summaryrefslogtreecommitdiffstats
path: root/sys/vm/vm_kern.c
blob: c0e56ce25635d927f1fc522d61de29087efa927b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
/*-
 * Copyright (c) 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * The Mach Operating System project at Carnegie-Mellon University.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from: @(#)vm_kern.c	8.3 (Berkeley) 1/12/94
 *
 *
 * Copyright (c) 1987, 1990 Carnegie-Mellon University.
 * All rights reserved.
 *
 * Authors: Avadis Tevanian, Jr., Michael Wayne Young
 *
 * Permission to use, copy, modify and distribute this software and
 * its documentation is hereby granted, provided that both the copyright
 * notice and this permission notice appear in all copies of the
 * software, derivative works or modified versions, and any portions
 * thereof, and that both notices appear in supporting documentation.
 *
 * CARNEGIE MELLON ALLOWS FREE USE OF THIS SOFTWARE IN ITS "AS IS"
 * CONDITION.  CARNEGIE MELLON DISCLAIMS ANY LIABILITY OF ANY KIND
 * FOR ANY DAMAGES WHATSOEVER RESULTING FROM THE USE OF THIS SOFTWARE.
 *
 * Carnegie Mellon requests users of this software to return to
 *
 *  Software Distribution Coordinator  or  Software.Distribution@CS.CMU.EDU
 *  School of Computer Science
 *  Carnegie Mellon University
 *  Pittsburgh PA 15213-3890
 *
 * any improvements or extensions that they make and grant Carnegie the
 * rights to redistribute these changes.
 */

/*
 *	Kernel memory management.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>		/* for ticks and hz */
#include <sys/eventhandler.h>
#include <sys/lock.h>
#include <sys/proc.h>
#include <sys/malloc.h>
#include <sys/rwlock.h>
#include <sys/sysctl.h>
#include <sys/vmem.h>

#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pageout.h>
#include <vm/vm_extern.h>
#include <vm/uma.h>

vm_map_t kernel_map;
vm_map_t exec_map;
vm_map_t pipe_map;

const void *zero_region;
CTASSERT((ZERO_REGION_SIZE & PAGE_MASK) == 0);

SYSCTL_ULONG(_vm, OID_AUTO, min_kernel_address, CTLFLAG_RD,
    NULL, VM_MIN_KERNEL_ADDRESS, "Min kernel address");

SYSCTL_ULONG(_vm, OID_AUTO, max_kernel_address, CTLFLAG_RD,
#if defined(__arm__) || defined(__sparc64__)
    &vm_max_kernel_address, 0,
#else
    NULL, VM_MAX_KERNEL_ADDRESS,
#endif
    "Max kernel address");

/*
 *	kva_alloc:
 *
 *	Allocate a virtual address range with no underlying object and
 *	no initial mapping to physical memory.  Any mapping from this
 *	range to physical memory must be explicitly created prior to
 *	its use, typically with pmap_qenter().  Any attempt to create
 *	a mapping on demand through vm_fault() will result in a panic. 
 */
vm_offset_t
kva_alloc(size)
	vm_size_t size;
{
	vm_offset_t addr;

	size = round_page(size);
	if (vmem_alloc(kernel_arena, size, M_BESTFIT | M_NOWAIT, &addr))
		return (0);

	return (addr);
}

/*
 *	kva_free:
 *
 *	Release a region of kernel virtual memory allocated
 *	with kva_alloc, and return the physical pages
 *	associated with that region.
 *
 *	This routine may not block on kernel maps.
 */
void
kva_free(addr, size)
	vm_offset_t addr;
	vm_size_t size;
{

	size = round_page(size);
	vmem_free(kernel_arena, addr, size);
}

/*
 *	Allocates a region from the kernel address map and physical pages
 *	within the specified address range to the kernel object.  Creates a
 *	wired mapping from this region to these pages, and returns the
 *	region's starting virtual address.  The allocated pages are not
 *	necessarily physically contiguous.  If M_ZERO is specified through the
 *	given flags, then the pages are zeroed before they are mapped.
 */
vm_offset_t
kmem_alloc_attr(vmem_t *vmem, vm_size_t size, int flags, vm_paddr_t low,
    vm_paddr_t high, vm_memattr_t memattr)
{
	vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
	vm_offset_t addr;
	vm_ooffset_t offset;
	vm_page_t m;
	int pflags, tries;
	int i;

	size = round_page(size);
	if (vmem_alloc(vmem, size, M_BESTFIT | flags, &addr))
		return (0);
	offset = addr - VM_MIN_KERNEL_ADDRESS;
	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
	VM_OBJECT_WLOCK(object);
	for (i = 0; i < size; i += PAGE_SIZE) {
		tries = 0;
retry:
		m = vm_page_alloc_contig(object, OFF_TO_IDX(offset + i),
		    pflags, 1, low, high, PAGE_SIZE, 0, memattr);
		if (m == NULL) {
			VM_OBJECT_WUNLOCK(object);
			if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
				vm_pageout_grow_cache(tries, low, high);
				VM_OBJECT_WLOCK(object);
				tries++;
				goto retry;
			}
			/* 
			 * Unmap and free the pages.
			 */
			if (i != 0)
				pmap_remove(kernel_pmap, addr, addr + i);
			while (i != 0) {
				i -= PAGE_SIZE;
				m = vm_page_lookup(object,
				    OFF_TO_IDX(offset + i));
				vm_page_unwire(m, 0);
				vm_page_free(m);
			}
			vmem_free(vmem, addr, size);
			return (0);
		}
		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
			pmap_zero_page(m);
		m->valid = VM_PAGE_BITS_ALL;
		pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL,
		    TRUE);
	}
	VM_OBJECT_WUNLOCK(object);
	return (addr);
}

/*
 *	Allocates a region from the kernel address map and physically
 *	contiguous pages within the specified address range to the kernel
 *	object.  Creates a wired mapping from this region to these pages, and
 *	returns the region's starting virtual address.  If M_ZERO is specified
 *	through the given flags, then the pages are zeroed before they are
 *	mapped.
 */
vm_offset_t
kmem_alloc_contig(struct vmem *vmem, vm_size_t size, int flags, vm_paddr_t low,
    vm_paddr_t high, u_long alignment, vm_paddr_t boundary,
    vm_memattr_t memattr)
{
	vm_object_t object = vmem == kmem_arena ? kmem_object : kernel_object;
	vm_offset_t addr, tmp;
	vm_ooffset_t offset;
	vm_page_t end_m, m;
	int pflags, tries;
 
	size = round_page(size);
	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
		return (0);
	offset = addr - VM_MIN_KERNEL_ADDRESS;
	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;
	VM_OBJECT_WLOCK(object);
	tries = 0;
retry:
	m = vm_page_alloc_contig(object, OFF_TO_IDX(offset), pflags,
	    atop(size), low, high, alignment, boundary, memattr);
	if (m == NULL) {
		VM_OBJECT_WUNLOCK(object);
		if (tries < ((flags & M_NOWAIT) != 0 ? 1 : 3)) {
			vm_pageout_grow_cache(tries, low, high);
			VM_OBJECT_WLOCK(object);
			tries++;
			goto retry;
		}
		vmem_free(vmem, addr, size);
		return (0);
	}
	end_m = m + atop(size);
	tmp = addr;
	for (; m < end_m; m++) {
		if ((flags & M_ZERO) && (m->flags & PG_ZERO) == 0)
			pmap_zero_page(m);
		m->valid = VM_PAGE_BITS_ALL;
		pmap_enter(kernel_pmap, tmp, VM_PROT_ALL, m, VM_PROT_ALL, true);
		tmp += PAGE_SIZE;
	}
	VM_OBJECT_WUNLOCK(object);
	return (addr);
}

/*
 *	kmem_suballoc:
 *
 *	Allocates a map to manage a subrange
 *	of the kernel virtual address space.
 *
 *	Arguments are as follows:
 *
 *	parent		Map to take range from
 *	min, max	Returned endpoints of map
 *	size		Size of range to find
 *	superpage_align	Request that min is superpage aligned
 */
vm_map_t
kmem_suballoc(vm_map_t parent, vm_offset_t *min, vm_offset_t *max,
    vm_size_t size, boolean_t superpage_align)
{
	int ret;
	vm_map_t result;

	size = round_page(size);

	*min = vm_map_min(parent);
	ret = vm_map_find(parent, NULL, 0, min, size, 0, superpage_align ?
	    VMFS_SUPER_SPACE : VMFS_ANY_SPACE, VM_PROT_ALL, VM_PROT_ALL,
	    MAP_ACC_NO_CHARGE);
	if (ret != KERN_SUCCESS)
		panic("kmem_suballoc: bad status return of %d", ret);
	*max = *min + size;
	result = vm_map_create(vm_map_pmap(parent), *min, *max);
	if (result == NULL)
		panic("kmem_suballoc: cannot create submap");
	if (vm_map_submap(parent, *min, *max, result) != KERN_SUCCESS)
		panic("kmem_suballoc: unable to change range to submap");
	return (result);
}

/*
 *	kmem_malloc:
 *
 *	Allocate wired-down pages in the kernel's address space.
 */
vm_offset_t
kmem_malloc(struct vmem *vmem, vm_size_t size, int flags)
{
	vm_offset_t addr;
	int rv;

	size = round_page(size);
	if (vmem_alloc(vmem, size, flags | M_BESTFIT, &addr))
		return (0);

	rv = kmem_back((vmem == kmem_arena) ? kmem_object : kernel_object,
	    addr, size, flags);
	if (rv != KERN_SUCCESS) {
		vmem_free(vmem, addr, size);
		return (0);
	}
	return (addr);
}

/*
 *	kmem_back:
 *
 *	Allocate physical pages for the specified virtual address range.
 */
int
kmem_back(vm_object_t object, vm_offset_t addr, vm_size_t size, int flags)
{
	vm_offset_t offset, i;
	vm_page_t m;
	int pflags;

	KASSERT(object == kmem_object || object == kernel_object,
	    ("kmem_back: only supports kernel objects."));

	offset = addr - VM_MIN_KERNEL_ADDRESS;
	pflags = malloc2vm_flags(flags) | VM_ALLOC_NOBUSY | VM_ALLOC_WIRED;

	VM_OBJECT_WLOCK(object);
	for (i = 0; i < size; i += PAGE_SIZE) {
retry:
		m = vm_page_alloc(object, OFF_TO_IDX(offset + i), pflags);

		/*
		 * Ran out of space, free everything up and return. Don't need
		 * to lock page queues here as we know that the pages we got
		 * aren't on any queues.
		 */
		if (m == NULL) {
			if ((flags & M_NOWAIT) == 0) {
				VM_OBJECT_WUNLOCK(object);
				VM_WAIT;
				VM_OBJECT_WLOCK(object);
				goto retry;
			}
			/* 
			 * Unmap and free the pages.
			 */
			if (i != 0)
				pmap_remove(kernel_pmap, addr, addr + i);
			while (i != 0) {
				i -= PAGE_SIZE;
				m = vm_page_lookup(object,
						   OFF_TO_IDX(offset + i));
				vm_page_unwire(m, 0);
				vm_page_free(m);
			}
			VM_OBJECT_WUNLOCK(object);
			return (KERN_NO_SPACE);
		}
		if (flags & M_ZERO && (m->flags & PG_ZERO) == 0)
			pmap_zero_page(m);
		KASSERT((m->oflags & VPO_UNMANAGED) != 0,
		    ("kmem_malloc: page %p is managed", m));
		m->valid = VM_PAGE_BITS_ALL;
		pmap_enter(kernel_pmap, addr + i, VM_PROT_ALL, m, VM_PROT_ALL,
		    TRUE);
	}
	VM_OBJECT_WUNLOCK(object);

	return (KERN_SUCCESS);
}

void
kmem_unback(vm_object_t object, vm_offset_t addr, vm_size_t size)
{
	vm_page_t m;
	vm_offset_t offset;
	int i;

	KASSERT(object == kmem_object || object == kernel_object,
	    ("kmem_unback: only supports kernel objects."));

	pmap_remove(kernel_pmap, addr, addr + size);
	offset = addr - VM_MIN_KERNEL_ADDRESS;
	VM_OBJECT_WLOCK(object);
	for (i = 0; i < size; i += PAGE_SIZE) {
		m = vm_page_lookup(object, OFF_TO_IDX(offset + i));
		vm_page_unwire(m, 0);
		vm_page_free(m);
	}
	VM_OBJECT_WUNLOCK(object);
}

/*
 *	kmem_free:
 *
 *	Free memory allocated with kmem_malloc.  The size must match the
 *	original allocation.
 */
void
kmem_free(struct vmem *vmem, vm_offset_t addr, vm_size_t size)
{

	size = round_page(size);
	kmem_unback((vmem == kmem_arena) ? kmem_object : kernel_object,
	    addr, size);
	vmem_free(vmem, addr, size);
}

/*
 *	kmap_alloc_wait:
 *
 *	Allocates pageable memory from a sub-map of the kernel.  If the submap
 *	has no room, the caller sleeps waiting for more memory in the submap.
 *
 *	This routine may block.
 */
vm_offset_t
kmap_alloc_wait(map, size)
	vm_map_t map;
	vm_size_t size;
{
	vm_offset_t addr;

	size = round_page(size);
	if (!swap_reserve(size))
		return (0);

	for (;;) {
		/*
		 * To make this work for more than one map, use the map's lock
		 * to lock out sleepers/wakers.
		 */
		vm_map_lock(map);
		if (vm_map_findspace(map, vm_map_min(map), size, &addr) == 0)
			break;
		/* no space now; see if we can ever get space */
		if (vm_map_max(map) - vm_map_min(map) < size) {
			vm_map_unlock(map);
			swap_release(size);
			return (0);
		}
		map->needs_wakeup = TRUE;
		vm_map_unlock_and_wait(map, 0);
	}
	vm_map_insert(map, NULL, 0, addr, addr + size, VM_PROT_ALL,
	    VM_PROT_ALL, MAP_ACC_CHARGED);
	vm_map_unlock(map);
	return (addr);
}

/*
 *	kmap_free_wakeup:
 *
 *	Returns memory to a submap of the kernel, and wakes up any processes
 *	waiting for memory in that map.
 */
void
kmap_free_wakeup(map, addr, size)
	vm_map_t map;
	vm_offset_t addr;
	vm_size_t size;
{

	vm_map_lock(map);
	(void) vm_map_delete(map, trunc_page(addr), round_page(addr + size));
	if (map->needs_wakeup) {
		map->needs_wakeup = FALSE;
		vm_map_wakeup(map);
	}
	vm_map_unlock(map);
}

void
kmem_init_zero_region(void)
{
	vm_offset_t addr, i;
	vm_page_t m;

	/*
	 * Map a single physical page of zeros to a larger virtual range.
	 * This requires less looping in places that want large amounts of
	 * zeros, while not using much more physical resources.
	 */
	addr = kva_alloc(ZERO_REGION_SIZE);
	m = vm_page_alloc(NULL, 0, VM_ALLOC_NORMAL |
	    VM_ALLOC_NOOBJ | VM_ALLOC_WIRED | VM_ALLOC_ZERO);
	if ((m->flags & PG_ZERO) == 0)
		pmap_zero_page(m);
	for (i = 0; i < ZERO_REGION_SIZE; i += PAGE_SIZE)
		pmap_qenter(addr + i, &m, 1);
	pmap_protect(kernel_pmap, addr, addr + ZERO_REGION_SIZE, VM_PROT_READ);

	zero_region = (const void *)addr;
}

/*
 * 	kmem_init:
 *
 *	Create the kernel map; insert a mapping covering kernel text, 
 *	data, bss, and all space allocated thus far (`boostrap' data).  The 
 *	new map will thus map the range between VM_MIN_KERNEL_ADDRESS and 
 *	`start' as allocated, and the range between `start' and `end' as free.
 */
void
kmem_init(start, end)
	vm_offset_t start, end;
{
	vm_map_t m;

	m = vm_map_create(kernel_pmap, VM_MIN_KERNEL_ADDRESS, end);
	m->system_map = 1;
	vm_map_lock(m);
	/* N.B.: cannot use kgdb to debug, starting with this assignment ... */
	kernel_map = m;
	(void) vm_map_insert(m, NULL, (vm_ooffset_t) 0,
#ifdef __amd64__
	    KERNBASE,
#else		     
	    VM_MIN_KERNEL_ADDRESS,
#endif
	    start, VM_PROT_ALL, VM_PROT_ALL, MAP_NOFAULT);
	/* ... and ending with the completion of the above `insert' */
	vm_map_unlock(m);
}

#ifdef DIAGNOSTIC
/*
 * Allow userspace to directly trigger the VM drain routine for testing
 * purposes.
 */
static int
debug_vm_lowmem(SYSCTL_HANDLER_ARGS)
{
	int error, i;

	i = 0;
	error = sysctl_handle_int(oidp, &i, 0, req);
	if (error)
		return (error);
	if (i)	 
		EVENTHANDLER_INVOKE(vm_lowmem, 0);
	return (0);
}

SYSCTL_PROC(_debug, OID_AUTO, vm_lowmem, CTLTYPE_INT | CTLFLAG_RW, 0, 0,
    debug_vm_lowmem, "I", "set to trigger vm_lowmem event");
#endif
OpenPOWER on IntegriCloud