summaryrefslogtreecommitdiffstats
path: root/sys/kern/subr_vmem.c
blob: 4e3f04ed49b1e725e54d21162f58652e02de1146 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
/*-
 * Copyright (c)2006,2007,2008,2009 YAMAMOTO Takashi,
 * Copyright (c) 2013 EMC Corp.
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

/*
 * From:
 *	$NetBSD: vmem_impl.h,v 1.2 2013/01/29 21:26:24 para Exp $
 *	$NetBSD: subr_vmem.c,v 1.83 2013/03/06 11:20:10 yamt Exp $
 */

/*
 * reference:
 * -	Magazines and Vmem: Extending the Slab Allocator
 *	to Many CPUs and Arbitrary Resources
 *	http://www.usenix.org/event/usenix01/bonwick.html
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_ddb.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/queue.h>
#include <sys/callout.h>
#include <sys/hash.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/smp.h>
#include <sys/condvar.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <sys/vmem.h>

#include "opt_vm.h"

#include <vm/uma.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_kern.h>
#include <vm/vm_extern.h>
#include <vm/vm_param.h>
#include <vm/vm_pageout.h>

#define	VMEM_OPTORDER		5
#define	VMEM_OPTVALUE		(1 << VMEM_OPTORDER)
#define	VMEM_MAXORDER						\
    (VMEM_OPTVALUE - 1 + sizeof(vmem_size_t) * NBBY - VMEM_OPTORDER)

#define	VMEM_HASHSIZE_MIN	16
#define	VMEM_HASHSIZE_MAX	131072

#define	VMEM_QCACHE_IDX_MAX	16

#define	VMEM_FITMASK	(M_BESTFIT | M_FIRSTFIT)

#define	VMEM_FLAGS						\
    (M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM | M_BESTFIT | M_FIRSTFIT)

#define	BT_FLAGS	(M_NOWAIT | M_WAITOK | M_USE_RESERVE | M_NOVM)

#define	QC_NAME_MAX	16

/*
 * Data structures private to vmem.
 */
MALLOC_DEFINE(M_VMEM, "vmem", "vmem internal structures");

typedef struct vmem_btag bt_t;

TAILQ_HEAD(vmem_seglist, vmem_btag);
LIST_HEAD(vmem_freelist, vmem_btag);
LIST_HEAD(vmem_hashlist, vmem_btag);

struct qcache {
	uma_zone_t	qc_cache;
	vmem_t 		*qc_vmem;
	vmem_size_t	qc_size;
	char		qc_name[QC_NAME_MAX];
};
typedef struct qcache qcache_t;
#define	QC_POOL_TO_QCACHE(pool)	((qcache_t *)(pool->pr_qcache))

#define	VMEM_NAME_MAX	16

/* vmem arena */
struct vmem {
	struct mtx_padalign	vm_lock;
	struct cv		vm_cv;
	char			vm_name[VMEM_NAME_MAX+1];
	LIST_ENTRY(vmem)	vm_alllist;
	struct vmem_hashlist	vm_hash0[VMEM_HASHSIZE_MIN];
	struct vmem_freelist	vm_freelist[VMEM_MAXORDER];
	struct vmem_seglist	vm_seglist;
	struct vmem_hashlist	*vm_hashlist;
	vmem_size_t		vm_hashsize;

	/* Constant after init */
	vmem_size_t		vm_qcache_max;
	vmem_size_t		vm_quantum_mask;
	vmem_size_t		vm_import_quantum;
	int			vm_quantum_shift;

	/* Written on alloc/free */
	LIST_HEAD(, vmem_btag)	vm_freetags;
	int			vm_nfreetags;
	int			vm_nbusytag;
	vmem_size_t		vm_inuse;
	vmem_size_t		vm_size;

	/* Used on import. */
	vmem_import_t		*vm_importfn;
	vmem_release_t		*vm_releasefn;
	void			*vm_arg;

	/* Space exhaustion callback. */
	vmem_reclaim_t		*vm_reclaimfn;

	/* quantum cache */
	qcache_t		vm_qcache[VMEM_QCACHE_IDX_MAX];
};

/* boundary tag */
struct vmem_btag {
	TAILQ_ENTRY(vmem_btag) bt_seglist;
	union {
		LIST_ENTRY(vmem_btag) u_freelist; /* BT_TYPE_FREE */
		LIST_ENTRY(vmem_btag) u_hashlist; /* BT_TYPE_BUSY */
	} bt_u;
#define	bt_hashlist	bt_u.u_hashlist
#define	bt_freelist	bt_u.u_freelist
	vmem_addr_t	bt_start;
	vmem_size_t	bt_size;
	int		bt_type;
};

#define	BT_TYPE_SPAN		1	/* Allocated from importfn */
#define	BT_TYPE_SPAN_STATIC	2	/* vmem_add() or create. */
#define	BT_TYPE_FREE		3	/* Available space. */
#define	BT_TYPE_BUSY		4	/* Used space. */
#define	BT_ISSPAN_P(bt)	((bt)->bt_type <= BT_TYPE_SPAN_STATIC)

#define	BT_END(bt)	((bt)->bt_start + (bt)->bt_size - 1)

#if defined(DIAGNOSTIC)
static int enable_vmem_check = 1;
SYSCTL_INT(_debug, OID_AUTO, vmem_check, CTLFLAG_RWTUN,
    &enable_vmem_check, 0, "Enable vmem check");
static void vmem_check(vmem_t *);
#endif

static struct callout	vmem_periodic_ch;
static int		vmem_periodic_interval;
static struct task	vmem_periodic_wk;

static struct mtx_padalign __exclusive_cache_line vmem_list_lock;
static LIST_HEAD(, vmem) vmem_list = LIST_HEAD_INITIALIZER(vmem_list);

/* ---- misc */
#define	VMEM_CONDVAR_INIT(vm, wchan)	cv_init(&vm->vm_cv, wchan)
#define	VMEM_CONDVAR_DESTROY(vm)	cv_destroy(&vm->vm_cv)
#define	VMEM_CONDVAR_WAIT(vm)		cv_wait(&vm->vm_cv, &vm->vm_lock)
#define	VMEM_CONDVAR_BROADCAST(vm)	cv_broadcast(&vm->vm_cv)


#define	VMEM_LOCK(vm)		mtx_lock(&vm->vm_lock)
#define	VMEM_TRYLOCK(vm)	mtx_trylock(&vm->vm_lock)
#define	VMEM_UNLOCK(vm)		mtx_unlock(&vm->vm_lock)
#define	VMEM_LOCK_INIT(vm, name) mtx_init(&vm->vm_lock, (name), NULL, MTX_DEF)
#define	VMEM_LOCK_DESTROY(vm)	mtx_destroy(&vm->vm_lock)
#define	VMEM_ASSERT_LOCKED(vm)	mtx_assert(&vm->vm_lock, MA_OWNED);

#define	VMEM_ALIGNUP(addr, align)	(-(-(addr) & -(align)))

#define	VMEM_CROSS_P(addr1, addr2, boundary) \
	((((addr1) ^ (addr2)) & -(boundary)) != 0)

#define	ORDER2SIZE(order)	((order) < VMEM_OPTVALUE ? ((order) + 1) : \
    (vmem_size_t)1 << ((order) - (VMEM_OPTVALUE - VMEM_OPTORDER - 1)))
#define	SIZE2ORDER(size)	((size) <= VMEM_OPTVALUE ? ((size) - 1) : \
    (flsl(size) + (VMEM_OPTVALUE - VMEM_OPTORDER - 2)))

/*
 * Maximum number of boundary tags that may be required to satisfy an
 * allocation.  Two may be required to import.  Another two may be
 * required to clip edges.
 */
#define	BT_MAXALLOC	4

/*
 * Max free limits the number of locally cached boundary tags.  We
 * just want to avoid hitting the zone allocator for every call.
 */
#define BT_MAXFREE	(BT_MAXALLOC * 8)

/* Allocator for boundary tags. */
static uma_zone_t vmem_bt_zone;

/* boot time arena storage. */
static struct vmem kernel_arena_storage;
static struct vmem kmem_arena_storage;
static struct vmem buffer_arena_storage;
static struct vmem transient_arena_storage;
vmem_t *kernel_arena = &kernel_arena_storage;
vmem_t *kmem_arena = &kmem_arena_storage;
vmem_t *buffer_arena = &buffer_arena_storage;
vmem_t *transient_arena = &transient_arena_storage;

#ifdef DEBUG_MEMGUARD
static struct vmem memguard_arena_storage;
vmem_t *memguard_arena = &memguard_arena_storage;
#endif

/*
 * Fill the vmem's boundary tag cache.  We guarantee that boundary tag
 * allocation will not fail once bt_fill() passes.  To do so we cache
 * at least the maximum possible tag allocations in the arena.
 */
static int
bt_fill(vmem_t *vm, int flags)
{
	bt_t *bt;

	VMEM_ASSERT_LOCKED(vm);

	/*
	 * Only allow the kmem arena to dip into reserve tags.  It is the
	 * vmem where new tags come from.
	 */
	flags &= BT_FLAGS;
	if (vm != kmem_arena)
		flags &= ~M_USE_RESERVE;

	/*
	 * Loop until we meet the reserve.  To minimize the lock shuffle
	 * and prevent simultaneous fills we first try a NOWAIT regardless
	 * of the caller's flags.  Specify M_NOVM so we don't recurse while
	 * holding a vmem lock.
	 */
	while (vm->vm_nfreetags < BT_MAXALLOC) {
		bt = uma_zalloc(vmem_bt_zone,
		    (flags & M_USE_RESERVE) | M_NOWAIT | M_NOVM);
		if (bt == NULL) {
			VMEM_UNLOCK(vm);
			bt = uma_zalloc(vmem_bt_zone, flags);
			VMEM_LOCK(vm);
			if (bt == NULL && (flags & M_NOWAIT) != 0)
				break;
		}
		LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
		vm->vm_nfreetags++;
	}

	if (vm->vm_nfreetags < BT_MAXALLOC)
		return ENOMEM;

	return 0;
}

/*
 * Pop a tag off of the freetag stack.
 */
static bt_t *
bt_alloc(vmem_t *vm)
{
	bt_t *bt;

	VMEM_ASSERT_LOCKED(vm);
	bt = LIST_FIRST(&vm->vm_freetags);
	MPASS(bt != NULL);
	LIST_REMOVE(bt, bt_freelist);
	vm->vm_nfreetags--;

	return bt;
}

/*
 * Trim the per-vmem free list.  Returns with the lock released to
 * avoid allocator recursions.
 */
static void
bt_freetrim(vmem_t *vm, int freelimit)
{
	LIST_HEAD(, vmem_btag) freetags;
	bt_t *bt;

	LIST_INIT(&freetags);
	VMEM_ASSERT_LOCKED(vm);
	while (vm->vm_nfreetags > freelimit) {
		bt = LIST_FIRST(&vm->vm_freetags);
		LIST_REMOVE(bt, bt_freelist);
		vm->vm_nfreetags--;
		LIST_INSERT_HEAD(&freetags, bt, bt_freelist);
	}
	VMEM_UNLOCK(vm);
	while ((bt = LIST_FIRST(&freetags)) != NULL) {
		LIST_REMOVE(bt, bt_freelist);
		uma_zfree(vmem_bt_zone, bt);
	}
}

static inline void
bt_free(vmem_t *vm, bt_t *bt)
{

	VMEM_ASSERT_LOCKED(vm);
	MPASS(LIST_FIRST(&vm->vm_freetags) != bt);
	LIST_INSERT_HEAD(&vm->vm_freetags, bt, bt_freelist);
	vm->vm_nfreetags++;
}

/*
 * freelist[0] ... [1, 1]
 * freelist[1] ... [2, 2]
 *  :
 * freelist[29] ... [30, 30]
 * freelist[30] ... [31, 31]
 * freelist[31] ... [32, 63]
 * freelist[33] ... [64, 127]
 *  :
 * freelist[n] ... [(1 << (n - 26)), (1 << (n - 25)) - 1]
 *  :
 */

static struct vmem_freelist *
bt_freehead_tofree(vmem_t *vm, vmem_size_t size)
{
	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
	const int idx = SIZE2ORDER(qsize);

	MPASS(size != 0 && qsize != 0);
	MPASS((size & vm->vm_quantum_mask) == 0);
	MPASS(idx >= 0);
	MPASS(idx < VMEM_MAXORDER);

	return &vm->vm_freelist[idx];
}

/*
 * bt_freehead_toalloc: return the freelist for the given size and allocation
 * strategy.
 *
 * For M_FIRSTFIT, return the list in which any blocks are large enough
 * for the requested size.  otherwise, return the list which can have blocks
 * large enough for the requested size.
 */
static struct vmem_freelist *
bt_freehead_toalloc(vmem_t *vm, vmem_size_t size, int strat)
{
	const vmem_size_t qsize = size >> vm->vm_quantum_shift;
	int idx = SIZE2ORDER(qsize);

	MPASS(size != 0 && qsize != 0);
	MPASS((size & vm->vm_quantum_mask) == 0);

	if (strat == M_FIRSTFIT && ORDER2SIZE(idx) != qsize) {
		idx++;
		/* check too large request? */
	}
	MPASS(idx >= 0);
	MPASS(idx < VMEM_MAXORDER);

	return &vm->vm_freelist[idx];
}

/* ---- boundary tag hash */

static struct vmem_hashlist *
bt_hashhead(vmem_t *vm, vmem_addr_t addr)
{
	struct vmem_hashlist *list;
	unsigned int hash;

	hash = hash32_buf(&addr, sizeof(addr), 0);
	list = &vm->vm_hashlist[hash % vm->vm_hashsize];

	return list;
}

static bt_t *
bt_lookupbusy(vmem_t *vm, vmem_addr_t addr)
{
	struct vmem_hashlist *list;
	bt_t *bt;

	VMEM_ASSERT_LOCKED(vm);
	list = bt_hashhead(vm, addr); 
	LIST_FOREACH(bt, list, bt_hashlist) {
		if (bt->bt_start == addr) {
			break;
		}
	}

	return bt;
}

static void
bt_rembusy(vmem_t *vm, bt_t *bt)
{

	VMEM_ASSERT_LOCKED(vm);
	MPASS(vm->vm_nbusytag > 0);
	vm->vm_inuse -= bt->bt_size;
	vm->vm_nbusytag--;
	LIST_REMOVE(bt, bt_hashlist);
}

static void
bt_insbusy(vmem_t *vm, bt_t *bt)
{
	struct vmem_hashlist *list;

	VMEM_ASSERT_LOCKED(vm);
	MPASS(bt->bt_type == BT_TYPE_BUSY);

	list = bt_hashhead(vm, bt->bt_start);
	LIST_INSERT_HEAD(list, bt, bt_hashlist);
	vm->vm_nbusytag++;
	vm->vm_inuse += bt->bt_size;
}

/* ---- boundary tag list */

static void
bt_remseg(vmem_t *vm, bt_t *bt)
{

	TAILQ_REMOVE(&vm->vm_seglist, bt, bt_seglist);
	bt_free(vm, bt);
}

static void
bt_insseg(vmem_t *vm, bt_t *bt, bt_t *prev)
{

	TAILQ_INSERT_AFTER(&vm->vm_seglist, prev, bt, bt_seglist);
}

static void
bt_insseg_tail(vmem_t *vm, bt_t *bt)
{

	TAILQ_INSERT_TAIL(&vm->vm_seglist, bt, bt_seglist);
}

static void
bt_remfree(vmem_t *vm, bt_t *bt)
{

	MPASS(bt->bt_type == BT_TYPE_FREE);

	LIST_REMOVE(bt, bt_freelist);
}

static void
bt_insfree(vmem_t *vm, bt_t *bt)
{
	struct vmem_freelist *list;

	list = bt_freehead_tofree(vm, bt->bt_size);
	LIST_INSERT_HEAD(list, bt, bt_freelist);
}

/* ---- vmem internal functions */

/*
 * Import from the arena into the quantum cache in UMA.
 */
static int
qc_import(void *arg, void **store, int cnt, int flags)
{
	qcache_t *qc;
	vmem_addr_t addr;
	int i;

	qc = arg;
	if ((flags & VMEM_FITMASK) == 0)
		flags |= M_BESTFIT;
	for (i = 0; i < cnt; i++) {
		if (vmem_xalloc(qc->qc_vmem, qc->qc_size, 0, 0, 0,
		    VMEM_ADDR_MIN, VMEM_ADDR_MAX, flags, &addr) != 0)
			break;
		store[i] = (void *)addr;
		/* Only guarantee one allocation. */
		flags &= ~M_WAITOK;
		flags |= M_NOWAIT;
	}
	return i;
}

/*
 * Release memory from the UMA cache to the arena.
 */
static void
qc_release(void *arg, void **store, int cnt)
{
	qcache_t *qc;
	int i;

	qc = arg;
	for (i = 0; i < cnt; i++)
		vmem_xfree(qc->qc_vmem, (vmem_addr_t)store[i], qc->qc_size);
}

static void
qc_init(vmem_t *vm, vmem_size_t qcache_max)
{
	qcache_t *qc;
	vmem_size_t size;
	int qcache_idx_max;
	int i;

	MPASS((qcache_max & vm->vm_quantum_mask) == 0);
	qcache_idx_max = MIN(qcache_max >> vm->vm_quantum_shift,
	    VMEM_QCACHE_IDX_MAX);
	vm->vm_qcache_max = qcache_idx_max << vm->vm_quantum_shift;
	for (i = 0; i < qcache_idx_max; i++) {
		qc = &vm->vm_qcache[i];
		size = (i + 1) << vm->vm_quantum_shift;
		snprintf(qc->qc_name, sizeof(qc->qc_name), "%s-%zu",
		    vm->vm_name, size);
		qc->qc_vmem = vm;
		qc->qc_size = size;
		qc->qc_cache = uma_zcache_create(qc->qc_name, size,
		    NULL, NULL, NULL, NULL, qc_import, qc_release, qc,
		    UMA_ZONE_VM);
		MPASS(qc->qc_cache);
	}
}

static void
qc_destroy(vmem_t *vm)
{
	int qcache_idx_max;
	int i;

	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
	for (i = 0; i < qcache_idx_max; i++)
		uma_zdestroy(vm->vm_qcache[i].qc_cache);
}

static void
qc_drain(vmem_t *vm)
{
	int qcache_idx_max;
	int i;

	qcache_idx_max = vm->vm_qcache_max >> vm->vm_quantum_shift;
	for (i = 0; i < qcache_idx_max; i++)
		zone_drain(vm->vm_qcache[i].qc_cache);
}

#ifndef UMA_MD_SMALL_ALLOC

static struct mtx_padalign __exclusive_cache_line vmem_bt_lock;

/*
 * vmem_bt_alloc:  Allocate a new page of boundary tags.
 *
 * On architectures with uma_small_alloc there is no recursion; no address
 * space need be allocated to allocate boundary tags.  For the others, we
 * must handle recursion.  Boundary tags are necessary to allocate new
 * boundary tags.
 *
 * UMA guarantees that enough tags are held in reserve to allocate a new
 * page of kva.  We dip into this reserve by specifying M_USE_RESERVE only
 * when allocating the page to hold new boundary tags.  In this way the
 * reserve is automatically filled by the allocation that uses the reserve.
 * 
 * We still have to guarantee that the new tags are allocated atomically since
 * many threads may try concurrently.  The bt_lock provides this guarantee.
 * We convert WAITOK allocations to NOWAIT and then handle the blocking here
 * on failure.  It's ok to return NULL for a WAITOK allocation as UMA will
 * loop again after checking to see if we lost the race to allocate.
 *
 * There is a small race between vmem_bt_alloc() returning the page and the
 * zone lock being acquired to add the page to the zone.  For WAITOK
 * allocations we just pause briefly.  NOWAIT may experience a transient
 * failure.  To alleviate this we permit a small number of simultaneous
 * fills to proceed concurrently so NOWAIT is less likely to fail unless
 * we are really out of KVA.
 */
static void *
vmem_bt_alloc(uma_zone_t zone, vm_size_t bytes, uint8_t *pflag, int wait)
{
	vmem_addr_t addr;

	*pflag = UMA_SLAB_KMEM;

	/*
	 * Single thread boundary tag allocation so that the address space
	 * and memory are added in one atomic operation.
	 */
	mtx_lock(&vmem_bt_lock);
	if (vmem_xalloc(kmem_arena, bytes, 0, 0, 0, VMEM_ADDR_MIN,
	    VMEM_ADDR_MAX, M_NOWAIT | M_NOVM | M_USE_RESERVE | M_BESTFIT,
	    &addr) == 0) {
		if (kmem_back(kmem_object, addr, bytes,
		    M_NOWAIT | M_USE_RESERVE) == 0) {
			mtx_unlock(&vmem_bt_lock);
			return ((void *)addr);
		}
		vmem_xfree(kmem_arena, addr, bytes);
		mtx_unlock(&vmem_bt_lock);
		/*
		 * Out of memory, not address space.  This may not even be
		 * possible due to M_USE_RESERVE page allocation.
		 */
		if (wait & M_WAITOK)
			VM_WAIT;
		return (NULL);
	}
	mtx_unlock(&vmem_bt_lock);
	/*
	 * We're either out of address space or lost a fill race.
	 */
	if (wait & M_WAITOK)
		pause("btalloc", 1);

	return (NULL);
}
#endif

void
vmem_startup(void)
{

	mtx_init(&vmem_list_lock, "vmem list lock", NULL, MTX_DEF);
	vmem_bt_zone = uma_zcreate("vmem btag",
	    sizeof(struct vmem_btag), NULL, NULL, NULL, NULL,
	    UMA_ALIGN_PTR, UMA_ZONE_VM);
#ifndef UMA_MD_SMALL_ALLOC
	mtx_init(&vmem_bt_lock, "btag lock", NULL, MTX_DEF);
	uma_prealloc(vmem_bt_zone, BT_MAXALLOC);
	/*
	 * Reserve enough tags to allocate new tags.  We allow multiple
	 * CPUs to attempt to allocate new tags concurrently to limit
	 * false restarts in UMA.
	 */
	uma_zone_reserve(vmem_bt_zone, BT_MAXALLOC * (mp_ncpus + 1) / 2);
	uma_zone_set_allocf(vmem_bt_zone, vmem_bt_alloc);
#endif
}

/* ---- rehash */

static int
vmem_rehash(vmem_t *vm, vmem_size_t newhashsize)
{
	bt_t *bt;
	int i;
	struct vmem_hashlist *newhashlist;
	struct vmem_hashlist *oldhashlist;
	vmem_size_t oldhashsize;

	MPASS(newhashsize > 0);

	newhashlist = malloc(sizeof(struct vmem_hashlist) * newhashsize,
	    M_VMEM, M_NOWAIT);
	if (newhashlist == NULL)
		return ENOMEM;
	for (i = 0; i < newhashsize; i++) {
		LIST_INIT(&newhashlist[i]);
	}

	VMEM_LOCK(vm);
	oldhashlist = vm->vm_hashlist;
	oldhashsize = vm->vm_hashsize;
	vm->vm_hashlist = newhashlist;
	vm->vm_hashsize = newhashsize;
	if (oldhashlist == NULL) {
		VMEM_UNLOCK(vm);
		return 0;
	}
	for (i = 0; i < oldhashsize; i++) {
		while ((bt = LIST_FIRST(&oldhashlist[i])) != NULL) {
			bt_rembusy(vm, bt);
			bt_insbusy(vm, bt);
		}
	}
	VMEM_UNLOCK(vm);

	if (oldhashlist != vm->vm_hash0) {
		free(oldhashlist, M_VMEM);
	}

	return 0;
}

static void
vmem_periodic_kick(void *dummy)
{

	taskqueue_enqueue(taskqueue_thread, &vmem_periodic_wk);
}

static void
vmem_periodic(void *unused, int pending)
{
	vmem_t *vm;
	vmem_size_t desired;
	vmem_size_t current;

	mtx_lock(&vmem_list_lock);
	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
#ifdef DIAGNOSTIC
		/* Convenient time to verify vmem state. */
		if (enable_vmem_check == 1) {
			VMEM_LOCK(vm);
			vmem_check(vm);
			VMEM_UNLOCK(vm);
		}
#endif
		desired = 1 << flsl(vm->vm_nbusytag);
		desired = MIN(MAX(desired, VMEM_HASHSIZE_MIN),
		    VMEM_HASHSIZE_MAX);
		current = vm->vm_hashsize;

		/* Grow in powers of two.  Shrink less aggressively. */
		if (desired >= current * 2 || desired * 4 <= current)
			vmem_rehash(vm, desired);

		/*
		 * Periodically wake up threads waiting for resources,
		 * so they could ask for reclamation again.
		 */
		VMEM_CONDVAR_BROADCAST(vm);
	}
	mtx_unlock(&vmem_list_lock);

	callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
	    vmem_periodic_kick, NULL);
}

static void
vmem_start_callout(void *unused)
{

	TASK_INIT(&vmem_periodic_wk, 0, vmem_periodic, NULL);
	vmem_periodic_interval = hz * 10;
	callout_init(&vmem_periodic_ch, 1);
	callout_reset(&vmem_periodic_ch, vmem_periodic_interval,
	    vmem_periodic_kick, NULL);
}
SYSINIT(vfs, SI_SUB_CONFIGURE, SI_ORDER_ANY, vmem_start_callout, NULL);

static void
vmem_add1(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int type)
{
	bt_t *btspan;
	bt_t *btfree;

	MPASS(type == BT_TYPE_SPAN || type == BT_TYPE_SPAN_STATIC);
	MPASS((size & vm->vm_quantum_mask) == 0);

	btspan = bt_alloc(vm);
	btspan->bt_type = type;
	btspan->bt_start = addr;
	btspan->bt_size = size;
	bt_insseg_tail(vm, btspan);

	btfree = bt_alloc(vm);
	btfree->bt_type = BT_TYPE_FREE;
	btfree->bt_start = addr;
	btfree->bt_size = size;
	bt_insseg(vm, btfree, btspan);
	bt_insfree(vm, btfree);

	vm->vm_size += size;
}

static void
vmem_destroy1(vmem_t *vm)
{
	bt_t *bt;

	/*
	 * Drain per-cpu quantum caches.
	 */
	qc_destroy(vm);

	/*
	 * The vmem should now only contain empty segments.
	 */
	VMEM_LOCK(vm);
	MPASS(vm->vm_nbusytag == 0);

	while ((bt = TAILQ_FIRST(&vm->vm_seglist)) != NULL)
		bt_remseg(vm, bt);

	if (vm->vm_hashlist != NULL && vm->vm_hashlist != vm->vm_hash0)
		free(vm->vm_hashlist, M_VMEM);

	bt_freetrim(vm, 0);

	VMEM_CONDVAR_DESTROY(vm);
	VMEM_LOCK_DESTROY(vm);
	free(vm, M_VMEM);
}

static int
vmem_import(vmem_t *vm, vmem_size_t size, vmem_size_t align, int flags)
{
	vmem_addr_t addr;
	int error;

	if (vm->vm_importfn == NULL)
		return EINVAL;

	/*
	 * To make sure we get a span that meets the alignment we double it
	 * and add the size to the tail.  This slightly overestimates.
	 */
	if (align != vm->vm_quantum_mask + 1)
		size = (align * 2) + size;
	size = roundup(size, vm->vm_import_quantum);

	/*
	 * Hide MAXALLOC tags so we're guaranteed to be able to add this
	 * span and the tag we want to allocate from it.
	 */
	MPASS(vm->vm_nfreetags >= BT_MAXALLOC);
	vm->vm_nfreetags -= BT_MAXALLOC;
	VMEM_UNLOCK(vm);
	error = (vm->vm_importfn)(vm->vm_arg, size, flags, &addr);
	VMEM_LOCK(vm);
	vm->vm_nfreetags += BT_MAXALLOC;
	if (error)
		return ENOMEM;

	vmem_add1(vm, addr, size, BT_TYPE_SPAN);

	return 0;
}

/*
 * vmem_fit: check if a bt can satisfy the given restrictions.
 *
 * it's a caller's responsibility to ensure the region is big enough
 * before calling us.
 */
static int
vmem_fit(const bt_t *bt, vmem_size_t size, vmem_size_t align,
    vmem_size_t phase, vmem_size_t nocross, vmem_addr_t minaddr,
    vmem_addr_t maxaddr, vmem_addr_t *addrp)
{
	vmem_addr_t start;
	vmem_addr_t end;

	MPASS(size > 0);
	MPASS(bt->bt_size >= size); /* caller's responsibility */

	/*
	 * XXX assumption: vmem_addr_t and vmem_size_t are
	 * unsigned integer of the same size.
	 */

	start = bt->bt_start;
	if (start < minaddr) {
		start = minaddr;
	}
	end = BT_END(bt);
	if (end > maxaddr)
		end = maxaddr;
	if (start > end) 
		return (ENOMEM);

	start = VMEM_ALIGNUP(start - phase, align) + phase;
	if (start < bt->bt_start)
		start += align;
	if (VMEM_CROSS_P(start, start + size - 1, nocross)) {
		MPASS(align < nocross);
		start = VMEM_ALIGNUP(start - phase, nocross) + phase;
	}
	if (start <= end && end - start >= size - 1) {
		MPASS((start & (align - 1)) == phase);
		MPASS(!VMEM_CROSS_P(start, start + size - 1, nocross));
		MPASS(minaddr <= start);
		MPASS(maxaddr == 0 || start + size - 1 <= maxaddr);
		MPASS(bt->bt_start <= start);
		MPASS(BT_END(bt) - start >= size - 1);
		*addrp = start;

		return (0);
	}
	return (ENOMEM);
}

/*
 * vmem_clip:  Trim the boundary tag edges to the requested start and size.
 */
static void
vmem_clip(vmem_t *vm, bt_t *bt, vmem_addr_t start, vmem_size_t size)
{
	bt_t *btnew;
	bt_t *btprev;

	VMEM_ASSERT_LOCKED(vm);
	MPASS(bt->bt_type == BT_TYPE_FREE);
	MPASS(bt->bt_size >= size);
	bt_remfree(vm, bt);
	if (bt->bt_start != start) {
		btprev = bt_alloc(vm);
		btprev->bt_type = BT_TYPE_FREE;
		btprev->bt_start = bt->bt_start;
		btprev->bt_size = start - bt->bt_start;
		bt->bt_start = start;
		bt->bt_size -= btprev->bt_size;
		bt_insfree(vm, btprev);
		bt_insseg(vm, btprev,
		    TAILQ_PREV(bt, vmem_seglist, bt_seglist));
	}
	MPASS(bt->bt_start == start);
	if (bt->bt_size != size && bt->bt_size - size > vm->vm_quantum_mask) {
		/* split */
		btnew = bt_alloc(vm);
		btnew->bt_type = BT_TYPE_BUSY;
		btnew->bt_start = bt->bt_start;
		btnew->bt_size = size;
		bt->bt_start = bt->bt_start + size;
		bt->bt_size -= size;
		bt_insfree(vm, bt);
		bt_insseg(vm, btnew,
		    TAILQ_PREV(bt, vmem_seglist, bt_seglist));
		bt_insbusy(vm, btnew);
		bt = btnew;
	} else {
		bt->bt_type = BT_TYPE_BUSY;
		bt_insbusy(vm, bt);
	}
	MPASS(bt->bt_size >= size);
	bt->bt_type = BT_TYPE_BUSY;
}

/* ---- vmem API */

void
vmem_set_import(vmem_t *vm, vmem_import_t *importfn,
     vmem_release_t *releasefn, void *arg, vmem_size_t import_quantum)
{

	VMEM_LOCK(vm);
	vm->vm_importfn = importfn;
	vm->vm_releasefn = releasefn;
	vm->vm_arg = arg;
	vm->vm_import_quantum = import_quantum;
	VMEM_UNLOCK(vm);
}

void
vmem_set_reclaim(vmem_t *vm, vmem_reclaim_t *reclaimfn)
{

	VMEM_LOCK(vm);
	vm->vm_reclaimfn = reclaimfn;
	VMEM_UNLOCK(vm);
}

/*
 * vmem_init: Initializes vmem arena.
 */
vmem_t *
vmem_init(vmem_t *vm, const char *name, vmem_addr_t base, vmem_size_t size,
    vmem_size_t quantum, vmem_size_t qcache_max, int flags)
{
	int i;

	MPASS(quantum > 0);
	MPASS((quantum & (quantum - 1)) == 0);

	bzero(vm, sizeof(*vm));

	VMEM_CONDVAR_INIT(vm, name);
	VMEM_LOCK_INIT(vm, name);
	vm->vm_nfreetags = 0;
	LIST_INIT(&vm->vm_freetags);
	strlcpy(vm->vm_name, name, sizeof(vm->vm_name));
	vm->vm_quantum_mask = quantum - 1;
	vm->vm_quantum_shift = flsl(quantum) - 1;
	vm->vm_nbusytag = 0;
	vm->vm_size = 0;
	vm->vm_inuse = 0;
	qc_init(vm, qcache_max);

	TAILQ_INIT(&vm->vm_seglist);
	for (i = 0; i < VMEM_MAXORDER; i++) {
		LIST_INIT(&vm->vm_freelist[i]);
	}
	memset(&vm->vm_hash0, 0, sizeof(vm->vm_hash0));
	vm->vm_hashsize = VMEM_HASHSIZE_MIN;
	vm->vm_hashlist = vm->vm_hash0;

	if (size != 0) {
		if (vmem_add(vm, base, size, flags) != 0) {
			vmem_destroy1(vm);
			return NULL;
		}
	}

	mtx_lock(&vmem_list_lock);
	LIST_INSERT_HEAD(&vmem_list, vm, vm_alllist);
	mtx_unlock(&vmem_list_lock);

	return vm;
}

/*
 * vmem_create: create an arena.
 */
vmem_t *
vmem_create(const char *name, vmem_addr_t base, vmem_size_t size,
    vmem_size_t quantum, vmem_size_t qcache_max, int flags)
{

	vmem_t *vm;

	vm = malloc(sizeof(*vm), M_VMEM, flags & (M_WAITOK|M_NOWAIT));
	if (vm == NULL)
		return (NULL);
	if (vmem_init(vm, name, base, size, quantum, qcache_max,
	    flags) == NULL)
		return (NULL);
	return (vm);
}

void
vmem_destroy(vmem_t *vm)
{

	mtx_lock(&vmem_list_lock);
	LIST_REMOVE(vm, vm_alllist);
	mtx_unlock(&vmem_list_lock);

	vmem_destroy1(vm);
}

vmem_size_t
vmem_roundup_size(vmem_t *vm, vmem_size_t size)
{

	return (size + vm->vm_quantum_mask) & ~vm->vm_quantum_mask;
}

/*
 * vmem_alloc: allocate resource from the arena.
 */
int
vmem_alloc(vmem_t *vm, vmem_size_t size, int flags, vmem_addr_t *addrp)
{
	const int strat __unused = flags & VMEM_FITMASK;
	qcache_t *qc;

	flags &= VMEM_FLAGS;
	MPASS(size > 0);
	MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT);
	if ((flags & M_NOWAIT) == 0)
		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_alloc");

	if (size <= vm->vm_qcache_max) {
		qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
		*addrp = (vmem_addr_t)uma_zalloc(qc->qc_cache, flags);
		if (*addrp == 0)
			return (ENOMEM);
		return (0);
	}

	return vmem_xalloc(vm, size, 0, 0, 0, VMEM_ADDR_MIN, VMEM_ADDR_MAX,
	    flags, addrp);
}

int
vmem_xalloc(vmem_t *vm, const vmem_size_t size0, vmem_size_t align,
    const vmem_size_t phase, const vmem_size_t nocross,
    const vmem_addr_t minaddr, const vmem_addr_t maxaddr, int flags,
    vmem_addr_t *addrp)
{
	const vmem_size_t size = vmem_roundup_size(vm, size0);
	struct vmem_freelist *list;
	struct vmem_freelist *first;
	struct vmem_freelist *end;
	vmem_size_t avail;
	bt_t *bt;
	int error;
	int strat;

	flags &= VMEM_FLAGS;
	strat = flags & VMEM_FITMASK;
	MPASS(size0 > 0);
	MPASS(size > 0);
	MPASS(strat == M_BESTFIT || strat == M_FIRSTFIT);
	MPASS((flags & (M_NOWAIT|M_WAITOK)) != (M_NOWAIT|M_WAITOK));
	if ((flags & M_NOWAIT) == 0)
		WITNESS_WARN(WARN_GIANTOK | WARN_SLEEPOK, NULL, "vmem_xalloc");
	MPASS((align & vm->vm_quantum_mask) == 0);
	MPASS((align & (align - 1)) == 0);
	MPASS((phase & vm->vm_quantum_mask) == 0);
	MPASS((nocross & vm->vm_quantum_mask) == 0);
	MPASS((nocross & (nocross - 1)) == 0);
	MPASS((align == 0 && phase == 0) || phase < align);
	MPASS(nocross == 0 || nocross >= size);
	MPASS(minaddr <= maxaddr);
	MPASS(!VMEM_CROSS_P(phase, phase + size - 1, nocross));

	if (align == 0)
		align = vm->vm_quantum_mask + 1;

	*addrp = 0;
	end = &vm->vm_freelist[VMEM_MAXORDER];
	/*
	 * choose a free block from which we allocate.
	 */
	first = bt_freehead_toalloc(vm, size, strat);
	VMEM_LOCK(vm);
	for (;;) {
		/*
		 * Make sure we have enough tags to complete the
		 * operation.
		 */
		if (vm->vm_nfreetags < BT_MAXALLOC &&
		    bt_fill(vm, flags) != 0) {
			error = ENOMEM;
			break;
		}
		/*
	 	 * Scan freelists looking for a tag that satisfies the
		 * allocation.  If we're doing BESTFIT we may encounter
		 * sizes below the request.  If we're doing FIRSTFIT we
		 * inspect only the first element from each list.
		 */
		for (list = first; list < end; list++) {
			LIST_FOREACH(bt, list, bt_freelist) {
				if (bt->bt_size >= size) {
					error = vmem_fit(bt, size, align, phase,
					    nocross, minaddr, maxaddr, addrp);
					if (error == 0) {
						vmem_clip(vm, bt, *addrp, size);
						goto out;
					}
				}
				/* FIRST skips to the next list. */
				if (strat == M_FIRSTFIT)
					break;
			}
		}
		/*
		 * Retry if the fast algorithm failed.
		 */
		if (strat == M_FIRSTFIT) {
			strat = M_BESTFIT;
			first = bt_freehead_toalloc(vm, size, strat);
			continue;
		}
		/*
		 * XXX it is possible to fail to meet restrictions with the
		 * imported region.  It is up to the user to specify the
		 * import quantum such that it can satisfy any allocation.
		 */
		if (vmem_import(vm, size, align, flags) == 0)
			continue;

		/*
		 * Try to free some space from the quantum cache or reclaim
		 * functions if available.
		 */
		if (vm->vm_qcache_max != 0 || vm->vm_reclaimfn != NULL) {
			avail = vm->vm_size - vm->vm_inuse;
			VMEM_UNLOCK(vm);
			if (vm->vm_qcache_max != 0)
				qc_drain(vm);
			if (vm->vm_reclaimfn != NULL)
				vm->vm_reclaimfn(vm, flags);
			VMEM_LOCK(vm);
			/* If we were successful retry even NOWAIT. */
			if (vm->vm_size - vm->vm_inuse > avail)
				continue;
		}
		if ((flags & M_NOWAIT) != 0) {
			error = ENOMEM;
			break;
		}
		VMEM_CONDVAR_WAIT(vm);
	}
out:
	VMEM_UNLOCK(vm);
	if (error != 0 && (flags & M_NOWAIT) == 0)
		panic("failed to allocate waiting allocation\n");

	return (error);
}

/*
 * vmem_free: free the resource to the arena.
 */
void
vmem_free(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
{
	qcache_t *qc;
	MPASS(size > 0);

	if (size <= vm->vm_qcache_max) {
		qc = &vm->vm_qcache[(size - 1) >> vm->vm_quantum_shift];
		uma_zfree(qc->qc_cache, (void *)addr);
	} else
		vmem_xfree(vm, addr, size);
}

void
vmem_xfree(vmem_t *vm, vmem_addr_t addr, vmem_size_t size)
{
	bt_t *bt;
	bt_t *t;

	MPASS(size > 0);

	VMEM_LOCK(vm);
	bt = bt_lookupbusy(vm, addr);
	MPASS(bt != NULL);
	MPASS(bt->bt_start == addr);
	MPASS(bt->bt_size == vmem_roundup_size(vm, size) ||
	    bt->bt_size - vmem_roundup_size(vm, size) <= vm->vm_quantum_mask);
	MPASS(bt->bt_type == BT_TYPE_BUSY);
	bt_rembusy(vm, bt);
	bt->bt_type = BT_TYPE_FREE;

	/* coalesce */
	t = TAILQ_NEXT(bt, bt_seglist);
	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
		MPASS(BT_END(bt) < t->bt_start);	/* YYY */
		bt->bt_size += t->bt_size;
		bt_remfree(vm, t);
		bt_remseg(vm, t);
	}
	t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
	if (t != NULL && t->bt_type == BT_TYPE_FREE) {
		MPASS(BT_END(t) < bt->bt_start);	/* YYY */
		bt->bt_size += t->bt_size;
		bt->bt_start = t->bt_start;
		bt_remfree(vm, t);
		bt_remseg(vm, t);
	}

	t = TAILQ_PREV(bt, vmem_seglist, bt_seglist);
	MPASS(t != NULL);
	MPASS(BT_ISSPAN_P(t) || t->bt_type == BT_TYPE_BUSY);
	if (vm->vm_releasefn != NULL && t->bt_type == BT_TYPE_SPAN &&
	    t->bt_size == bt->bt_size) {
		vmem_addr_t spanaddr;
		vmem_size_t spansize;

		MPASS(t->bt_start == bt->bt_start);
		spanaddr = bt->bt_start;
		spansize = bt->bt_size;
		bt_remseg(vm, bt);
		bt_remseg(vm, t);
		vm->vm_size -= spansize;
		VMEM_CONDVAR_BROADCAST(vm);
		bt_freetrim(vm, BT_MAXFREE);
		(*vm->vm_releasefn)(vm->vm_arg, spanaddr, spansize);
	} else {
		bt_insfree(vm, bt);
		VMEM_CONDVAR_BROADCAST(vm);
		bt_freetrim(vm, BT_MAXFREE);
	}
}

/*
 * vmem_add:
 *
 */
int
vmem_add(vmem_t *vm, vmem_addr_t addr, vmem_size_t size, int flags)
{
	int error;

	error = 0;
	flags &= VMEM_FLAGS;
	VMEM_LOCK(vm);
	if (vm->vm_nfreetags >= BT_MAXALLOC || bt_fill(vm, flags) == 0)
		vmem_add1(vm, addr, size, BT_TYPE_SPAN_STATIC);
	else
		error = ENOMEM;
	VMEM_UNLOCK(vm);

	return (error);
}

/*
 * vmem_size: information about arenas size
 */
vmem_size_t
vmem_size(vmem_t *vm, int typemask)
{
	int i;

	switch (typemask) {
	case VMEM_ALLOC:
		return vm->vm_inuse;
	case VMEM_FREE:
		return vm->vm_size - vm->vm_inuse;
	case VMEM_FREE|VMEM_ALLOC:
		return vm->vm_size;
	case VMEM_MAXFREE:
		VMEM_LOCK(vm);
		for (i = VMEM_MAXORDER - 1; i >= 0; i--) {
			if (LIST_EMPTY(&vm->vm_freelist[i]))
				continue;
			VMEM_UNLOCK(vm);
			return ((vmem_size_t)ORDER2SIZE(i) <<
			    vm->vm_quantum_shift);
		}
		VMEM_UNLOCK(vm);
		return (0);
	default:
		panic("vmem_size");
	}
}

/* ---- debug */

#if defined(DDB) || defined(DIAGNOSTIC)

static void bt_dump(const bt_t *, int (*)(const char *, ...)
    __printflike(1, 2));

static const char *
bt_type_string(int type)
{

	switch (type) {
	case BT_TYPE_BUSY:
		return "busy";
	case BT_TYPE_FREE:
		return "free";
	case BT_TYPE_SPAN:
		return "span";
	case BT_TYPE_SPAN_STATIC:
		return "static span";
	default:
		break;
	}
	return "BOGUS";
}

static void
bt_dump(const bt_t *bt, int (*pr)(const char *, ...))
{

	(*pr)("\t%p: %jx %jx, %d(%s)\n",
	    bt, (intmax_t)bt->bt_start, (intmax_t)bt->bt_size,
	    bt->bt_type, bt_type_string(bt->bt_type));
}

static void
vmem_dump(const vmem_t *vm , int (*pr)(const char *, ...) __printflike(1, 2))
{
	const bt_t *bt;
	int i;

	(*pr)("vmem %p '%s'\n", vm, vm->vm_name);
	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
		bt_dump(bt, pr);
	}

	for (i = 0; i < VMEM_MAXORDER; i++) {
		const struct vmem_freelist *fl = &vm->vm_freelist[i];

		if (LIST_EMPTY(fl)) {
			continue;
		}

		(*pr)("freelist[%d]\n", i);
		LIST_FOREACH(bt, fl, bt_freelist) {
			bt_dump(bt, pr);
		}
	}
}

#endif /* defined(DDB) || defined(DIAGNOSTIC) */

#if defined(DDB)
#include <ddb/ddb.h>

static bt_t *
vmem_whatis_lookup(vmem_t *vm, vmem_addr_t addr)
{
	bt_t *bt;

	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
		if (BT_ISSPAN_P(bt)) {
			continue;
		}
		if (bt->bt_start <= addr && addr <= BT_END(bt)) {
			return bt;
		}
	}

	return NULL;
}

void
vmem_whatis(vmem_addr_t addr, int (*pr)(const char *, ...))
{
	vmem_t *vm;

	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
		bt_t *bt;

		bt = vmem_whatis_lookup(vm, addr);
		if (bt == NULL) {
			continue;
		}
		(*pr)("%p is %p+%zu in VMEM '%s' (%s)\n",
		    (void *)addr, (void *)bt->bt_start,
		    (vmem_size_t)(addr - bt->bt_start), vm->vm_name,
		    (bt->bt_type == BT_TYPE_BUSY) ? "allocated" : "free");
	}
}

void
vmem_printall(const char *modif, int (*pr)(const char *, ...))
{
	const vmem_t *vm;

	LIST_FOREACH(vm, &vmem_list, vm_alllist) {
		vmem_dump(vm, pr);
	}
}

void
vmem_print(vmem_addr_t addr, const char *modif, int (*pr)(const char *, ...))
{
	const vmem_t *vm = (const void *)addr;

	vmem_dump(vm, pr);
}

DB_SHOW_COMMAND(vmemdump, vmemdump)
{

	if (!have_addr) {
		db_printf("usage: show vmemdump <addr>\n");
		return;
	}

	vmem_dump((const vmem_t *)addr, db_printf);
}

DB_SHOW_ALL_COMMAND(vmemdump, vmemdumpall)
{
	const vmem_t *vm;

	LIST_FOREACH(vm, &vmem_list, vm_alllist)
		vmem_dump(vm, db_printf);
}

DB_SHOW_COMMAND(vmem, vmem_summ)
{
	const vmem_t *vm = (const void *)addr;
	const bt_t *bt;
	size_t ft[VMEM_MAXORDER], ut[VMEM_MAXORDER];
	size_t fs[VMEM_MAXORDER], us[VMEM_MAXORDER];
	int ord;

	if (!have_addr) {
		db_printf("usage: show vmem <addr>\n");
		return;
	}

	db_printf("vmem %p '%s'\n", vm, vm->vm_name);
	db_printf("\tquantum:\t%zu\n", vm->vm_quantum_mask + 1);
	db_printf("\tsize:\t%zu\n", vm->vm_size);
	db_printf("\tinuse:\t%zu\n", vm->vm_inuse);
	db_printf("\tfree:\t%zu\n", vm->vm_size - vm->vm_inuse);
	db_printf("\tbusy tags:\t%d\n", vm->vm_nbusytag);
	db_printf("\tfree tags:\t%d\n", vm->vm_nfreetags);

	memset(&ft, 0, sizeof(ft));
	memset(&ut, 0, sizeof(ut));
	memset(&fs, 0, sizeof(fs));
	memset(&us, 0, sizeof(us));
	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
		ord = SIZE2ORDER(bt->bt_size >> vm->vm_quantum_shift);
		if (bt->bt_type == BT_TYPE_BUSY) {
			ut[ord]++;
			us[ord] += bt->bt_size;
		} else if (bt->bt_type == BT_TYPE_FREE) {
			ft[ord]++;
			fs[ord] += bt->bt_size;
		}
	}
	db_printf("\t\t\tinuse\tsize\t\tfree\tsize\n");
	for (ord = 0; ord < VMEM_MAXORDER; ord++) {
		if (ut[ord] == 0 && ft[ord] == 0)
			continue;
		db_printf("\t%-15zu %zu\t%-15zu %zu\t%-16zu\n",
		    ORDER2SIZE(ord) << vm->vm_quantum_shift,
		    ut[ord], us[ord], ft[ord], fs[ord]);
	}
}

DB_SHOW_ALL_COMMAND(vmem, vmem_summall)
{
	const vmem_t *vm;

	LIST_FOREACH(vm, &vmem_list, vm_alllist)
		vmem_summ((db_expr_t)vm, TRUE, count, modif);
}
#endif /* defined(DDB) */

#define vmem_printf printf

#if defined(DIAGNOSTIC)

static bool
vmem_check_sanity(vmem_t *vm)
{
	const bt_t *bt, *bt2;

	MPASS(vm != NULL);

	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
		if (bt->bt_start > BT_END(bt)) {
			printf("corrupted tag\n");
			bt_dump(bt, vmem_printf);
			return false;
		}
	}
	TAILQ_FOREACH(bt, &vm->vm_seglist, bt_seglist) {
		TAILQ_FOREACH(bt2, &vm->vm_seglist, bt_seglist) {
			if (bt == bt2) {
				continue;
			}
			if (BT_ISSPAN_P(bt) != BT_ISSPAN_P(bt2)) {
				continue;
			}
			if (bt->bt_start <= BT_END(bt2) &&
			    bt2->bt_start <= BT_END(bt)) {
				printf("overwrapped tags\n");
				bt_dump(bt, vmem_printf);
				bt_dump(bt2, vmem_printf);
				return false;
			}
		}
	}

	return true;
}

static void
vmem_check(vmem_t *vm)
{

	if (!vmem_check_sanity(vm)) {
		panic("insanity vmem %p", vm);
	}
}

#endif /* defined(DIAGNOSTIC) */
OpenPOWER on IntegriCloud