summaryrefslogtreecommitdiffstats
path: root/sys/sparc64/sparc64/pmap.c
blob: 368f931f765812735eb433b153fac45cb2ca8c2c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
/*
 * Copyright (c) 1991 Regents of the University of California.
 * All rights reserved.
 * Copyright (c) 1994 John S. Dyson
 * All rights reserved.
 * Copyright (c) 1994 David Greenman
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * the Systems Programming Group of the University of Utah Computer
 * Science Department and William Jolitz of UUNET Technologies Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *      This product includes software developed by the University of
 *      California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *      from:   @(#)pmap.c      7.7 (Berkeley)  5/12/91
 * $FreeBSD$
 */

/*
 * Manages physical address maps.
 *
 * In addition to hardware address maps, this module is called upon to
 * provide software-use-only maps which may or may not be stored in the
 * same form as hardware maps.  These pseudo-maps are used to store
 * intermediate results from copy operations to and from address spaces.
 *
 * Since the information managed by this module is also stored by the
 * logical address mapping module, this module may throw away valid virtual
 * to physical mappings at almost any time.  However, invalidations of
 * mappings must be done as requested.
 *
 * In order to cope with hardware architectures which make virtual to
 * physical map invalidates expensive, this module may delay invalidate
 * reduced protection operations until such time as they are actually
 * necessary.  This module is given full information as to which processors
 * are currently using which maps, and to when physical maps must be made
 * correct.
 */

#include <sys/param.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/systm.h>
#include <sys/vmmeter.h>

#include <dev/ofw/openfirm.h>

#include <vm/vm.h> 
#include <vm/vm_param.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_extern.h>
#include <vm/vm_pageout.h>
#include <vm/vm_pager.h>
#include <vm/vm_zone.h>

#include <machine/frame.h>
#include <machine/pv.h>
#include <machine/tlb.h>
#include <machine/tte.h>
#include <machine/tsb.h>

#define	PMAP_DEBUG

#define	PMAP_LOCK(pm)
#define	PMAP_UNLOCK(pm)

#define	dcache_global_flush(pa)
#define	icache_global_flush(pa)

struct mem_region {
	vm_offset_t mr_start;
	vm_offset_t mr_size;
};

struct ofw_map {
	vm_offset_t om_start;
	vm_offset_t om_size;
	u_long	om_tte;
};

/*
 * Virtual address of message buffer.
 */
struct msgbuf *msgbufp;

/*
 * Physical addresses of first and last available physical page.
 */
vm_offset_t avail_start;
vm_offset_t avail_end;

/*
 * Map of physical memory reagions.
 */
vm_offset_t phys_avail[128];

/*
 * First and last available kernel virtual addresses.
 */
vm_offset_t virtual_avail;
vm_offset_t virtual_end;
vm_offset_t kernel_vm_end;

/*
 * Kernel pmap handle and associated storage.
 */
pmap_t kernel_pmap;
static struct pmap kernel_pmap_store;

/*
 * Map of free and in use hardware contexts and index of first potentially
 * free context.
 */
static char pmap_context_map[PMAP_CONTEXT_MAX];
static u_int pmap_context_base;

/*
 * Virtual addresses of free space for temporary mappings.  Used for copying
 * and zeroing physical pages.
 */
static vm_offset_t CADDR1;
static vm_offset_t CADDR2;

/*
 * Allocate and free hardware context numbers.
 */
static u_int pmap_context_alloc(void);
static void pmap_context_destroy(u_int i);

/*
 * Allocate physical memory for use in pmap_bootstrap.
 */
static vm_offset_t pmap_bootstrap_alloc(vm_size_t size);

/*
 * Quick sort callout for comparing memory regions.
 */
static int mr_cmp(const void *a, const void *b);
static int
mr_cmp(const void *a, const void *b)
{
	return ((const struct mem_region *)a)->mr_start -
	    ((const struct mem_region *)b)->mr_start;
}

/*
 * Bootstrap the system enough to run with virtual memory.
 */
void
pmap_bootstrap(vm_offset_t skpa, vm_offset_t ekva)
{
	struct mem_region mra[8];
	ihandle_t pmem;
	struct pmap *pm;
	vm_offset_t pa;
	vm_offset_t va;
	struct tte tte;
	int sz;
	int i;
	int j;

	/*
	 * Find out what physical memory is available from the prom and
	 * initialize the phys_avail array.
	 */
	if ((pmem = OF_finddevice("/memory")) == -1)
		panic("pmap_bootstrap: finddevice /memory");
	if ((sz = OF_getproplen(pmem, "available")) == -1)
		panic("pmap_bootstrap: getproplen /memory/available");
	if (sizeof(phys_avail) < sz)
		panic("pmap_bootstrap: phys_avail too small");
	bzero(mra, sz);
	if (OF_getprop(pmem, "available", mra, sz) == -1)
		panic("pmap_bootstrap: getprop /memory/available");
	sz /= sizeof(*mra);
	qsort(mra, sz, sizeof *mra, mr_cmp);
	for (i = 0, j = 0; i < sz; i++, j += 2) {
		phys_avail[j] = mra[i].mr_start;
		phys_avail[j + 1] = mra[i].mr_start + mra[i].mr_size;
	}

	/*
	 * Initialize the kernel pmap (which is statically allocated).
	 */
	pm = &kernel_pmap_store;
	pm->pm_context = TLB_CTX_KERNEL;
	pm->pm_active = ~0;
	pm->pm_count = 1;
	kernel_pmap = pm;

	/*
	 * Allocate the kernel tsb and lock it in the tlb.
	 */
	pa = pmap_bootstrap_alloc(TSB_KERNEL_SIZE);
	if (pa & PAGE_MASK_4M)
		panic("pmap_bootstrap: tsb unaligned\n");
	tsb_kernel_phys = pa;
	for (i = 0; i < TSB_KERNEL_PAGES; i++) {
		va = TSB_KERNEL_MIN_ADDRESS + i * PAGE_SIZE_4M;
		tte.tte_tag = TT_CTX(TLB_CTX_KERNEL) | TT_VA(va);
		tte.tte_data = TD_V | TD_4M | TD_VA_LOW(va) | TD_PA(pa) |
		    TD_L | TD_CP | TD_P | TD_W;
		tlb_store_slot(TLB_DTLB, va, TLB_CTX_KERNEL, tte,
		    TLB_SLOT_TSB_KERNEL_MIN + i);
	}
	bzero((void *)va, TSB_KERNEL_SIZE);
	stxa(AA_IMMU_TSB, ASI_IMMU, 
	    (va >> (STTE_SHIFT - TTE_SHIFT)) | TSB_SIZE_REG);
	stxa(AA_DMMU_TSB, ASI_DMMU,
	    (va >> (STTE_SHIFT - TTE_SHIFT)) | TSB_SIZE_REG);
	membar(Sync);

	/*
	 * Calculate the first and last available physical addresses.
	 */
	avail_start = phys_avail[0];
	for (i = 0; phys_avail[i + 2] != 0; i += 2)
		;
	avail_end = phys_avail[i + 1];

	/*
	 * Allocate physical memory for the heads of the stte alias chains.
	 */
	sz = round_page(((avail_end - avail_start) >> PAGE_SHIFT) *
	    sizeof(struct pv_head));
	pv_table = pmap_bootstrap_alloc(sz);
	/* XXX */
	avail_start += sz;
	for (i = 0; i < sz; i += sizeof(struct pv_head))
		pvh_set_first(pv_table + i, 0);

	/*
	 * Set the start and end of kva.  The kernel is loaded at the first
	 * available 4 meg super page, so round up to the end of the page.
	 */
	virtual_avail = roundup(ekva, PAGE_SIZE_4M);
	virtual_end = VM_MAX_KERNEL_ADDRESS;

	/*
	 * Allocate virtual address space for copying and zeroing pages of
	 * physical memory.
	 */
	CADDR1 = virtual_avail;
	virtual_avail += PAGE_SIZE;
	CADDR2 = virtual_avail;
	virtual_avail += PAGE_SIZE;

	/*
	 * Set the secondary context to be the kernel context (needed for
	 * fp block operations in the kernel).
	 */
	stxa(AA_DMMU_SCXR, ASI_DMMU, TLB_CTX_KERNEL);
	membar(Sync);
}

/*
 * Allocate a physical page of memory directly from the phys_avail map.
 * Can only be called from pmap_bootstrap before avail start and end are
 * calculated.
 */
static vm_offset_t
pmap_bootstrap_alloc(vm_size_t size)
{
	vm_offset_t pa;
	int i;

	size = round_page(size);
	for (i = 0; phys_avail[i + 1] != 0; i += 2) {
		if (phys_avail[i + 1] - phys_avail[i] < size)
			continue;
		pa = phys_avail[i];
		phys_avail[i] += size;
		return (pa);
	}
	panic("pmap_bootstrap_alloc");
}

/*
 * Allocate a hardware context number from the context map.
 */
static u_int
pmap_context_alloc(void)
{
	u_int i;

	i = pmap_context_base;
	do {
		if (pmap_context_map[i] == 0) {
			pmap_context_map[i] = 1;
			pmap_context_base = (i + 1) & (PMAP_CONTEXT_MAX - 1);
			return (i);
		}
	} while ((i = (i + 1) & (PMAP_CONTEXT_MAX - 1)) != pmap_context_base);
	panic("pmap_context_alloc");
}

/*
 * Free a hardware context number back to the context map.
 */
static void
pmap_context_destroy(u_int i)
{

	pmap_context_map[i] = 0;
}

/*
 * Map a range of physical addresses into kernel virtual address space.
 *
 * The value passed in *virt is a suggested virtual address for the mapping.
 * Architectures which can support a direct-mapped physical to virtual region
 * can return the appropriate address within that region, leaving '*virt'
 * unchanged.  We cannot and therefore do not; *virt is updated with the
 * first usable address after the mapped region.
 */
vm_offset_t
pmap_map(vm_offset_t *virt, vm_offset_t pa_start, vm_offset_t pa_end, int prot)
{
	vm_offset_t sva;
	vm_offset_t va;

	sva = *virt;
	va = sva;
	for (; pa_start < pa_end; pa_start += PAGE_SIZE, va += PAGE_SIZE)
		pmap_kenter(va, pa_start);
	*virt = va;
	return (sva);
}

/*
 * Map a wired page into kernel virtual address space.
 */
void
pmap_kenter(vm_offset_t va, vm_offset_t pa)
{
	struct stte *stp;
	struct tte tte;

	tte.tte_tag = TT_CTX(TLB_CTX_KERNEL) | TT_VA(va);
	tte.tte_data = TD_V | TD_8K | TD_VA_LOW(va) | TD_PA(pa) |
	    TD_REF | TD_SW | TD_CP | TD_P | TD_W;
	stp = tsb_kvtostte(va);
	CTR4(KTR_PMAP, "pmap_kenter: va=%#lx pa=%#lx stp=%p data=%#lx",
	    va, pa, stp, stp->st_tte.tte_data);
	stp->st_tte = tte;
}

/*
 * Remove a wired page from kernel virtual address space.
 */
void
pmap_kremove(vm_offset_t va)
{
	struct stte *stp;

	stp = tsb_kvtostte(va);
	CTR2(KTR_PMAP, "pmap_kremove: va=%#lx stp=%p", va, stp);
	tte_invalidate(&stp->st_tte);
}

/*
 * Map a list of wired pages into kernel virtual address space.  This is
 * intended for temporary mappings which do not need page modification or
 * references recorded.  Existing mappings in the region are overwritten.
 */
void
pmap_qenter(vm_offset_t va, vm_page_t *m, int count)
{
	int i;

	for (i = 0; i < count; i++, va += PAGE_SIZE)
		pmap_kenter(va, VM_PAGE_TO_PHYS(m[i]));
}

/*
 * Remove page mappings from kernel virtual address space.  Intended for
 * temporary mappings entered by pmap_qenter.
 */
void
pmap_qremove(vm_offset_t va, int count)
{
	int i;

	for (i = 0; i < count; i++, va += PAGE_SIZE)
		pmap_kremove(va);
}

/*
 * Map the given physical page at the specified virtual address in the
 * target pmap with the protection requested.  If specified the page
 * will be wired down.
 */
void
pmap_enter(pmap_t pm, vm_offset_t va, vm_page_t m, vm_prot_t prot,
	   boolean_t wired)
{
	struct stte *stp;
	struct tte tte;
	vm_offset_t pa;
	u_long data;

	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
	    ("pmap_enter: non current pmap"));
	pa = VM_PAGE_TO_PHYS(m);
	CTR5(KTR_PMAP, "pmap_enter: ctx=%p va=%#lx pa=%#lx prot=%#x wired=%d",
	    pm->pm_context, va, pa, prot, wired);
	tte.tte_tag = TT_CTX(pm->pm_context) | TT_VA(va);
	tte.tte_data = TD_V | TD_8K | TD_VA_LOW(va) | TD_PA(pa) |
	    TD_CP | TD_CV;
	if (pm->pm_context == TLB_CTX_KERNEL)
		tte.tte_data |= TD_P;
	if (wired == TRUE) {
		tte.tte_data |= TD_REF;
		if (prot & VM_PROT_WRITE)
			tte.tte_data |= TD_W;
	}
	if (prot & VM_PROT_WRITE)
		tte.tte_data |= TD_SW;
	if (prot & VM_PROT_EXECUTE) {
		tte.tte_data |= TD_EXEC;
		icache_global_flush(pa);
	}
	if ((m->flags & (PG_FICTITIOUS | PG_UNMANAGED)) == 0)
		tte.tte_data |= TD_MNG;

	PMAP_LOCK(pm);
	if ((stp = tsb_stte_lookup(pm, va)) != NULL) {
		data = stp->st_tte.tte_data;
		if (TD_PA(data) == pa) {
			if (prot & VM_PROT_WRITE)
				tte.tte_data |= TD_W;
			CTR3(KTR_PMAP,
			    "pmap_enter: update pa=%#lx data=%#lx to %#lx",
			    pa, data, tte.tte_data);	
		}
		if (stp->st_tte.tte_data & TD_MNG)
			pv_remove_virt(stp);
		tsb_stte_remove(stp);
		if (tte.tte_data & TD_MNG)
			pv_insert(pm, pa, va, stp);
		stp->st_tte = tte;
	} else {
		tsb_tte_enter(pm, va, tte);
	}
	PMAP_UNLOCK(pm);
}

void
pmap_remove(pmap_t pm, vm_offset_t start, vm_offset_t end)
{
	struct stte *stp;

	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
	    ("pmap_remove: non current pmap"));
	PMAP_LOCK(pm);
	for (; start < end; start += PAGE_SIZE) {
		if ((stp = tsb_stte_lookup(pm, start)) == NULL)
			continue;
		if (stp->st_tte.tte_data & TD_MNG)
			pv_remove_virt(stp);
		tsb_stte_remove(stp);
	}
	PMAP_UNLOCK(pm);
}

/*
 * Initialize the pmap module.
 */
void
pmap_init(vm_offset_t phys_start, vm_offset_t phys_end)
{
}

void
pmap_init2(void)
{
}

/*
 * Initialize the pmap associated with process 0.
 */
void
pmap_pinit0(pmap_t pm)
{

	pm = &kernel_pmap_store;
	pm->pm_context = pmap_context_alloc();
	pm->pm_active = 0;
	pm->pm_count = 1;
	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
}

/*
 * Initialize a preallocated and zeroed pmap structure.
 */
void
pmap_pinit(pmap_t pm)
{
	struct stte *stp;

	pm->pm_object = vm_object_allocate(OBJT_DEFAULT, 16);
	pm->pm_context = pmap_context_alloc();
	pm->pm_active = 0;
	pm->pm_count = 1;
	stp = &pm->pm_stte;
	stp->st_tte = tsb_page_alloc(pm, (vm_offset_t)tsb_base(0));
	bzero(&pm->pm_stats, sizeof(pm->pm_stats));
}

void
pmap_pinit2(pmap_t pmap)
{
}

/*
 * Grow the number of kernel page table entries.  Unneeded.
 */
void
pmap_growkernel(vm_offset_t addr)
{
}

/*
 * Make the specified page pageable (or not).  Unneeded.
 */
void
pmap_pageable(pmap_t pmap, vm_offset_t sva, vm_offset_t eva,
	      boolean_t pageable)
{
}

/*
 * Create the kernel stack and user structure for a new process.  This
 * routine directly affects the performance of fork().
 */
void
pmap_new_proc(struct proc *p)
{
	vm_object_t o;
	vm_offset_t u;
	vm_page_t m;
	u_int i;

	o = p->p_upages_obj;
	if (o  == NULL) {
		o = vm_object_allocate(OBJT_DEFAULT, UPAGES);
		p->p_upages_obj = o;
	}
	u = (vm_offset_t)p->p_addr;
	if (u == 0) {
		u = kmem_alloc_nofault(kernel_map, UPAGES * PAGE_SIZE);
		KASSERT(u != NULL, ("pmap_new_proc: u area\n"));
		p->p_addr = (struct user *)u;
	}
	for (i = 0; i < UPAGES; i++) {
		m = vm_page_grab(o, i, VM_ALLOC_NORMAL | VM_ALLOC_RETRY);
		m->wire_count++;
		cnt.v_wire_count++;
		pmap_kenter(u + i * PAGE_SIZE, VM_PAGE_TO_PHYS(m));
		vm_page_wakeup(m);
		vm_page_flag_clear(m, PG_ZERO);
		vm_page_flag_set(m, PG_MAPPED | PG_WRITEABLE);
		m->valid = VM_PAGE_BITS_ALL;
	}
}

void
pmap_dispose_proc(struct proc *p)
{
	vm_object_t upobj;
	vm_offset_t up;
	vm_page_t m;
	int i;

	upobj = p->p_upages_obj;
	up = (vm_offset_t)p->p_addr;
	for (i = 0; i < UPAGES; i++) {
		m = vm_page_lookup(upobj, i);
		if (m == NULL)
			panic("pmap_dispose_proc: upage already missing?");
		vm_page_busy(m);
		pmap_kremove(up + i * PAGE_SIZE);
		vm_page_unwire(m, 0);
		vm_page_free(m);
	}
}

void
pmap_page_protect(vm_page_t m, vm_prot_t prot)
{

	if (m->flags & PG_FICTITIOUS || prot & VM_PROT_WRITE)
		return;
	if (prot & (VM_PROT_READ | VM_PROT_EXECUTE))
		pv_bit_clear(m, TD_W | TD_SW);
	else
		pv_global_remove_all(m);
}

void
pmap_clear_modify(vm_page_t m)
{

	if (m->flags & PG_FICTITIOUS)
		return;
	pv_bit_clear(m, TD_W);
}

boolean_t
pmap_is_modified(vm_page_t m)
{

	if (m->flags & PG_FICTITIOUS)
		return FALSE;
	return (pv_bit_test(m, TD_W));
}

void
pmap_clear_reference(vm_page_t m)
{

	if (m->flags & PG_FICTITIOUS)
		return;
	pv_bit_clear(m, TD_REF);
}

int
pmap_ts_referenced(vm_page_t m)
{

	if (m->flags & PG_FICTITIOUS)
		return (0);
	return (pv_bit_count(m, TD_REF));
}

void
pmap_activate(struct proc *p)
{
	TODO;
}

vm_offset_t
pmap_addr_hint(vm_object_t object, vm_offset_t va, vm_size_t size)
{

	return (va);
}

void
pmap_change_wiring(pmap_t pmap, vm_offset_t va, boolean_t wired)
{
	TODO;
}

void
pmap_collect(void)
{
	TODO;
}

void
pmap_copy(pmap_t dst_pmap, pmap_t src_pmap, vm_offset_t dst_addr,
	  vm_size_t len, vm_offset_t src_addr)
{
	/* XXX */
}

/*
 * Copy a page of physical memory by temporarily mapping it into the tlb.
 */
void
pmap_copy_page(vm_offset_t src, vm_offset_t dst)
{
	struct tte tte;

	tte.tte_tag = TT_CTX(TLB_CTX_KERNEL) | TT_VA(CADDR1);
	tte.tte_data = TD_V | TD_8K | TD_PA(src) | TD_L | TD_CP | TD_P | TD_W;
	tlb_store(TLB_DTLB, CADDR1, TLB_CTX_KERNEL, tte);

	tte.tte_tag = TT_CTX(TLB_CTX_KERNEL) | TT_VA(CADDR2);
	tte.tte_data = TD_V | TD_8K | TD_PA(dst) | TD_L | TD_CP | TD_P | TD_W;
	tlb_store(TLB_DTLB, CADDR2, TLB_CTX_KERNEL, tte);

	bcopy((void *)CADDR1, (void *)CADDR2, PAGE_SIZE);

	tlb_page_demap(TLB_DTLB, TLB_CTX_KERNEL, CADDR1);
	tlb_page_demap(TLB_DTLB, TLB_CTX_KERNEL, CADDR2);
}

/*
 * Zero a page of physical memory by temporarily mapping it into the tlb.
 */
void
pmap_zero_page(vm_offset_t pa)
{
	struct tte tte;
	vm_offset_t va;

	va = CADDR2;
	tte.tte_tag = TT_CTX(TLB_CTX_KERNEL) | TT_VA(va);
	tte.tte_data = TD_V | TD_8K | TD_PA(pa) | TD_L | TD_CP | TD_P | TD_W;
	tlb_store(TLB_DTLB, va, TLB_CTX_KERNEL, tte);
	bzero((void *)va, PAGE_SIZE);
	tlb_page_demap(TLB_DTLB, TLB_CTX_KERNEL, va);
}

void
pmap_zero_page_area(vm_offset_t pa, int off, int size)
{
	struct tte tte;
	vm_offset_t va;

	KASSERT(off + size <= PAGE_SIZE, ("pmap_zero_page_area: bad off/size"));
	va = CADDR2;
	tte.tte_tag = TT_CTX(TLB_CTX_KERNEL) | TT_VA(va);
	tte.tte_data = TD_V | TD_8K | TD_PA(pa) | TD_L | TD_CP | TD_P | TD_W;
	tlb_store(TLB_DTLB, va, TLB_CTX_KERNEL, tte);
	bzero((char *)va + off, size);
	tlb_page_demap(TLB_DTLB, TLB_CTX_KERNEL, va);
}

vm_offset_t
pmap_extract(pmap_t pmap, vm_offset_t va)
{
	TODO;
	return (0);
}

vm_offset_t
pmap_kextract(vm_offset_t va)
{
	TODO;
	return (0);
}

int
pmap_mincore(pmap_t pmap, vm_offset_t addr)
{
	TODO;
	return (0);
}

void
pmap_object_init_pt(pmap_t pmap, vm_offset_t addr, vm_object_t object,
		    vm_pindex_t pindex, vm_size_t size, int limit)
{
	/* XXX */
}

boolean_t
pmap_page_exists(pmap_t pmap, vm_page_t m)
{
	TODO;
	return (0);
}

void
pmap_prefault(pmap_t pm, vm_offset_t va, vm_map_entry_t entry)
{
	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
	    ("pmap_prefault: non current pmap"));
	/* XXX */
}

void
pmap_protect(pmap_t pm, vm_offset_t sva, vm_offset_t eva, vm_prot_t prot)
{
	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
	    ("pmap_protect: non current pmap"));
	/* XXX */
}

vm_offset_t
pmap_phys_address(int ppn)
{
	TODO;
	return (0);
}

void
pmap_reference(pmap_t pm)
{
	if (pm != NULL)
		pm->pm_count++;
}

void
pmap_release(pmap_t pm)
{
	/* XXX */
}

void
pmap_remove_pages(pmap_t pm, vm_offset_t sva, vm_offset_t eva)
{
	KASSERT(pm == &curproc->p_vmspace->vm_pmap || pm == kernel_pmap,
	    ("pmap_remove_pages: non current pmap"));
	/* XXX */
}

void
pmap_swapin_proc(struct proc *p)
{
	TODO;
}

void
pmap_swapout_proc(struct proc *p)
{
	TODO;
}
OpenPOWER on IntegriCloud