMAND(pageq, vm_page_print_pageq_info)
{
	int dom;

	db_printf("pq_free %d\n", vm_cnt.v_free_count);
	for (dom = 0; dom < vm_ndomains; dom++) {
		db_printf(
	    "dom %d page_cnt %d free %d pq_act %d pq_inact %d pq_laund %d\n",
		    dom,
		    vm_dom[dom].vmd_page_count,
		    vm_dom[dom].vmd_free_count,
		    vm_dom[dom].vmd_pagequeues[PQ_ACTIVE].pq_cnt,
		    vm_dom[dom].vmd_pagequeues[PQ_INACTIVE].pq_cnt,
		    vm_dom[dom].vmd_pagequeues[PQ_LAUNDRY].pq_cnt);
	}
}

DB_SHOW_COMMAND(pginfo, vm_page_print_pginfo)
{
	vm_page_t m;
	boolean_t phys;

	if (!have_addr) {
		db_printf("show pginfo addr\n");
		return;
	}

	phys = strchr(modif, 'p') != NULL;
	if (phys)
		m = PHYS_TO_VM_PAGE(addr);
	else
		m = (vm_page_t)addr;
	db_printf(
    "page %p obj %p pidx 0x%jx phys 0x%jx q %d hold %d wire %d\n"
    "  af 0x%x of 0x%x f 0x%x act %d busy %x valid 0x%x dirty 0x%x\n",
	    m, m->object, (uintmax_t)m->pindex, (uintmax_t)m->phys_addr,
	    m->queue, m->hold_count, m->wire_count, m->aflags, m->oflags,
	    m->flags, m->act_count, m->busy_lock, m->valid, m->dirty);
}
#endif /* DDB */
OpenPOWER on IntegriCloud