summaryrefslogtreecommitdiffstats
path: root/sys/kern/sched_ule.c
blob: 6861aadc2e242c8825395848ead6e67b4dbc23a2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
/*-
 * Copyright (c) 2003, Jeffrey Roberson <jeff@freebsd.org>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice unmodified, this list of conditions, and the following
 *    disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 * $FreeBSD$
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sx.h>
#include <sys/sysctl.h>
#include <sys/sysproto.h>
#include <sys/vmmeter.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
#ifdef KTRACE
#include <sys/uio.h>
#include <sys/ktrace.h>
#endif

#include <machine/cpu.h>

/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
/* XXX This is bogus compatability crap for ps */
static fixpt_t  ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */
SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");

static void sched_setup(void *dummy);
SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL)

#define	SCHED_STRICT_RESCHED 1

/*
 * These datastructures are allocated within their parent datastructure but
 * are scheduler specific.
 */

struct ke_sched {
	int		ske_slice;
	struct runq	*ske_runq;
	/* The following variables are only used for pctcpu calculation */
	int		ske_ltick;	/* Last tick that we were running on */
	int		ske_ftick;	/* First tick that we were running on */
	int		ske_ticks;	/* Tick count */
	u_char		ske_cpu;
};
#define	ke_slice	ke_sched->ske_slice
#define	ke_runq		ke_sched->ske_runq
#define	ke_ltick	ke_sched->ske_ltick
#define	ke_ftick	ke_sched->ske_ftick
#define	ke_ticks	ke_sched->ske_ticks
#define	ke_cpu		ke_sched->ske_cpu

struct kg_sched {
	int	skg_slptime;		/* Number of ticks we vol. slept */
	int	skg_runtime;		/* Number of ticks we were running */
};
#define	kg_slptime	kg_sched->skg_slptime
#define	kg_runtime	kg_sched->skg_runtime

struct td_sched {
	int	std_slptime;
	int	std_schedflag;
};
#define	td_slptime	td_sched->std_slptime
#define	td_schedflag	td_sched->std_schedflag

#define	TD_SCHED_BLOAD	0x0001		/*
					 * thread was counted as being in short
					 * term sleep.
					 */
struct td_sched td_sched;
struct ke_sched ke_sched;
struct kg_sched kg_sched;

struct ke_sched *kse0_sched = &ke_sched;
struct kg_sched *ksegrp0_sched = &kg_sched;
struct p_sched *proc0_sched = NULL;
struct td_sched *thread0_sched = &td_sched;

/*
 * This priority range has 20 priorities on either end that are reachable
 * only through nice values.
 */
#define	SCHED_PRI_RANGE	(PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE + 1)
#define	SCHED_PRI_NRESV	40
#define	SCHED_PRI_BASE	(SCHED_PRI_NRESV / 2)
#define	SCHED_PRI_DYN	(SCHED_PRI_RANGE - SCHED_PRI_NRESV)
#define	SCHED_PRI_DYN_HALF	(SCHED_PRI_DYN / 2)

/*
 * These determine how sleep time effects the priority of a process.
 *
 * SLP_RUN_MAX:	Maximum amount of sleep time + run time we'll accumulate
 *		before throttling back.
 * SLP_RUN_THORTTLE:	Divisor for reducing slp/run time.
 * SLP_RATIO:	Compute a bounded ratio of slp time vs run time.
 * SLP_TOPRI:	Convert a number of ticks slept and ticks ran into a priority
 */
#define	SCHED_SLP_RUN_MAX	((hz * 30) * 1024)
#define	SCHED_SLP_RUN_THROTTLE	(10)
static __inline int
sched_slp_ratio(int b, int s)
{
	b /= SCHED_PRI_DYN_HALF;
	if (b == 0)
		return (0);
	s /= b;
	return (s);
}
#define	SCHED_SLP_TOPRI(slp, run)					\
    ((((slp) > (run))?							\
    sched_slp_ratio((slp), (run)):					\
    SCHED_PRI_DYN_HALF + (SCHED_PRI_DYN_HALF - sched_slp_ratio((run), (slp))))+ \
    SCHED_PRI_NRESV / 2)
/*
 * These parameters and macros determine the size of the time slice that is
 * granted to each thread.
 *
 * SLICE_MIN:	Minimum time slice granted, in units of ticks.
 * SLICE_MAX:	Maximum time slice granted.
 * SLICE_RANGE:	Range of available time slices scaled by hz.
 * SLICE_SCALE:	The number slices granted per unit of pri or slp.
 * PRI_TOSLICE:	Compute a slice size that is proportional to the priority.
 * SLP_TOSLICE:	Compute a slice size that is inversely proportional to the
 *		amount of time slept. (smaller slices for interactive ksegs)
 * PRI_COMP:	This determines what fraction of the actual slice comes from 
 *		the slice size computed from the priority.
 * SLP_COMP:	This determines what component of the actual slice comes from
 *		the slize size computed from the sleep time.
 */
#define	SCHED_SLICE_MIN		(hz / 100)
#define	SCHED_SLICE_MAX		(hz / 4)
#define	SCHED_SLICE_RANGE	(SCHED_SLICE_MAX - SCHED_SLICE_MIN + 1)
#define	SCHED_SLICE_SCALE(val, max)	(((val) * SCHED_SLICE_RANGE) / (max))
#define	SCHED_PRI_TOSLICE(pri)						\
    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((pri), SCHED_PRI_RANGE))
#define	SCHED_SLP_TOSLICE(slp)						\
    (SCHED_SLICE_MAX - SCHED_SLICE_SCALE((slp), SCHED_PRI_DYN))
#define	SCHED_SLP_COMP(slice)	(((slice) / 5) * 3)	/* 60% */
#define	SCHED_PRI_COMP(slice)	(((slice) / 5) * 2)	/* 40% */

/*
 * This macro determines whether or not the kse belongs on the current or
 * next run queue.
 * 
 * XXX nice value should effect how interactive a kg is.
 */
#define	SCHED_CURR(kg)	(((kg)->kg_slptime > (kg)->kg_runtime &&	\
	sched_slp_ratio((kg)->kg_slptime, (kg)->kg_runtime) > 4) ||	\
	(kg)->kg_pri_class != PRI_TIMESHARE)

/*
 * Cpu percentage computation macros and defines.
 *
 * SCHED_CPU_TIME:	Number of seconds to average the cpu usage across.
 * SCHED_CPU_TICKS:	Number of hz ticks to average the cpu usage across.
 */

#define	SCHED_CPU_TIME	60
#define	SCHED_CPU_TICKS	(hz * SCHED_CPU_TIME)

/*
 * kseq - pair of runqs per processor
 */

struct kseq {
	struct runq	ksq_runqs[2];
	struct runq	*ksq_curr;
	struct runq	*ksq_next;
	int		ksq_load;	/* Total runnable */
#ifdef SMP
	unsigned int	ksq_rslices;	/* Slices on run queue */
	unsigned int	ksq_bload;	/* Threads waiting on IO */
#endif
};

/*
 * One kse queue per processor.
 */
#ifdef SMP
struct kseq	kseq_cpu[MAXCPU];
#define	KSEQ_SELF()	(&kseq_cpu[PCPU_GET(cpuid)])
#define	KSEQ_CPU(x)	(&kseq_cpu[(x)])
#else
struct kseq	kseq_cpu;
#define	KSEQ_SELF()	(&kseq_cpu)
#define	KSEQ_CPU(x)	(&kseq_cpu)
#endif

static int sched_slice(struct ksegrp *kg);
static int sched_priority(struct ksegrp *kg);
void sched_pctcpu_update(struct kse *ke);
int sched_pickcpu(void);

/* Operations on per processor queues */
static struct kse * kseq_choose(struct kseq *kseq);
static void kseq_setup(struct kseq *kseq);
static __inline void kseq_add(struct kseq *kseq, struct kse *ke);
static __inline void kseq_rem(struct kseq *kseq, struct kse *ke);
#ifdef SMP
static __inline void kseq_sleep(struct kseq *kseq, struct kse *ke);
static __inline void kseq_wakeup(struct kseq *kseq, struct kse *ke);
struct kseq * kseq_load_highest(void);
#endif

static __inline void
kseq_add(struct kseq *kseq, struct kse *ke)
{
	runq_add(ke->ke_runq, ke);
	kseq->ksq_load++;
#ifdef SMP
	kseq->ksq_rslices += ke->ke_slice;
#endif
}
static __inline void
kseq_rem(struct kseq *kseq, struct kse *ke)
{
	kseq->ksq_load--;
	runq_remove(ke->ke_runq, ke);
#ifdef SMP
	kseq->ksq_rslices -= ke->ke_slice;
#endif
}

#ifdef SMP
static __inline void
kseq_sleep(struct kseq *kseq, struct kse *ke)
{
	kseq->ksq_bload++;
}

static __inline void
kseq_wakeup(struct kseq *kseq, struct kse *ke)
{
	kseq->ksq_bload--;
}

struct kseq *
kseq_load_highest(void)
{
	struct kseq *kseq;
	int load;
	int cpu;
	int i;

	cpu = 0;
	load = 0;

	for (i = 0; i < mp_maxid; i++) {
		if (CPU_ABSENT(i))
			continue;
		kseq = KSEQ_CPU(i);
		if (kseq->ksq_load > load) {
			load = kseq->ksq_load;
			cpu = i;
		}
	}
	if (load)
		return (KSEQ_CPU(cpu));

	return (NULL);
}
#endif

struct kse *
kseq_choose(struct kseq *kseq)
{
	struct kse *ke;
	struct runq *swap;

	if ((ke = runq_choose(kseq->ksq_curr)) == NULL) {
		swap = kseq->ksq_curr;
		kseq->ksq_curr = kseq->ksq_next;
		kseq->ksq_next = swap;
		ke = runq_choose(kseq->ksq_curr);
	}

	return (ke);
}


static void
kseq_setup(struct kseq *kseq)
{
	kseq->ksq_curr = &kseq->ksq_runqs[0];
	kseq->ksq_next = &kseq->ksq_runqs[1];
	runq_init(kseq->ksq_curr);
	runq_init(kseq->ksq_next);
	kseq->ksq_load = 0;
#ifdef SMP
	kseq->ksq_rslices = 0;
	kseq->ksq_bload = 0;
#endif
}

static void
sched_setup(void *dummy)
{
	int i;

	mtx_lock_spin(&sched_lock);
	/* init kseqs */
	for (i = 0; i < MAXCPU; i++)
		kseq_setup(KSEQ_CPU(i));
	mtx_unlock_spin(&sched_lock);
}

/*
 * Scale the scheduling priority according to the "interactivity" of this
 * process.
 */
static int
sched_priority(struct ksegrp *kg)
{
	int pri;

	if (kg->kg_pri_class != PRI_TIMESHARE)
		return (kg->kg_user_pri);

	pri = SCHED_SLP_TOPRI(kg->kg_slptime, kg->kg_runtime);
	CTR2(KTR_RUNQ, "sched_priority: slptime: %d\tpri: %d",
	    kg->kg_slptime, pri);

	pri += PRI_MIN_TIMESHARE;
	pri += kg->kg_nice;

	if (pri > PRI_MAX_TIMESHARE)
		pri = PRI_MAX_TIMESHARE;
	else if (pri < PRI_MIN_TIMESHARE)
		pri = PRI_MIN_TIMESHARE;

	kg->kg_user_pri = pri;

	return (kg->kg_user_pri);
}

/*
 * Calculate a time slice based on the process priority.
 */
static int
sched_slice(struct ksegrp *kg)
{
	int pslice;
	int sslice;
	int slice;
	int pri;

	pri = kg->kg_user_pri;
	pri -= PRI_MIN_TIMESHARE;
	pslice = SCHED_PRI_TOSLICE(pri);
	sslice = SCHED_PRI_TOSLICE(SCHED_SLP_TOPRI(kg->kg_slptime, kg->kg_runtime));
/*
SCHED_SLP_TOSLICE(SCHED_SLP_RATIO(
	    kg->kg_slptime, kg->kg_runtime));
*/
	slice = SCHED_SLP_COMP(sslice) + SCHED_PRI_COMP(pslice);

	CTR4(KTR_RUNQ,
	    "sched_slice: pri: %d\tsslice: %d\tpslice: %d\tslice: %d",
	    pri, sslice, pslice, slice);

	if (slice < SCHED_SLICE_MIN)
		slice = SCHED_SLICE_MIN;
	else if (slice > SCHED_SLICE_MAX)
		slice = SCHED_SLICE_MAX;

	/*
	 * Every time we grant a new slice check to see if we need to scale
	 * back the slp and run time in the kg.  This will cause us to forget
	 * old interactivity while maintaining the current ratio.
	 */
	if ((kg->kg_runtime + kg->kg_slptime) >  SCHED_SLP_RUN_MAX) {
		kg->kg_runtime /= SCHED_SLP_RUN_THROTTLE;
		kg->kg_slptime /= SCHED_SLP_RUN_THROTTLE;
	}

	return (slice);
}

int
sched_rr_interval(void)
{
	return (SCHED_SLICE_MAX);
}

void
sched_pctcpu_update(struct kse *ke)
{
	/*
	 * Adjust counters and watermark for pctcpu calc.
	 */
	ke->ke_ticks = (ke->ke_ticks / (ke->ke_ltick - ke->ke_ftick)) *
		    SCHED_CPU_TICKS;
	ke->ke_ltick = ticks;
	ke->ke_ftick = ke->ke_ltick - SCHED_CPU_TICKS;
}

#ifdef SMP
/* XXX Should be changed to kseq_load_lowest() */
int
sched_pickcpu(void)
{
	struct kseq *kseq;
	int load;
	int cpu;
	int i;

	if (!smp_started)
		return (0);

	load = 0;
	cpu = 0;

	for (i = 0; i < mp_maxid; i++) {
		if (CPU_ABSENT(i))
			continue;
		kseq = KSEQ_CPU(i);
		if (kseq->ksq_load < load) {
			cpu = i;
			load = kseq->ksq_load;
		}
	}

	CTR1(KTR_RUNQ, "sched_pickcpu: %d", cpu);
	return (cpu);
}
#else
int
sched_pickcpu(void)
{
	return (0);
}
#endif

void
sched_prio(struct thread *td, u_char prio)
{
	struct kse *ke;
	struct runq *rq;

	mtx_assert(&sched_lock, MA_OWNED);
	ke = td->td_kse;
	td->td_priority = prio;

	if (TD_ON_RUNQ(td)) {
		rq = ke->ke_runq;

		runq_remove(rq, ke);
		runq_add(rq, ke);
	}
}

void
sched_switchout(struct thread *td)
{
	struct kse *ke;

	mtx_assert(&sched_lock, MA_OWNED);

	ke = td->td_kse;

	td->td_last_kse = ke;
        td->td_lastcpu = ke->ke_oncpu;
	ke->ke_oncpu = NOCPU;
        td->td_flags &= ~TDF_NEEDRESCHED;

	if (TD_IS_RUNNING(td)) {
		setrunqueue(td);
		return;
	} else
		td->td_kse->ke_runq = NULL;

	/*
	 * We will not be on the run queue. So we must be
	 * sleeping or similar.
	 */
	if (td->td_proc->p_flag & P_THREADED)
		kse_reassign(ke);
}

void
sched_switchin(struct thread *td)
{
	/* struct kse *ke = td->td_kse; */
	mtx_assert(&sched_lock, MA_OWNED);

	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
#if SCHED_STRICT_RESCHED
	if (td->td_ksegrp->kg_pri_class == PRI_TIMESHARE &&
	    td->td_priority != td->td_ksegrp->kg_user_pri)
		curthread->td_flags |= TDF_NEEDRESCHED;
#endif
}

void
sched_nice(struct ksegrp *kg, int nice)
{
	struct thread *td;

	kg->kg_nice = nice;
	sched_priority(kg);
	FOREACH_THREAD_IN_GROUP(kg, td) {
		td->td_flags |= TDF_NEEDRESCHED;
	}
}

void
sched_sleep(struct thread *td, u_char prio)
{
	mtx_assert(&sched_lock, MA_OWNED);

	td->td_slptime = ticks;
	td->td_priority = prio;

	/*
	 * If this is an interactive task clear its queue so it moves back
	 * on to curr when it wakes up.  Otherwise let it stay on the queue
	 * that it was assigned to.
	 */
	if (SCHED_CURR(td->td_kse->ke_ksegrp))
		td->td_kse->ke_runq = NULL;
#ifdef SMP
	if (td->td_priority < PZERO) {
		kseq_sleep(KSEQ_CPU(td->td_kse->ke_cpu), td->td_kse);
		td->td_schedflag |= TD_SCHED_BLOAD;
	}
#endif
}

void
sched_wakeup(struct thread *td)
{
	struct ksegrp *kg;

	mtx_assert(&sched_lock, MA_OWNED);

	/*
	 * Let the kseg know how long we slept for.  This is because process
	 * interactivity behavior is modeled in the kseg.
	 */
	kg = td->td_ksegrp;

	if (td->td_slptime) {
		kg->kg_slptime += (ticks - td->td_slptime) * 1024;
		td->td_priority = sched_priority(kg);
	}
	td->td_slptime = 0;
#ifdef SMP
	if (td->td_priority < PZERO && td->td_schedflag & TD_SCHED_BLOAD) {
		kseq_wakeup(KSEQ_CPU(td->td_kse->ke_cpu), td->td_kse);
		td->td_schedflag &= ~TD_SCHED_BLOAD;
	}
#endif
	setrunqueue(td);
#if SCHED_STRICT_RESCHED
        if (td->td_priority < curthread->td_priority)
                curthread->td_flags |= TDF_NEEDRESCHED;
#endif
}

/*
 * Penalize the parent for creating a new child and initialize the child's
 * priority.
 */
void
sched_fork(struct ksegrp *kg, struct ksegrp *child)
{
	struct kse *ckse;
	struct kse *pkse;

	mtx_assert(&sched_lock, MA_OWNED);
	ckse = FIRST_KSE_IN_KSEGRP(child);
	pkse = FIRST_KSE_IN_KSEGRP(kg);

	/* XXX Need something better here */
	if (kg->kg_slptime > kg->kg_runtime) {
		child->kg_slptime = SCHED_PRI_DYN;
		child->kg_runtime = kg->kg_slptime / SCHED_PRI_DYN;
	} else {
		child->kg_runtime = SCHED_PRI_DYN;
		child->kg_slptime = kg->kg_runtime / SCHED_PRI_DYN;
	}
#if 0
	child->kg_slptime = kg->kg_slptime;
	child->kg_runtime = kg->kg_runtime;
#endif
	child->kg_user_pri = kg->kg_user_pri;

#if 0
	if (pkse->ke_cpu != PCPU_GET(cpuid)) {
		printf("pkse->ke_cpu = %d\n", pkse->ke_cpu);
		printf("cpuid = %d", PCPU_GET(cpuid));
		Debugger("stop");
	}
#endif

	ckse->ke_slice = pkse->ke_slice;
	ckse->ke_cpu = pkse->ke_cpu; /* sched_pickcpu(); */
	ckse->ke_runq = NULL;
	/*
	 * Claim that we've been running for one second for statistical
	 * purposes.
	 */
	ckse->ke_ticks = 0;
	ckse->ke_ltick = ticks;
	ckse->ke_ftick = ticks - hz;
}

/*
 * Return some of the child's priority and interactivity to the parent.
 */
void
sched_exit(struct ksegrp *kg, struct ksegrp *child)
{
	/* XXX Need something better here */
	mtx_assert(&sched_lock, MA_OWNED);
	kg->kg_slptime = child->kg_slptime;
	kg->kg_runtime = child->kg_runtime;
	sched_priority(kg);
}

void
sched_clock(struct thread *td)
{
	struct kse *ke;
#if SCHED_STRICT_RESCHED
	struct kse *nke;
	struct kseq *kseq;
#endif
	struct ksegrp *kg;


	ke = td->td_kse;
	kg = td->td_ksegrp;

	mtx_assert(&sched_lock, MA_OWNED);
	KASSERT((td != NULL), ("schedclock: null thread pointer"));

	/* Adjust ticks for pctcpu */
	ke->ke_ticks += 10000;
	ke->ke_ltick = ticks;
	/* Go up to one second beyond our max and then trim back down */
	if (ke->ke_ftick + SCHED_CPU_TICKS + hz < ke->ke_ltick)
		sched_pctcpu_update(ke);

	if (td->td_kse->ke_flags & KEF_IDLEKSE)
		return;

	/*
	 * Check for a higher priority task on the run queue.  This can happen
	 * on SMP if another processor woke up a process on our runq.
	 */
#if SCHED_STRICT_RESCHED
	kseq = KSEQ_SELF();
	nke = runq_choose(kseq->ksq_curr);

	if (nke && nke->ke_thread &&
	    nke->ke_thread->td_priority < td->td_priority)
		td->td_flags |= TDF_NEEDRESCHED;
#endif
	/*
	 * We used a tick charge it to the ksegrp so that we can compute our
	 * "interactivity".
	 */
	kg->kg_runtime += 1024;

	/*
	 * We used up one time slice.
	 */
	ke->ke_slice--;
	/*
	 * We're out of time, recompute priorities and requeue
	 */
	if (ke->ke_slice == 0) {
		td->td_priority = sched_priority(kg);
		ke->ke_slice = sched_slice(kg);
		td->td_flags |= TDF_NEEDRESCHED;
		ke->ke_runq = NULL;
	}
}

int
sched_runnable(void)
{
	struct kseq *kseq;

	kseq = KSEQ_SELF();

	if (kseq->ksq_load)
		return (1);
#ifdef SMP
	/*
	 * For SMP we may steal other processor's KSEs.  Just search until we
	 * verify that at least on other cpu has a runnable task.
	 */
	if (smp_started) {
		int i;

#if 0
		if (kseq->ksq_bload)
			return (0);
#endif

		for (i = 0; i < mp_maxid; i++) {
			if (CPU_ABSENT(i))
				continue;
			kseq = KSEQ_CPU(i);
			if (kseq->ksq_load)
				return (1);
		}
	}
#endif
	return (0);
}

void
sched_userret(struct thread *td)
{
	struct ksegrp *kg;
	
	kg = td->td_ksegrp;

	if (td->td_priority != kg->kg_user_pri) {
		mtx_lock_spin(&sched_lock);
		td->td_priority = kg->kg_user_pri;
		mtx_unlock_spin(&sched_lock);
	}
}

struct kse *
sched_choose(void)
{
	struct kseq *kseq;
	struct kse *ke;

	kseq = KSEQ_SELF();
	ke = kseq_choose(kseq);

	if (ke) {
		ke->ke_state = KES_THREAD;
		kseq_rem(kseq, ke);
	}

#ifdef SMP
	if (ke == NULL && smp_started) {
#if 0
		if (kseq->ksq_bload)
			return (NULL);
#endif
		/*
		 * Find the cpu with the highest load and steal one proc.
		 */
		kseq = kseq_load_highest();
		if (kseq == NULL)
			return (NULL);
		ke = kseq_choose(kseq);
		kseq_rem(kseq, ke);

		ke->ke_state = KES_THREAD;
		ke->ke_runq = NULL;
		ke->ke_cpu = PCPU_GET(cpuid);
	}
#endif
	return (ke);
}

void
sched_add(struct kse *ke)
{
	struct kseq *kseq;

	mtx_assert(&sched_lock, MA_OWNED);
	KASSERT((ke->ke_thread != NULL), ("sched_add: No thread on KSE"));
	KASSERT((ke->ke_thread->td_kse != NULL),
	    ("sched_add: No KSE on thread"));
	KASSERT(ke->ke_state != KES_ONRUNQ,
	    ("sched_add: kse %p (%s) already in run queue", ke,
	    ke->ke_proc->p_comm));
	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
	    ("sched_add: process swapped out"));

	kseq = KSEQ_CPU(ke->ke_cpu);

	if (ke->ke_runq == NULL) {
		if (SCHED_CURR(ke->ke_ksegrp))
			ke->ke_runq = kseq->ksq_curr;
		else
			ke->ke_runq = kseq->ksq_next;
	}
	ke->ke_ksegrp->kg_runq_kses++;
	ke->ke_state = KES_ONRUNQ;

	kseq_add(kseq, ke);
}

void
sched_rem(struct kse *ke)
{
	mtx_assert(&sched_lock, MA_OWNED);
	/* KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue")); */

	ke->ke_runq = NULL;
	ke->ke_state = KES_THREAD;
	ke->ke_ksegrp->kg_runq_kses--;

	kseq_rem(KSEQ_CPU(ke->ke_cpu), ke);
}

fixpt_t
sched_pctcpu(struct kse *ke)
{
	fixpt_t pctcpu;
	int realstathz;

	pctcpu = 0;
	realstathz = stathz ? stathz : hz;

	if (ke->ke_ticks) {
		int rtick;

		/* Update to account for time potentially spent sleeping */
		ke->ke_ltick = ticks;
		sched_pctcpu_update(ke);

		/* How many rtick per second ? */
		rtick = ke->ke_ticks / (SCHED_CPU_TIME * 10000);
		pctcpu = (FSCALE * ((FSCALE * rtick)/realstathz)) >> FSHIFT;
	}

	ke->ke_proc->p_swtime = ke->ke_ltick - ke->ke_ftick;

	return (pctcpu);
}

int
sched_sizeof_kse(void)
{
	return (sizeof(struct kse) + sizeof(struct ke_sched));
}

int
sched_sizeof_ksegrp(void)
{
	return (sizeof(struct ksegrp) + sizeof(struct kg_sched));
}

int
sched_sizeof_proc(void)
{
	return (sizeof(struct proc));
}

int
sched_sizeof_thread(void)
{
	return (sizeof(struct thread) + sizeof(struct td_sched));
}
OpenPOWER on IntegriCloud