summaryrefslogtreecommitdiffstats
path: root/sys/kern/sched_4bsd.c
blob: c57262f2ca326ab6f6adf317c4e9d821fc9a1089 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
/*-
 * Copyright (c) 1982, 1986, 1990, 1991, 1993
 *	The Regents of the University of California.  All rights reserved.
 * (c) UNIX System Laboratories, Inc.
 * All or some portions of this file are derived from material licensed
 * to the University of California by American Telephone and Telegraph
 * Co. or Unix System Laboratories, Inc. and are reproduced herein with
 * the permission of UNIX System Laboratories, Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $FreeBSD$
 */

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/resourcevar.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sysctl.h>
#include <sys/sx.h>


static int	sched_quantum;	/* Roundrobin scheduling quantum in ticks. */
#define	SCHED_QUANTUM	(hz / 10);	/* Default sched quantum */

static struct callout schedcpu_callout;
static struct callout roundrobin_callout;

static void	roundrobin(void *arg);
static void	schedcpu(void *arg);
static void	sched_setup(void *dummy);
static void	maybe_resched(struct thread *td);
static void	updatepri(struct ksegrp *kg);
static void	resetpriority(struct ksegrp *kg);

SYSINIT(sched_setup, SI_SUB_KICK_SCHEDULER, SI_ORDER_FIRST, sched_setup, NULL)

/*
 * Global run queue.
 */
static struct runq runq;
SYSINIT(runq, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, runq_init, &runq)

static int
sysctl_kern_quantum(SYSCTL_HANDLER_ARGS)
{
	int error, new_val;

	new_val = sched_quantum * tick;
	error = sysctl_handle_int(oidp, &new_val, 0, req);
        if (error != 0 || req->newptr == NULL)
		return (error);
	if (new_val < tick)
		return (EINVAL);
	sched_quantum = new_val / tick;
	hogticks = 2 * sched_quantum;
	return (0);
}

SYSCTL_PROC(_kern, OID_AUTO, quantum, CTLTYPE_INT|CTLFLAG_RW,
	0, sizeof sched_quantum, sysctl_kern_quantum, "I",
	"Roundrobin scheduling quantum in microseconds");

/*
 * Arrange to reschedule if necessary, taking the priorities and
 * schedulers into account.
 */
static void
maybe_resched(struct thread *td)
{

	mtx_assert(&sched_lock, MA_OWNED);
	if (td->td_priority < curthread->td_priority)
		curthread->td_kse->ke_flags |= KEF_NEEDRESCHED;
}

/*
 * Force switch among equal priority processes every 100ms.
 * We don't actually need to force a context switch of the current process.
 * The act of firing the event triggers a context switch to softclock() and
 * then switching back out again which is equivalent to a preemption, thus
 * no further work is needed on the local CPU.
 */
/* ARGSUSED */
static void
roundrobin(void *arg)
{

#ifdef SMP
	mtx_lock_spin(&sched_lock);
	forward_roundrobin();
	mtx_unlock_spin(&sched_lock);
#endif

	callout_reset(&roundrobin_callout, sched_quantum, roundrobin, NULL);
}

/*
 * Constants for digital decay and forget:
 *	90% of (p_estcpu) usage in 5 * loadav time
 *	95% of (p_pctcpu) usage in 60 seconds (load insensitive)
 *          Note that, as ps(1) mentions, this can let percentages
 *          total over 100% (I've seen 137.9% for 3 processes).
 *
 * Note that schedclock() updates p_estcpu and p_cpticks asynchronously.
 *
 * We wish to decay away 90% of p_estcpu in (5 * loadavg) seconds.
 * That is, the system wants to compute a value of decay such
 * that the following for loop:
 * 	for (i = 0; i < (5 * loadavg); i++)
 * 		p_estcpu *= decay;
 * will compute
 * 	p_estcpu *= 0.1;
 * for all values of loadavg:
 *
 * Mathematically this loop can be expressed by saying:
 * 	decay ** (5 * loadavg) ~= .1
 *
 * The system computes decay as:
 * 	decay = (2 * loadavg) / (2 * loadavg + 1)
 *
 * We wish to prove that the system's computation of decay
 * will always fulfill the equation:
 * 	decay ** (5 * loadavg) ~= .1
 *
 * If we compute b as:
 * 	b = 2 * loadavg
 * then
 * 	decay = b / (b + 1)
 *
 * We now need to prove two things:
 *	1) Given factor ** (5 * loadavg) ~= .1, prove factor == b/(b+1)
 *	2) Given b/(b+1) ** power ~= .1, prove power == (5 * loadavg)
 *
 * Facts:
 *         For x close to zero, exp(x) =~ 1 + x, since
 *              exp(x) = 0! + x**1/1! + x**2/2! + ... .
 *              therefore exp(-1/b) =~ 1 - (1/b) = (b-1)/b.
 *         For x close to zero, ln(1+x) =~ x, since
 *              ln(1+x) = x - x**2/2 + x**3/3 - ...     -1 < x < 1
 *              therefore ln(b/(b+1)) = ln(1 - 1/(b+1)) =~ -1/(b+1).
 *         ln(.1) =~ -2.30
 *
 * Proof of (1):
 *    Solve (factor)**(power) =~ .1 given power (5*loadav):
 *	solving for factor,
 *      ln(factor) =~ (-2.30/5*loadav), or
 *      factor =~ exp(-1/((5/2.30)*loadav)) =~ exp(-1/(2*loadav)) =
 *          exp(-1/b) =~ (b-1)/b =~ b/(b+1).                    QED
 *
 * Proof of (2):
 *    Solve (factor)**(power) =~ .1 given factor == (b/(b+1)):
 *	solving for power,
 *      power*ln(b/(b+1)) =~ -2.30, or
 *      power =~ 2.3 * (b + 1) = 4.6*loadav + 2.3 =~ 5*loadav.  QED
 *
 * Actual power values for the implemented algorithm are as follows:
 *      loadav: 1       2       3       4
 *      power:  5.68    10.32   14.94   19.55
 */

/* calculations for digital decay to forget 90% of usage in 5*loadav sec */
#define	loadfactor(loadav)	(2 * (loadav))
#define	decay_cpu(loadfac, cpu)	(((loadfac) * (cpu)) / ((loadfac) + FSCALE))

/* decay 95% of `p_pctcpu' in 60 seconds; see CCPU_SHIFT before changing */
static fixpt_t	ccpu = 0.95122942450071400909 * FSCALE;	/* exp(-1/20) */
SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, "");

/* kernel uses `FSCALE', userland (SHOULD) use kern.fscale */
static int	fscale __unused = FSCALE;
SYSCTL_INT(_kern, OID_AUTO, fscale, CTLFLAG_RD, 0, FSCALE, "");

/*
 * If `ccpu' is not equal to `exp(-1/20)' and you still want to use the
 * faster/more-accurate formula, you'll have to estimate CCPU_SHIFT below
 * and possibly adjust FSHIFT in "param.h" so that (FSHIFT >= CCPU_SHIFT).
 *
 * To estimate CCPU_SHIFT for exp(-1/20), the following formula was used:
 *	1 - exp(-1/20) ~= 0.0487 ~= 0.0488 == 1 (fixed pt, *11* bits).
 *
 * If you don't want to bother with the faster/more-accurate formula, you
 * can set CCPU_SHIFT to (FSHIFT + 1) which will use a slower/less-accurate
 * (more general) method of calculating the %age of CPU used by a process.
 */
#define	CCPU_SHIFT	11

/*
 * Recompute process priorities, every hz ticks.
 * MP-safe, called without the Giant mutex.
 */
/* ARGSUSED */
static void
schedcpu(void *arg)
{
	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);
	struct thread *td;
	struct proc *p;
	struct kse *ke;
	struct ksegrp *kg;
	int realstathz;
	int awake;

	realstathz = stathz ? stathz : hz;
	sx_slock(&allproc_lock);
	FOREACH_PROC_IN_SYSTEM(p) {
		mtx_lock_spin(&sched_lock);
		p->p_swtime++;
		FOREACH_KSEGRP_IN_PROC(p, kg) { 
			awake = 0;
			FOREACH_KSE_IN_GROUP(kg, ke) {
				/*
				 * Increment time in/out of memory and sleep
				 * time (if sleeping).  We ignore overflow;
				 * with 16-bit int's (remember them?)
				 * overflow takes 45 days.
				 */
				/*
				 * The kse slptimes are not touched in wakeup
				 * because the thread may not HAVE a KSE.
				 */
				if (ke->ke_state == KES_ONRUNQ) {
					awake = 1;
					ke->ke_flags &= ~KEF_DIDRUN;
				} else if ((ke->ke_state == KES_THREAD) &&
				    (TD_IS_RUNNING(ke->ke_thread))) {
					awake = 1;
					/* Do not clear KEF_DIDRUN */
				} else if (ke->ke_flags & KEF_DIDRUN) {
					awake = 1;
					ke->ke_flags &= ~KEF_DIDRUN;
				}

				/*
				 * pctcpu is only for ps?
				 * Do it per kse.. and add them up at the end?
				 * XXXKSE
				 */
				ke->ke_pctcpu
				    = (ke->ke_pctcpu * ccpu) >> FSHIFT;
				/*
				 * If the kse has been idle the entire second,
				 * stop recalculating its priority until
				 * it wakes up.
				 */
				if (ke->ke_cpticks == 0)
					continue;
#if	(FSHIFT >= CCPU_SHIFT)
				ke->ke_pctcpu += (realstathz == 100) ?
				    ((fixpt_t) ke->ke_cpticks) <<
				    (FSHIFT - CCPU_SHIFT) :
				    100 * (((fixpt_t) ke->ke_cpticks) <<
				    (FSHIFT - CCPU_SHIFT)) / realstathz;
#else
				ke->ke_pctcpu += ((FSCALE - ccpu) *
				    (ke->ke_cpticks * FSCALE / realstathz)) >>
				    FSHIFT;
#endif
				ke->ke_cpticks = 0;
			} /* end of kse loop */
			/* 
			 * If there are ANY running threads in this KSEGRP,
			 * then don't count it as sleeping.
			 */
			if (awake) {
				if (kg->kg_slptime > 1) {
					/*
					 * In an ideal world, this should not
					 * happen, because whoever woke us
					 * up from the long sleep should have
					 * unwound the slptime and reset our
					 * priority before we run at the stale
					 * priority.  Should KASSERT at some
					 * point when all the cases are fixed.
					 */
					updatepri(kg);
				}
				kg->kg_slptime = 0;
			} else {
				kg->kg_slptime++;
			}
			if (kg->kg_slptime > 1)
				continue;
			kg->kg_estcpu = decay_cpu(loadfac, kg->kg_estcpu);
		      	resetpriority(kg);
			FOREACH_THREAD_IN_GROUP(kg, td) {
				if (td->td_priority >= PUSER) {
					sched_prio(td, kg->kg_user_pri);
				}
			}
		} /* end of ksegrp loop */
		mtx_unlock_spin(&sched_lock);
	} /* end of process loop */
	sx_sunlock(&allproc_lock);
	wakeup(&lbolt);
	callout_reset(&schedcpu_callout, hz, schedcpu, NULL);
}

/*
 * Recalculate the priority of a process after it has slept for a while.
 * For all load averages >= 1 and max p_estcpu of 255, sleeping for at
 * least six times the loadfactor will decay p_estcpu to zero.
 */
static void
updatepri(struct ksegrp *kg)
{
	register unsigned int newcpu;
	register fixpt_t loadfac = loadfactor(averunnable.ldavg[0]);

	newcpu = kg->kg_estcpu;
	if (kg->kg_slptime > 5 * loadfac)
		kg->kg_estcpu = 0;
	else {
		kg->kg_slptime--;	/* the first time was done in schedcpu */
		while (newcpu && --kg->kg_slptime)
			newcpu = decay_cpu(loadfac, newcpu);
		kg->kg_estcpu = newcpu;
	}
	resetpriority(kg);
}

/*
 * Compute the priority of a process when running in user mode.
 * Arrange to reschedule if the resulting priority is better
 * than that of the current process.
 */
static void
resetpriority(struct ksegrp *kg)
{
	register unsigned int newpriority;
	struct thread *td;

	mtx_lock_spin(&sched_lock);
	if (kg->kg_pri_class == PRI_TIMESHARE) {
		newpriority = PUSER + kg->kg_estcpu / INVERSE_ESTCPU_WEIGHT +
		    NICE_WEIGHT * (kg->kg_nice - PRIO_MIN);
		newpriority = min(max(newpriority, PRI_MIN_TIMESHARE),
		    PRI_MAX_TIMESHARE);
		kg->kg_user_pri = newpriority;
	}
	FOREACH_THREAD_IN_GROUP(kg, td) {
		maybe_resched(td);			/* XXXKSE silly */
	}
	mtx_unlock_spin(&sched_lock);
}

/* ARGSUSED */
static void
sched_setup(void *dummy)
{
	if (sched_quantum == 0)
		sched_quantum = SCHED_QUANTUM;
	hogticks = 2 * sched_quantum;

	callout_init(&schedcpu_callout, 1);
	callout_init(&roundrobin_callout, 0);

	/* Kick off timeout driven events by calling first time. */
	roundrobin(NULL);
	schedcpu(NULL);
}

/* External interfaces start here */
int
sched_runnable(void)
{
        return runq_check(&runq);
}

int 
sched_rr_interval(void)
{
	if (sched_quantum == 0)
		sched_quantum = SCHED_QUANTUM;
	return (sched_quantum);
}

/*
 * We adjust the priority of the current process.  The priority of
 * a process gets worse as it accumulates CPU time.  The cpu usage
 * estimator (p_estcpu) is increased here.  resetpriority() will
 * compute a different priority each time p_estcpu increases by
 * INVERSE_ESTCPU_WEIGHT
 * (until MAXPRI is reached).  The cpu usage estimator ramps up
 * quite quickly when the process is running (linearly), and decays
 * away exponentially, at a rate which is proportionally slower when
 * the system is busy.  The basic principle is that the system will
 * 90% forget that the process used a lot of CPU time in 5 * loadav
 * seconds.  This causes the system to favor processes which haven't
 * run much recently, and to round-robin among other processes.
 */
void
sched_clock(struct thread *td)
{
	struct kse *ke;
	struct ksegrp *kg;

	KASSERT((td != NULL), ("schedclock: null thread pointer"));
	ke = td->td_kse;
	kg = td->td_ksegrp;
	ke->ke_cpticks++;
	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + 1);
	if ((kg->kg_estcpu % INVERSE_ESTCPU_WEIGHT) == 0) {
		resetpriority(kg);
		if (td->td_priority >= PUSER)
			td->td_priority = kg->kg_user_pri;
	}
}
/*
 * charge childs scheduling cpu usage to parent.
 *
 * XXXKSE assume only one thread & kse & ksegrp keep estcpu in each ksegrp.
 * Charge it to the ksegrp that did the wait since process estcpu is sum of
 * all ksegrps, this is strictly as expected.  Assume that the child process
 * aggregated all the estcpu into the 'built-in' ksegrp.
 */
void
sched_exit(struct ksegrp *kg, struct ksegrp *child)
{
	kg->kg_estcpu = ESTCPULIM(kg->kg_estcpu + child->kg_estcpu);
}

void
sched_fork(struct ksegrp *kg, struct ksegrp *child)
{
	/*
	 * set priority of child to be that of parent.
	 * XXXKSE this needs redefining..
	 */     
	child->kg_estcpu = kg->kg_estcpu;
}

void
sched_nice(struct ksegrp *kg, int nice)
{
	kg->kg_nice = nice;
	resetpriority(kg);
}

/*
 * Adjust the priority of a thread.
 * This may include moving the thread within the KSEGRP,
 * changing the assignment of a kse to the thread,
 * and moving a KSE in the system run queue.
 */
void
sched_prio(struct thread *td, u_char prio)
{

	if (TD_ON_RUNQ(td)) {
		adjustrunqueue(td, prio);
	} else {
		td->td_priority = prio;
	}
}

void
sched_sleep(struct thread *td, u_char prio)
{
	td->td_ksegrp->kg_slptime = 0;
	td->td_priority = prio;
}

void
sched_switchin(struct thread *td)
{
	td->td_kse->ke_oncpu = PCPU_GET(cpuid);
}

void
sched_switchout(struct thread *td)
{
	struct kse *ke;
	struct proc *p;

	ke = td->td_kse;
	p = td->td_proc;

	KASSERT((ke->ke_state == KES_THREAD), ("mi_switch: kse state?"));

	td->td_lastcpu = ke->ke_oncpu;
	td->td_last_kse = ke;
	ke->ke_oncpu = NOCPU;
	ke->ke_flags &= ~KEF_NEEDRESCHED;
	/*
	 * At the last moment, if this thread is still marked RUNNING,
	 * then put it back on the run queue as it has not been suspended
	 * or stopped or any thing else similar.
	 */
	if (TD_IS_RUNNING(td)) {
		/* Put us back on the run queue (kse and all). */
		setrunqueue(td);
	} else if (p->p_flag & P_KSES) {
		/*
		 * We will not be on the run queue. So we must be
		 * sleeping or similar. As it's available,
		 * someone else can use the KSE if they need it.
		 * (If bound LOANING can still occur).
		 */
		kse_reassign(ke);
	}
}

void
sched_wakeup(struct thread *td)
{
	struct ksegrp *kg;

	kg = td->td_ksegrp;
	if (kg->kg_slptime > 1)
		updatepri(kg);
	kg->kg_slptime = 0;
	setrunqueue(td);
	maybe_resched(td);
}

void
sched_add(struct kse *ke)
{
	mtx_assert(&sched_lock, MA_OWNED);
	KASSERT((ke->ke_thread != NULL), ("runq_add: No thread on KSE"));
	KASSERT((ke->ke_thread->td_kse != NULL),
	    ("runq_add: No KSE on thread"));
	KASSERT(ke->ke_state != KES_ONRUNQ,
	    ("runq_add: kse %p (%s) already in run queue", ke,
	    ke->ke_proc->p_comm));
	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
	    ("runq_add: process swapped out"));
	ke->ke_ksegrp->kg_runq_kses++;
	ke->ke_state = KES_ONRUNQ;

	runq_add(&runq, ke);
}

void
sched_rem(struct kse *ke)
{
	KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
	    ("runq_remove: process swapped out"));
	KASSERT((ke->ke_state == KES_ONRUNQ), ("KSE not on run queue"));
	mtx_assert(&sched_lock, MA_OWNED);

	runq_remove(&runq, ke);
	ke->ke_state = KES_THREAD;
	ke->ke_ksegrp->kg_runq_kses--;
}

struct kse *
sched_choose(void)
{
	struct kse *ke;

	ke = runq_choose(&runq);

	if (ke != NULL) {
		runq_remove(&runq, ke);
		ke->ke_state = KES_THREAD;

		KASSERT((ke->ke_thread != NULL),
		    ("runq_choose: No thread on KSE"));
		KASSERT((ke->ke_thread->td_kse != NULL),
		    ("runq_choose: No KSE on thread"));
		KASSERT(ke->ke_proc->p_sflag & PS_INMEM,
		    ("runq_choose: process swapped out"));
	}
	return (ke);
}

void
sched_userret(struct thread *td)
{
	struct ksegrp *kg;
	/*
	 * XXX we cheat slightly on the locking here to avoid locking in
	 * the usual case.  Setting td_priority here is essentially an
	 * incomplete workaround for not setting it properly elsewhere.
	 * Now that some interrupt handlers are threads, not setting it
	 * properly elsewhere can clobber it in the window between setting
	 * it here and returning to user mode, so don't waste time setting
	 * it perfectly here.
	 */
	kg = td->td_ksegrp;
	if (td->td_priority != kg->kg_user_pri) {
		mtx_lock_spin(&sched_lock);
		td->td_priority = kg->kg_user_pri;
		mtx_unlock_spin(&sched_lock);
	}
}
OpenPOWER on IntegriCloud