summaryrefslogtreecommitdiffstats
path: root/sys/kern/kern_time.c
blob: 6a046fa54f48e8bca67fe2f611c5554297d7ac70 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
/*
 * Copyright (c) 1982, 1986, 1989, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)kern_time.c	8.1 (Berkeley) 6/10/93
 * $FreeBSD$
 */

#include "opt_mac.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/sysproto.h>
#include <sys/resourcevar.h>
#include <sys/signalvar.h>
#include <sys/kernel.h>
#include <sys/mac.h>
#include <sys/sysent.h>
#include <sys/proc.h>
#include <sys/time.h>
#include <sys/timetc.h>
#include <sys/vnode.h>

#include <vm/vm.h>
#include <vm/vm_extern.h>

int tz_minuteswest;
int tz_dsttime;

/*
 * Time of day and interval timer support.
 *
 * These routines provide the kernel entry points to get and set
 * the time-of-day and per-process interval timers.  Subroutines
 * here provide support for adding and subtracting timeval structures
 * and decrementing interval timers, optionally reloading the interval
 * timers when they expire.
 */

static int	nanosleep1(struct thread *td, struct timespec *rqt,
		    struct timespec *rmt);
static int	settime(struct thread *, struct timeval *);
static void	timevalfix(struct timeval *);
static void	no_lease_updatetime(int);

static void 
no_lease_updatetime(deltat)
	int deltat;
{
}

void (*lease_updatetime)(int)  = no_lease_updatetime;

static int
settime(struct thread *td, struct timeval *tv)
{
	struct timeval delta, tv1, tv2;
	static struct timeval maxtime, laststep;
	struct timespec ts;
	int s;

	s = splclock();
	microtime(&tv1);
	delta = *tv;
	timevalsub(&delta, &tv1);

	/*
	 * If the system is secure, we do not allow the time to be 
	 * set to a value earlier than 1 second less than the highest
	 * time we have yet seen. The worst a miscreant can do in
	 * this circumstance is "freeze" time. He couldn't go
	 * back to the past.
	 *
	 * We similarly do not allow the clock to be stepped more
	 * than one second, nor more than once per second. This allows
	 * a miscreant to make the clock march double-time, but no worse.
	 */
	if (securelevel_gt(td->td_ucred, 1) != 0) {
		if (delta.tv_sec < 0 || delta.tv_usec < 0) {
			/*
			 * Update maxtime to latest time we've seen.
			 */
			if (tv1.tv_sec > maxtime.tv_sec)
				maxtime = tv1;
			tv2 = *tv;
			timevalsub(&tv2, &maxtime);
			if (tv2.tv_sec < -1) {
				tv->tv_sec = maxtime.tv_sec - 1;
				printf("Time adjustment clamped to -1 second\n");
			}
		} else {
			if (tv1.tv_sec == laststep.tv_sec) {
				splx(s);
				return (EPERM);
			}
			if (delta.tv_sec > 1) {
				tv->tv_sec = tv1.tv_sec + 1;
				printf("Time adjustment clamped to +1 second\n");
			}
			laststep = *tv;
		}
	}

	ts.tv_sec = tv->tv_sec;
	ts.tv_nsec = tv->tv_usec * 1000;
	mtx_lock(&Giant);
	tc_setclock(&ts);
	(void) splsoftclock();
	lease_updatetime(delta.tv_sec);
	splx(s);
	resettodr();
	mtx_unlock(&Giant);
	return (0);
}

#ifndef _SYS_SYSPROTO_H_
struct clock_gettime_args {
	clockid_t clock_id;
	struct	timespec *tp;
};
#endif

/*
 * MPSAFE
 */
/* ARGSUSED */
int
clock_gettime(struct thread *td, struct clock_gettime_args *uap)
{
	struct timespec ats;

	if (uap->clock_id == CLOCK_REALTIME)
		nanotime(&ats);
	else if (uap->clock_id == CLOCK_MONOTONIC)
		nanouptime(&ats);
	else
		return (EINVAL);
	return (copyout(&ats, uap->tp, sizeof(ats)));
}

#ifndef _SYS_SYSPROTO_H_
struct clock_settime_args {
	clockid_t clock_id;
	const struct	timespec *tp;
};
#endif

/*
 * MPSAFE
 */
/* ARGSUSED */
int
clock_settime(struct thread *td, struct clock_settime_args *uap)
{
	struct timeval atv;
	struct timespec ats;
	int error;

#ifdef MAC
	error = mac_check_system_settime(td->td_ucred);
	if (error)
		return (error);
#endif
	if ((error = suser(td)) != 0)
		return (error);
	if (uap->clock_id != CLOCK_REALTIME)
		return (EINVAL);
	if ((error = copyin(uap->tp, &ats, sizeof(ats))) != 0)
		return (error);
	if (ats.tv_nsec < 0 || ats.tv_nsec >= 1000000000)
		return (EINVAL);
	/* XXX Don't convert nsec->usec and back */
	TIMESPEC_TO_TIMEVAL(&atv, &ats);
	error = settime(td, &atv);
	return (error);
}

#ifndef _SYS_SYSPROTO_H_
struct clock_getres_args {
	clockid_t clock_id;
	struct	timespec *tp;
};
#endif

int
clock_getres(struct thread *td, struct clock_getres_args *uap)
{
	struct timespec ts;
	int error;

	if (uap->clock_id != CLOCK_REALTIME)
		return (EINVAL);
	error = 0;
	if (uap->tp) {
		ts.tv_sec = 0;
		/*
		 * Round up the result of the division cheaply by adding 1.
		 * Rounding up is especially important if rounding down
		 * would give 0.  Perfect rounding is unimportant.
		 */
		ts.tv_nsec = 1000000000 / tc_getfrequency() + 1;
		error = copyout(&ts, uap->tp, sizeof(ts));
	}
	return (error);
}

static int nanowait;

static int
nanosleep1(struct thread *td, struct timespec *rqt, struct timespec *rmt)
{
	struct timespec ts, ts2, ts3;
	struct timeval tv;
	int error;

	if (rqt->tv_nsec < 0 || rqt->tv_nsec >= 1000000000)
		return (EINVAL);
	if (rqt->tv_sec < 0 || (rqt->tv_sec == 0 && rqt->tv_nsec == 0))
		return (0);
	getnanouptime(&ts);
	timespecadd(&ts, rqt);
	TIMESPEC_TO_TIMEVAL(&tv, rqt);
	for (;;) {
		error = tsleep(&nanowait, PWAIT | PCATCH, "nanslp",
		    tvtohz(&tv));
		getnanouptime(&ts2);
		if (error != EWOULDBLOCK) {
			if (error == ERESTART)
				error = EINTR;
			if (rmt != NULL) {
				timespecsub(&ts, &ts2);
				if (ts.tv_sec < 0)
					timespecclear(&ts);
				*rmt = ts;
			}
			return (error);
		}
		if (timespeccmp(&ts2, &ts, >=))
			return (0);
		ts3 = ts;
		timespecsub(&ts3, &ts2);
		TIMESPEC_TO_TIMEVAL(&tv, &ts3);
	}
}

#ifndef _SYS_SYSPROTO_H_
struct nanosleep_args {
	struct	timespec *rqtp;
	struct	timespec *rmtp;
};
#endif

/* 
 * MPSAFE
 */
/* ARGSUSED */
int
nanosleep(struct thread *td, struct nanosleep_args *uap)
{
	struct timespec rmt, rqt;
	int error;

	error = copyin(uap->rqtp, &rqt, sizeof(rqt));
	if (error)
		return (error);

	if (uap->rmtp &&
	    !useracc((caddr_t)uap->rmtp, sizeof(rmt), VM_PROT_WRITE))
			return (EFAULT);
	error = nanosleep1(td, &rqt, &rmt);
	if (error && uap->rmtp) {
		int error2;

		error2 = copyout(&rmt, uap->rmtp, sizeof(rmt));
		if (error2)
			error = error2;
	}
	return (error);
}

#ifndef _SYS_SYSPROTO_H_
struct gettimeofday_args {
	struct	timeval *tp;
	struct	timezone *tzp;
};
#endif
/*
 * MPSAFE
 */
/* ARGSUSED */
int
gettimeofday(struct thread *td, struct gettimeofday_args *uap)
{
	struct timeval atv;
	struct timezone rtz;
	int error = 0;

	if (uap->tp) {
		microtime(&atv);
		error = copyout(&atv, uap->tp, sizeof (atv));
	}
	if (error == 0 && uap->tzp != NULL) {
		rtz.tz_minuteswest = tz_minuteswest;
		rtz.tz_dsttime = tz_dsttime;
		error = copyout(&rtz, uap->tzp, sizeof (rtz));
	}
	return (error);
}

#ifndef _SYS_SYSPROTO_H_
struct settimeofday_args {
	struct	timeval *tv;
	struct	timezone *tzp;
};
#endif
/*
 * MPSAFE
 */
/* ARGSUSED */
int
settimeofday(struct thread *td, struct settimeofday_args *uap)
{
	struct timeval atv;
	struct timezone atz;
	int error = 0;

#ifdef MAC
	error = mac_check_system_settime(td->td_ucred);
	if (error)
		return (error);
#endif
	if ((error = suser(td)))
		return (error);
	/* Verify all parameters before changing time. */
	if (uap->tv) {
		if ((error = copyin(uap->tv, &atv, sizeof(atv))))
			return (error);
		if (atv.tv_usec < 0 || atv.tv_usec >= 1000000)
			return (EINVAL);
	}
	if (uap->tzp &&
	    (error = copyin(uap->tzp, &atz, sizeof(atz))))
		return (error);
	
	if (uap->tv && (error = settime(td, &atv)))
		return (error);
	if (uap->tzp) {
		tz_minuteswest = atz.tz_minuteswest;
		tz_dsttime = atz.tz_dsttime;
	}
	return (error);
}
/*
 * Get value of an interval timer.  The process virtual and
 * profiling virtual time timers are kept in the p_stats area, since
 * they can be swapped out.  These are kept internally in the
 * way they are specified externally: in time until they expire.
 *
 * The real time interval timer is kept in the process table slot
 * for the process, and its value (it_value) is kept as an
 * absolute time rather than as a delta, so that it is easy to keep
 * periodic real-time signals from drifting.
 *
 * Virtual time timers are processed in the hardclock() routine of
 * kern_clock.c.  The real time timer is processed by a timeout
 * routine, called from the softclock() routine.  Since a callout
 * may be delayed in real time due to interrupt processing in the system,
 * it is possible for the real time timeout routine (realitexpire, given below),
 * to be delayed in real time past when it is supposed to occur.  It
 * does not suffice, therefore, to reload the real timer .it_value from the
 * real time timers .it_interval.  Rather, we compute the next time in
 * absolute time the timer should go off.
 */
#ifndef _SYS_SYSPROTO_H_
struct getitimer_args {
	u_int	which;
	struct	itimerval *itv;
};
#endif
/*
 * MPSAFE
 */
int
getitimer(struct thread *td, struct getitimer_args *uap)
{
	struct proc *p = td->td_proc;
	struct timeval ctv;
	struct itimerval aitv;

	if (uap->which > ITIMER_PROF)
		return (EINVAL);

	if (uap->which == ITIMER_REAL) {
		/*
		 * Convert from absolute to relative time in .it_value
		 * part of real time timer.  If time for real time timer
		 * has passed return 0, else return difference between
		 * current time and time for the timer to go off.
		 */
		PROC_LOCK(p);
		aitv = p->p_realtimer;
		PROC_UNLOCK(p);
		if (timevalisset(&aitv.it_value)) {
			getmicrouptime(&ctv);
			if (timevalcmp(&aitv.it_value, &ctv, <))
				timevalclear(&aitv.it_value);
			else
				timevalsub(&aitv.it_value, &ctv);
		}
	} else {
		mtx_lock_spin(&sched_lock);
		aitv = p->p_stats->p_timer[uap->which];
		mtx_unlock_spin(&sched_lock);
	}
	return (copyout(&aitv, uap->itv, sizeof (struct itimerval)));
}

#ifndef _SYS_SYSPROTO_H_
struct setitimer_args {
	u_int	which;
	struct	itimerval *itv, *oitv;
};
#endif
/*
 * MPSAFE
 */
int
setitimer(struct thread *td, struct setitimer_args *uap)
{
	struct proc *p = td->td_proc;
	struct itimerval aitv, oitv;
	struct timeval ctv;
	int error;

	if (uap->itv == NULL) {
		uap->itv = uap->oitv;
		return (getitimer(td, (struct getitimer_args *)uap));
	}

	if (uap->which > ITIMER_PROF)
		return (EINVAL);
	if ((error = copyin(uap->itv, &aitv, sizeof(struct itimerval))))
		return (error);
	if (itimerfix(&aitv.it_value))
		return (EINVAL);
	if (!timevalisset(&aitv.it_value))
		timevalclear(&aitv.it_interval);
	else if (itimerfix(&aitv.it_interval))
		return (EINVAL);

	if (uap->which == ITIMER_REAL) {
		PROC_LOCK(p);
		if (timevalisset(&p->p_realtimer.it_value))
			callout_stop(&p->p_itcallout);
		if (timevalisset(&aitv.it_value)) 
			callout_reset(&p->p_itcallout, tvtohz(&aitv.it_value),
			    realitexpire, p);
		getmicrouptime(&ctv);
		timevaladd(&aitv.it_value, &ctv);
		oitv = p->p_realtimer;
		p->p_realtimer = aitv;
		PROC_UNLOCK(p);
		if (timevalisset(&oitv.it_value)) {
			if (timevalcmp(&oitv.it_value, &ctv, <))
				timevalclear(&oitv.it_value);
			else
				timevalsub(&oitv.it_value, &ctv);
		}
	} else {
		mtx_lock_spin(&sched_lock);
		oitv = p->p_stats->p_timer[uap->which];
		p->p_stats->p_timer[uap->which] = aitv;
		mtx_unlock_spin(&sched_lock);
	}
	if (uap->oitv == NULL)
		return (0);
	return (copyout(&oitv, uap->oitv, sizeof(struct itimerval)));
}

/*
 * Real interval timer expired:
 * send process whose timer expired an alarm signal.
 * If time is not set up to reload, then just return.
 * Else compute next time timer should go off which is > current time.
 * This is where delay in processing this timeout causes multiple
 * SIGALRM calls to be compressed into one.
 * tvtohz() always adds 1 to allow for the time until the next clock
 * interrupt being strictly less than 1 clock tick, but we don't want
 * that here since we want to appear to be in sync with the clock
 * interrupt even when we're delayed.
 */
void
realitexpire(void *arg)
{
	struct proc *p;
	struct timeval ctv, ntv;

	p = (struct proc *)arg;
	PROC_LOCK(p);
	psignal(p, SIGALRM);
	if (!timevalisset(&p->p_realtimer.it_interval)) {
		timevalclear(&p->p_realtimer.it_value);
		PROC_UNLOCK(p);
		return;
	}
	for (;;) {
		timevaladd(&p->p_realtimer.it_value,
		    &p->p_realtimer.it_interval);
		getmicrouptime(&ctv);
		if (timevalcmp(&p->p_realtimer.it_value, &ctv, >)) {
			ntv = p->p_realtimer.it_value;
			timevalsub(&ntv, &ctv);
			callout_reset(&p->p_itcallout, tvtohz(&ntv) - 1,
			    realitexpire, p);
			PROC_UNLOCK(p);
			return;
		}
	}
	/*NOTREACHED*/
}

/*
 * Check that a proposed value to load into the .it_value or
 * .it_interval part of an interval timer is acceptable, and
 * fix it to have at least minimal value (i.e. if it is less
 * than the resolution of the clock, round it up.)
 */
int
itimerfix(struct timeval *tv)
{

	if (tv->tv_sec < 0 || tv->tv_sec > 100000000 ||
	    tv->tv_usec < 0 || tv->tv_usec >= 1000000)
		return (EINVAL);
	if (tv->tv_sec == 0 && tv->tv_usec != 0 && tv->tv_usec < tick)
		tv->tv_usec = tick;
	return (0);
}

/*
 * Decrement an interval timer by a specified number
 * of microseconds, which must be less than a second,
 * i.e. < 1000000.  If the timer expires, then reload
 * it.  In this case, carry over (usec - old value) to
 * reduce the value reloaded into the timer so that
 * the timer does not drift.  This routine assumes
 * that it is called in a context where the timers
 * on which it is operating cannot change in value.
 */
int
itimerdecr(struct itimerval *itp, int usec)
{

	if (itp->it_value.tv_usec < usec) {
		if (itp->it_value.tv_sec == 0) {
			/* expired, and already in next interval */
			usec -= itp->it_value.tv_usec;
			goto expire;
		}
		itp->it_value.tv_usec += 1000000;
		itp->it_value.tv_sec--;
	}
	itp->it_value.tv_usec -= usec;
	usec = 0;
	if (timevalisset(&itp->it_value))
		return (1);
	/* expired, exactly at end of interval */
expire:
	if (timevalisset(&itp->it_interval)) {
		itp->it_value = itp->it_interval;
		itp->it_value.tv_usec -= usec;
		if (itp->it_value.tv_usec < 0) {
			itp->it_value.tv_usec += 1000000;
			itp->it_value.tv_sec--;
		}
	} else
		itp->it_value.tv_usec = 0;		/* sec is already 0 */
	return (0);
}

/*
 * Add and subtract routines for timevals.
 * N.B.: subtract routine doesn't deal with
 * results which are before the beginning,
 * it just gets very confused in this case.
 * Caveat emptor.
 */
void
timevaladd(struct timeval *t1, struct timeval *t2)
{

	t1->tv_sec += t2->tv_sec;
	t1->tv_usec += t2->tv_usec;
	timevalfix(t1);
}

void
timevalsub(struct timeval *t1, struct timeval *t2)
{

	t1->tv_sec -= t2->tv_sec;
	t1->tv_usec -= t2->tv_usec;
	timevalfix(t1);
}

static void
timevalfix(struct timeval *t1)
{

	if (t1->tv_usec < 0) {
		t1->tv_sec--;
		t1->tv_usec += 1000000;
	}
	if (t1->tv_usec >= 1000000) {
		t1->tv_sec++;
		t1->tv_usec -= 1000000;
	}
}

/*
 * ratecheck(): simple time-based rate-limit checking.
 */
int
ratecheck(struct timeval *lasttime, const struct timeval *mininterval)
{
	struct timeval tv, delta;
	int rv = 0;

	getmicrouptime(&tv);		/* NB: 10ms precision */
	delta = tv;
	timevalsub(&delta, lasttime);

	/*
	 * check for 0,0 is so that the message will be seen at least once,
	 * even if interval is huge.
	 */
	if (timevalcmp(&delta, mininterval, >=) ||
	    (lasttime->tv_sec == 0 && lasttime->tv_usec == 0)) {
		*lasttime = tv;
		rv = 1;
	}

	return (rv);
}

/*
 * ppsratecheck(): packets (or events) per second limitation.
 *
 * Return 0 if the limit is to be enforced (e.g. the caller
 * should drop a packet because of the rate limitation).
 *
 * maxpps of 0 always causes zero to be returned.  maxpps of -1
 * always causes 1 to be returned; this effectively defeats rate
 * limiting.
 *
 * Note that we maintain the struct timeval for compatibility
 * with other bsd systems.  We reuse the storage and just monitor
 * clock ticks for minimal overhead.  
 */
int
ppsratecheck(struct timeval *lasttime, int *curpps, int maxpps)
{
	int now;

	/*
	 * Reset the last time and counter if this is the first call
	 * or more than a second has passed since the last update of
	 * lasttime.
	 */
	now = ticks;
	if (lasttime->tv_sec == 0 || (u_int)(now - lasttime->tv_sec) >= hz) {
		lasttime->tv_sec = now;
		*curpps = 1;
		return (maxpps != 0);
	} else {
		(*curpps)++;		/* NB: ignore potential overflow */
		return (maxpps < 0 || *curpps < maxpps);
	}
}
OpenPOWER on IntegriCloud