1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
|
/*-
* Copyright (c) 2010 Isilon Systems, Inc.
* Copyright (c) 2010 iX Systems, Inc.
* Copyright (c) 2010 Panasas, Inc.
* Copyright (c) 2013, 2014 Mellanox Technologies, Ltd.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
#ifndef _LINUX_BITOPS_H_
#define _LINUX_BITOPS_H_
#ifdef __LP64__
#define BITS_PER_LONG 64
#else
#define BITS_PER_LONG 32
#endif
#define BIT_MASK(n) (~0UL >> (BITS_PER_LONG - (n)))
#define BITS_TO_LONGS(n) howmany((n), BITS_PER_LONG)
#define BIT_WORD(nr) ((nr) / BITS_PER_LONG)
#define BITS_PER_BYTE 8
static inline int
__ffs(int mask)
{
return (ffs(mask) - 1);
}
static inline int
__fls(int mask)
{
return (fls(mask) - 1);
}
static inline int
__ffsl(long mask)
{
return (ffsl(mask) - 1);
}
static inline int
__flsl(long mask)
{
return (flsl(mask) - 1);
}
#define ffz(mask) __ffs(~(mask))
static inline int get_count_order(unsigned int count)
{
int order;
order = fls(count) - 1;
if (count & (count - 1))
order++;
return order;
}
static inline unsigned long
find_first_bit(unsigned long *addr, unsigned long size)
{
long mask;
int bit;
for (bit = 0; size >= BITS_PER_LONG;
size -= BITS_PER_LONG, bit += BITS_PER_LONG, addr++) {
if (*addr == 0)
continue;
return (bit + __ffsl(*addr));
}
if (size) {
mask = (*addr) & BIT_MASK(size);
if (mask)
bit += __ffsl(mask);
else
bit += size;
}
return (bit);
}
static inline unsigned long
find_first_zero_bit(unsigned long *addr, unsigned long size)
{
long mask;
int bit;
for (bit = 0; size >= BITS_PER_LONG;
size -= BITS_PER_LONG, bit += BITS_PER_LONG, addr++) {
if (~(*addr) == 0)
continue;
return (bit + __ffsl(~(*addr)));
}
if (size) {
mask = ~(*addr) & BIT_MASK(size);
if (mask)
bit += __ffsl(mask);
else
bit += size;
}
return (bit);
}
static inline unsigned long
find_last_bit(unsigned long *addr, unsigned long size)
{
long mask;
int offs;
int bit;
int pos;
pos = size / BITS_PER_LONG;
offs = size % BITS_PER_LONG;
bit = BITS_PER_LONG * pos;
addr += pos;
if (offs) {
mask = (*addr) & BIT_MASK(offs);
if (mask)
return (bit + __flsl(mask));
}
while (--pos) {
addr--;
bit -= BITS_PER_LONG;
if (*addr)
return (bit + __flsl(mask));
}
return (size);
}
static inline unsigned long
find_next_bit(unsigned long *addr, unsigned long size, unsigned long offset)
{
long mask;
int offs;
int bit;
int pos;
if (offset >= size)
return (size);
pos = offset / BITS_PER_LONG;
offs = offset % BITS_PER_LONG;
bit = BITS_PER_LONG * pos;
addr += pos;
if (offs) {
mask = (*addr) & ~BIT_MASK(offs);
if (mask)
return (bit + __ffsl(mask));
bit += BITS_PER_LONG;
addr++;
}
for (size -= bit; size >= BITS_PER_LONG;
size -= BITS_PER_LONG, bit += BITS_PER_LONG, addr++) {
if (*addr == 0)
continue;
return (bit + __ffsl(*addr));
}
if (size) {
mask = (*addr) & BIT_MASK(size);
if (mask)
bit += __ffsl(mask);
else
bit += size;
}
return (bit);
}
static inline unsigned long
find_next_zero_bit(unsigned long *addr, unsigned long size,
unsigned long offset)
{
long mask;
int offs;
int bit;
int pos;
if (offset >= size)
return (size);
pos = offset / BITS_PER_LONG;
offs = offset % BITS_PER_LONG;
bit = BITS_PER_LONG * pos;
addr += pos;
if (offs) {
mask = ~(*addr) & ~BIT_MASK(offs);
if (mask)
return (bit + __ffsl(mask));
bit += BITS_PER_LONG;
addr++;
}
for (size -= bit; size >= BITS_PER_LONG;
size -= BITS_PER_LONG, bit += BITS_PER_LONG, addr++) {
if (~(*addr) == 0)
continue;
return (bit + __ffsl(~(*addr)));
}
if (size) {
mask = ~(*addr) & BIT_MASK(size);
if (mask)
bit += __ffsl(mask);
else
bit += size;
}
return (bit);
}
static inline void
bitmap_zero(unsigned long *addr, int size)
{
int len;
len = BITS_TO_LONGS(size) * sizeof(long);
memset(addr, 0, len);
}
static inline void
bitmap_fill(unsigned long *addr, int size)
{
int tail;
int len;
len = (size / BITS_PER_LONG) * sizeof(long);
memset(addr, 0xff, len);
tail = size & (BITS_PER_LONG - 1);
if (tail)
addr[size / BITS_PER_LONG] = BIT_MASK(tail);
}
static inline int
bitmap_full(unsigned long *addr, int size)
{
long mask;
int tail;
int len;
int i;
len = size / BITS_PER_LONG;
for (i = 0; i < len; i++)
if (addr[i] != ~0UL)
return (0);
tail = size & (BITS_PER_LONG - 1);
if (tail) {
mask = BIT_MASK(tail);
if ((addr[i] & mask) != mask)
return (0);
}
return (1);
}
static inline int
bitmap_empty(unsigned long *addr, int size)
{
long mask;
int tail;
int len;
int i;
len = size / BITS_PER_LONG;
for (i = 0; i < len; i++)
if (addr[i] != 0)
return (0);
tail = size & (BITS_PER_LONG - 1);
if (tail) {
mask = BIT_MASK(tail);
if ((addr[i] & mask) != 0)
return (0);
}
return (1);
}
#define NBLONG (NBBY * sizeof(long))
#define __set_bit(i, a) \
atomic_set_long(&((volatile long *)(a))[(i)/NBLONG], 1UL << ((i) % NBLONG))
#define set_bit(i, a) \
atomic_set_long(&((volatile long *)(a))[(i)/NBLONG], 1UL << ((i) % NBLONG))
#define __clear_bit(i, a) \
atomic_clear_long(&((volatile long *)(a))[(i)/NBLONG], 1UL << ((i) % NBLONG))
#define clear_bit(i, a) \
atomic_clear_long(&((volatile long *)(a))[(i)/NBLONG], 1UL << ((i) % NBLONG))
#define test_bit(i, a) \
!!(atomic_load_acq_long(&((volatile long *)(a))[(i)/NBLONG]) & \
(1UL << ((i) % NBLONG)))
static inline long
test_and_clear_bit(long bit, long *var)
{
long val;
var += bit / (sizeof(long) * NBBY);
bit %= sizeof(long) * NBBY;
bit = (1UL << bit);
do {
val = *(volatile long *)var;
} while (atomic_cmpset_long(var, val, val & ~bit) == 0);
return !!(val & bit);
}
static inline long
test_and_set_bit(long bit, long *var)
{
long val;
var += bit / (sizeof(long) * NBBY);
bit %= sizeof(long) * NBBY;
bit = (1UL << bit);
do {
val = *(volatile long *)var;
} while (atomic_cmpset_long(var, val, val | bit) == 0);
return !!(val & bit);
}
#define BITMAP_FIRST_WORD_MASK(start) (~0UL << ((start) % BITS_PER_LONG))
#define BITMAP_LAST_WORD_MASK(nbits) \
( \
((nbits) % BITS_PER_LONG) ? \
(1UL<<((nbits) % BITS_PER_LONG))-1 : ~0UL \
)
static inline void
bitmap_set(unsigned long *map, int start, int nr)
{
unsigned long *p = map + BIT_WORD(start);
const int size = start + nr;
int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
while (nr - bits_to_set >= 0) {
*p |= mask_to_set;
nr -= bits_to_set;
bits_to_set = BITS_PER_LONG;
mask_to_set = ~0UL;
p++;
}
if (nr) {
mask_to_set &= BITMAP_LAST_WORD_MASK(size);
*p |= mask_to_set;
}
}
static inline void
bitmap_clear(unsigned long *map, int start, int nr)
{
unsigned long *p = map + BIT_WORD(start);
const int size = start + nr;
int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
while (nr - bits_to_clear >= 0) {
*p &= ~mask_to_clear;
nr -= bits_to_clear;
bits_to_clear = BITS_PER_LONG;
mask_to_clear = ~0UL;
p++;
}
if (nr) {
mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
*p &= ~mask_to_clear;
}
}
enum {
REG_OP_ISFREE, /* true if region is all zero bits */
REG_OP_ALLOC, /* set all bits in region */
REG_OP_RELEASE, /* clear all bits in region */
};
static int __reg_op(unsigned long *bitmap, int pos, int order, int reg_op)
{
int nbits_reg; /* number of bits in region */
int index; /* index first long of region in bitmap */
int offset; /* bit offset region in bitmap[index] */
int nlongs_reg; /* num longs spanned by region in bitmap */
int nbitsinlong; /* num bits of region in each spanned long */
unsigned long mask; /* bitmask for one long of region */
int i; /* scans bitmap by longs */
int ret = 0; /* return value */
/*
* Either nlongs_reg == 1 (for small orders that fit in one long)
* or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
*/
nbits_reg = 1 << order;
index = pos / BITS_PER_LONG;
offset = pos - (index * BITS_PER_LONG);
nlongs_reg = BITS_TO_LONGS(nbits_reg);
nbitsinlong = min(nbits_reg, BITS_PER_LONG);
/*
* Can't do "mask = (1UL << nbitsinlong) - 1", as that
* overflows if nbitsinlong == BITS_PER_LONG.
*/
mask = (1UL << (nbitsinlong - 1));
mask += mask - 1;
mask <<= offset;
switch (reg_op) {
case REG_OP_ISFREE:
for (i = 0; i < nlongs_reg; i++) {
if (bitmap[index + i] & mask)
goto done;
}
ret = 1; /* all bits in region free (zero) */
break;
case REG_OP_ALLOC:
for (i = 0; i < nlongs_reg; i++)
bitmap[index + i] |= mask;
break;
case REG_OP_RELEASE:
for (i = 0; i < nlongs_reg; i++)
bitmap[index + i] &= ~mask;
break;
}
done:
return ret;
}
/**
* bitmap_find_free_region - find a contiguous aligned mem region
* @bitmap: array of unsigned longs corresponding to the bitmap
* @bits: number of bits in the bitmap
* @order: region size (log base 2 of number of bits) to find
*
* Find a region of free (zero) bits in a @bitmap of @bits bits and
* allocate them (set them to one). Only consider regions of length
* a power (@order) of two, aligned to that power of two, which
* makes the search algorithm much faster.
*
* Return the bit offset in bitmap of the allocated region,
* or -errno on failure.
*/
static inline int
bitmap_find_free_region(unsigned long *bitmap, int bits, int order)
{
int pos, end; /* scans bitmap by regions of size order */
for (pos = 0 ; (end = pos + (1 << order)) <= bits; pos = end) {
if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
continue;
__reg_op(bitmap, pos, order, REG_OP_ALLOC);
return pos;
}
return -ENOMEM;
}
/**
* bitmap_allocate_region - allocate bitmap region
* @bitmap: array of unsigned longs corresponding to the bitmap
* @pos: beginning of bit region to allocate
* @order: region size (log base 2 of number of bits) to allocate
*
* Allocate (set bits in) a specified region of a bitmap.
*
* Return 0 on success, or %-EBUSY if specified region wasn't
* free (not all bits were zero).
*/
static inline int
bitmap_allocate_region(unsigned long *bitmap, int pos, int order)
{
if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
return -EBUSY;
__reg_op(bitmap, pos, order, REG_OP_ALLOC);
return 0;
}
/**
* bitmap_release_region - release allocated bitmap region
* @bitmap: array of unsigned longs corresponding to the bitmap
* @pos: beginning of bit region to release
* @order: region size (log base 2 of number of bits) to release
*
* This is the complement to __bitmap_find_free_region() and releases
* the found region (by clearing it in the bitmap).
*
* No return value.
*/
static inline void
bitmap_release_region(unsigned long *bitmap, int pos, int order)
{
__reg_op(bitmap, pos, order, REG_OP_RELEASE);
}
#define for_each_set_bit(bit, addr, size) \
for ((bit) = find_first_bit((addr), (size)); \
(bit) < (size); \
(bit) = find_next_bit((addr), (size), (bit) + 1))
#endif /* _LINUX_BITOPS_H_ */
|