summaryrefslogtreecommitdiffstats
path: root/sys/kern/kern_tc.c
blob: 4d5d53554e2ac3addee78cef2049df38978391a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
/*
 * ----------------------------------------------------------------------------
 * "THE BEER-WARE LICENSE" (Revision 42):
 * <phk@FreeBSD.ORG> wrote this file.  As long as you retain this notice you
 * can do whatever you want with this stuff. If we meet some day, and you think
 * this stuff is worth it, you can buy me a beer in return.   Poul-Henning Kamp
 * ----------------------------------------------------------------------------
 *
 * $FreeBSD$
 */

#include "opt_ntp.h"

#include <sys/param.h>
#include <sys/timetc.h>
#include <sys/malloc.h>
#include <sys/kernel.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <sys/timex.h>
#include <sys/timepps.h>

/*
 * Number of timecounters used to implement stable storage
 */
#ifndef NTIMECOUNTER
#define NTIMECOUNTER	hz
#endif

static MALLOC_DEFINE(M_TIMECOUNTER, "timecounter", 
	"Timecounter stable storage");

static void tco_setscales __P((struct timecounter *tc));
static __inline unsigned tco_delta __P((struct timecounter *tc));

time_t time_second;

struct	bintime boottimebin;
struct	timeval boottime;
SYSCTL_STRUCT(_kern, KERN_BOOTTIME, boottime, CTLFLAG_RD,
    &boottime, timeval, "System boottime");

SYSCTL_NODE(_kern, OID_AUTO, timecounter, CTLFLAG_RW, 0, "");

static unsigned nbintime;
static unsigned nbinuptime;
static unsigned nmicrotime;
static unsigned nnanotime;
static unsigned ngetmicrotime;
static unsigned ngetnanotime;
static unsigned nmicrouptime;
static unsigned nnanouptime;
static unsigned ngetmicrouptime;
static unsigned ngetnanouptime;
SYSCTL_INT(_kern_timecounter, OID_AUTO, nbintime, CTLFLAG_RD, &nbintime, 0, "");
SYSCTL_INT(_kern_timecounter, OID_AUTO, nbinuptime, CTLFLAG_RD, &nbinuptime, 0, "");
SYSCTL_INT(_kern_timecounter, OID_AUTO, nmicrotime, CTLFLAG_RD, &nmicrotime, 0, "");
SYSCTL_INT(_kern_timecounter, OID_AUTO, nnanotime, CTLFLAG_RD, &nnanotime, 0, "");
SYSCTL_INT(_kern_timecounter, OID_AUTO, nmicrouptime, CTLFLAG_RD, &nmicrouptime, 0, "");
SYSCTL_INT(_kern_timecounter, OID_AUTO, nnanouptime, CTLFLAG_RD, &nnanouptime, 0, "");
SYSCTL_INT(_kern_timecounter, OID_AUTO, ngetmicrotime, CTLFLAG_RD, &ngetmicrotime, 0, "");
SYSCTL_INT(_kern_timecounter, OID_AUTO, ngetnanotime, CTLFLAG_RD, &ngetnanotime, 0, "");
SYSCTL_INT(_kern_timecounter, OID_AUTO, ngetmicrouptime, CTLFLAG_RD, &ngetmicrouptime, 0, "");
SYSCTL_INT(_kern_timecounter, OID_AUTO, ngetnanouptime, CTLFLAG_RD, &ngetnanouptime, 0, "");

/*
 * Implement a dummy timecounter which we can use until we get a real one
 * in the air.  This allows the console and other early stuff to use
 * timeservices.
 */

static unsigned 
dummy_get_timecount(struct timecounter *tc)
{
	static unsigned now;

	if (tc->tc_generation == 0)
		tc->tc_generation++;
	return (++now);
}

static struct timecounter dummy_timecounter = {
	dummy_get_timecount,
	0,
	~0u,
	1000000,
	"dummy"
};

struct timecounter *volatile timecounter = &dummy_timecounter;

static __inline unsigned
tco_delta(struct timecounter *tc)
{

	return ((tc->tc_get_timecount(tc) - tc->tc_offset_count) & 
	    tc->tc_counter_mask);
}

/*
 * We have eight functions for looking at the clock, four for
 * microseconds and four for nanoseconds.  For each there is fast
 * but less precise version "get{nano|micro}[up]time" which will
 * return a time which is up to 1/HZ previous to the call, whereas
 * the raw version "{nano|micro}[up]time" will return a timestamp
 * which is as precise as possible.  The "up" variants return the
 * time relative to system boot, these are well suited for time
 * interval measurements.
 */

void
binuptime(struct bintime *bt)
{
	struct timecounter *tc;
	unsigned gen;

	nbinuptime++;
	do {
		tc = timecounter;
		gen = tc->tc_generation;
		*bt = tc->tc_offset;
		bintime_addx(bt, tc->tc_scale * tco_delta(tc));
	} while (gen == 0 || gen != tc->tc_generation);
}

void
bintime(struct bintime *bt)
{

	nbintime++;
	binuptime(bt);
	bintime_add(bt, &boottimebin);
}

void
getmicrotime(struct timeval *tvp)
{
	struct timecounter *tc;
	unsigned gen;

	ngetmicrotime++;
	do {
		tc = timecounter;
		gen = tc->tc_generation;
		*tvp = tc->tc_microtime;
	} while (gen == 0 || gen != tc->tc_generation);
}

void
getnanotime(struct timespec *tsp)
{
	struct timecounter *tc;
	unsigned gen;

	ngetnanotime++;
	do {
		tc = timecounter;
		gen = tc->tc_generation;
		*tsp = tc->tc_nanotime;
	} while (gen == 0 || gen != tc->tc_generation);
}

void
microtime(struct timeval *tv)
{
	struct bintime bt;

	nmicrotime++;
	bintime(&bt);
	bintime2timeval(&bt, tv);
}

void
nanotime(struct timespec *ts)
{
	struct bintime bt;

	nnanotime++;
	bintime(&bt);
	bintime2timespec(&bt, ts);
}

void
getmicrouptime(struct timeval *tvp)
{
	struct timecounter *tc;
	unsigned gen;

	ngetmicrouptime++;
	do {
		tc = timecounter;
		gen = tc->tc_generation;
		bintime2timeval(&tc->tc_offset, tvp);
	} while (gen == 0 || gen != tc->tc_generation);
}

void
getnanouptime(struct timespec *tsp)
{
	struct timecounter *tc;
	unsigned gen;

	ngetnanouptime++;
	do {
		tc = timecounter;
		gen = tc->tc_generation;
		bintime2timespec(&tc->tc_offset, tsp);
	} while (gen == 0 || gen != tc->tc_generation);
}

void
microuptime(struct timeval *tv)
{
	struct bintime bt;

	nmicrouptime++;
	binuptime(&bt);
	bintime2timeval(&bt, tv);
}

void
nanouptime(struct timespec *ts)
{
	struct bintime bt;

	nnanouptime++;
	binuptime(&bt);
	bintime2timespec(&bt, ts);
}

static void
tco_setscales(struct timecounter *tc)
{
	u_int64_t scale;

	/* Sacrifice the lower bit to the deity for code clarity */
	scale = 1ULL << 63;
	/* 
	 * We get nanoseconds with 32 bit binary fraction and want
	 * 64 bit binary fraction: x = a * 2^32 / 10^9 = a * 4.294967296
	 * The range is +/- 500PPM so we can multiply by about 8500
	 * without overflowing.  4398/1024 = is very close to ideal.
	 */
	scale += (tc->tc_adjustment * 4398) >> 10;
	scale /= tc->tc_tweak->tc_frequency;
	tc->tc_scale = scale * 2;
}

void
tc_update(struct timecounter *tc)
{
	tco_setscales(tc);
}

void
tc_init(struct timecounter *tc)
{
	struct timecounter *t1, *t2, *t3;
	int i;

	tc->tc_adjustment = 0;
	tc->tc_tweak = tc;
	tco_setscales(tc);
	tc->tc_offset_count = tc->tc_get_timecount(tc);
	if (timecounter == &dummy_timecounter)
		tc->tc_avail = tc;
	else {
		tc->tc_avail = timecounter->tc_tweak->tc_avail;
		timecounter->tc_tweak->tc_avail = tc;
	}
	MALLOC(t1, struct timecounter *, sizeof *t1, M_TIMECOUNTER, M_WAITOK | M_ZERO);
	tc->tc_next = t1;
	*t1 = *tc;
	t2 = t1;
	t3 = NULL;
	for (i = 1; i < NTIMECOUNTER; i++) {
		MALLOC(t3, struct timecounter *, sizeof *t3,
		    M_TIMECOUNTER, M_WAITOK | M_ZERO);
		*t3 = *tc;
		t3->tc_next = t2;
		t2 = t3;
	}
	t1->tc_next = t3;
	tc = t1;

	printf("Timecounter \"%s\"  frequency %lu Hz\n", 
	    tc->tc_name, (u_long)tc->tc_frequency);

	/* XXX: For now always start using the counter. */
	tc->tc_offset_count = tc->tc_get_timecount(tc);
	binuptime(&tc->tc_offset);
	timecounter = tc;
	tc_windup();
}

void
tc_setclock(struct timespec *ts)
{
	struct timespec ts2;

	nanouptime(&ts2);
	boottime.tv_sec = ts->tv_sec - ts2.tv_sec;
	boottime.tv_usec = (ts->tv_nsec - ts2.tv_nsec) / 1000;
	if (boottime.tv_usec < 0) {
		boottime.tv_usec += 1000000;
		boottime.tv_sec--;
	}
	timeval2bintime(&boottime, &boottimebin);
	/* fiddle all the little crinkly bits around the fiords... */
	tc_windup();
}

static void
switch_timecounter(struct timecounter *newtc)
{
	int s;
	struct timecounter *tc;

	s = splclock();
	tc = timecounter;
	if (newtc->tc_tweak == tc->tc_tweak) {
		splx(s);
		return;
	}
	newtc = newtc->tc_tweak->tc_next;
	binuptime(&newtc->tc_offset);
	newtc->tc_offset_count = newtc->tc_get_timecount(newtc);
	tco_setscales(newtc);
	newtc->tc_generation = 0;
	timecounter = newtc;
	tc_windup();
	splx(s);
}

void
tc_windup(void)
{
	struct timecounter *tc, *tco;
	struct bintime bt;
	struct timeval tvt;
	unsigned ogen, delta;
	int i;

	tco = timecounter;
	tc = tco->tc_next;
	ogen = tc->tc_generation;
	tc->tc_generation = 0;
	bcopy(tco, tc, __offsetof(struct timecounter, tc_generation));
	delta = tco_delta(tc);
	tc->tc_offset_count += delta;
	tc->tc_offset_count &= tc->tc_counter_mask;
	bintime_addx(&tc->tc_offset, tc->tc_scale * delta);
	/*
	 * We may be inducing a tiny error here, the tc_poll_pps() may
	 * process a latched count which happens after the tco_delta()
	 * in sync_other_counter(), which would extend the previous
	 * counters parameters into the domain of this new one.
	 * Since the timewindow is very small for this, the error is
	 * going to be only a few weenieseconds (as Dave Mills would
	 * say), so lets just not talk more about it, OK ?
	 */
	if (tco->tc_poll_pps) 
		tco->tc_poll_pps(tco);
	if (timedelta != 0) {
		tvt = boottime;
		tvt.tv_usec += tickdelta;
		if (tvt.tv_usec >= 1000000) {
			tvt.tv_sec++;
			tvt.tv_usec -= 1000000;
		} else if (tvt.tv_usec < 0) {
			tvt.tv_sec--;
			tvt.tv_usec += 1000000;
		}
		boottime = tvt;
		timeval2bintime(&boottime, &boottimebin);
		timedelta -= tickdelta;
	}
	for (i = tc->tc_offset.sec - tco->tc_offset.sec; i > 0; i--) {
		ntp_update_second(tc);	/* XXX only needed if xntpd runs */
		tco_setscales(tc);
	}

	bt = tc->tc_offset;
	bintime_add(&bt, &boottimebin);
	bintime2timeval(&bt, &tc->tc_microtime);
	bintime2timespec(&bt, &tc->tc_nanotime);
	ogen++;
	if (ogen == 0)
		ogen++;
	tc->tc_generation = ogen;
	time_second = tc->tc_microtime.tv_sec;
	timecounter = tc;
}

static int
sysctl_kern_timecounter_hardware(SYSCTL_HANDLER_ARGS)
{
	char newname[32];
	struct timecounter *newtc, *tc;
	int error;

	tc = timecounter->tc_tweak;
	strncpy(newname, tc->tc_name, sizeof(newname));
	error = sysctl_handle_string(oidp, &newname[0], sizeof(newname), req);
	if (error == 0 && req->newptr != NULL &&
	    strcmp(newname, tc->tc_name) != 0) {
		for (newtc = tc->tc_avail; newtc != tc;
		    newtc = newtc->tc_avail) {
			if (strcmp(newname, newtc->tc_name) == 0) {
				/* Warm up new timecounter. */
				(void)newtc->tc_get_timecount(newtc);

				switch_timecounter(newtc);
				return (0);
			}
		}
		return (EINVAL);
	}
	return (error);
}

SYSCTL_PROC(_kern_timecounter, OID_AUTO, hardware, CTLTYPE_STRING | CTLFLAG_RW,
    0, 0, sysctl_kern_timecounter_hardware, "A", "");


int
pps_ioctl(u_long cmd, caddr_t data, struct pps_state *pps)
{
	pps_params_t *app;
	struct pps_fetch_args *fapi;
#ifdef PPS_SYNC
	struct pps_kcbind_args *kapi;
#endif

	switch (cmd) {
	case PPS_IOC_CREATE:
		return (0);
	case PPS_IOC_DESTROY:
		return (0);
	case PPS_IOC_SETPARAMS:
		app = (pps_params_t *)data;
		if (app->mode & ~pps->ppscap)
			return (EINVAL);
		pps->ppsparam = *app;         
		return (0);
	case PPS_IOC_GETPARAMS:
		app = (pps_params_t *)data;
		*app = pps->ppsparam;
		app->api_version = PPS_API_VERS_1;
		return (0);
	case PPS_IOC_GETCAP:
		*(int*)data = pps->ppscap;
		return (0);
	case PPS_IOC_FETCH:
		fapi = (struct pps_fetch_args *)data;
		if (fapi->tsformat && fapi->tsformat != PPS_TSFMT_TSPEC)
			return (EINVAL);
		if (fapi->timeout.tv_sec || fapi->timeout.tv_nsec)
			return (EOPNOTSUPP);
		pps->ppsinfo.current_mode = pps->ppsparam.mode;         
		fapi->pps_info_buf = pps->ppsinfo;
		return (0);
	case PPS_IOC_KCBIND:
#ifdef PPS_SYNC
		kapi = (struct pps_kcbind_args *)data;
		/* XXX Only root should be able to do this */
		if (kapi->tsformat && kapi->tsformat != PPS_TSFMT_TSPEC)
			return (EINVAL);
		if (kapi->kernel_consumer != PPS_KC_HARDPPS)
			return (EINVAL);
		if (kapi->edge & ~pps->ppscap)
			return (EINVAL);
		pps->kcmode = kapi->edge;
		return (0);
#else
		return (EOPNOTSUPP);
#endif
	default:
		return (ENOTTY);
	}
}

void
pps_init(struct pps_state *pps)
{
	pps->ppscap |= PPS_TSFMT_TSPEC;
	if (pps->ppscap & PPS_CAPTUREASSERT)
		pps->ppscap |= PPS_OFFSETASSERT;
	if (pps->ppscap & PPS_CAPTURECLEAR)
		pps->ppscap |= PPS_OFFSETCLEAR;
}

void
pps_event(struct pps_state *pps, struct timecounter *tc, unsigned count, int event)
{
	struct timespec ts, *tsp, *osp;
	unsigned tcount, *pcount;
	struct bintime bt;
	int foff, fhard;
	pps_seq_t	*pseq;

	/* Things would be easier with arrays... */
	if (event == PPS_CAPTUREASSERT) {
		tsp = &pps->ppsinfo.assert_timestamp;
		osp = &pps->ppsparam.assert_offset;
		foff = pps->ppsparam.mode & PPS_OFFSETASSERT;
		fhard = pps->kcmode & PPS_CAPTUREASSERT;
		pcount = &pps->ppscount[0];
		pseq = &pps->ppsinfo.assert_sequence;
	} else {
		tsp = &pps->ppsinfo.clear_timestamp;
		osp = &pps->ppsparam.clear_offset;
		foff = pps->ppsparam.mode & PPS_OFFSETCLEAR;
		fhard = pps->kcmode & PPS_CAPTURECLEAR;
		pcount = &pps->ppscount[1];
		pseq = &pps->ppsinfo.clear_sequence;
	}

	/* The timecounter changed: bail */
	if (!pps->ppstc || 
	    pps->ppstc->tc_name != tc->tc_name || 
	    tc->tc_name != timecounter->tc_name) {
		pps->ppstc = tc;
		*pcount = count;
		return;
	}

	/* Nothing really happened */
	if (*pcount == count)
		return;

	*pcount = count;

	/* Convert the count to timespec */
	tcount = count - tc->tc_offset_count;
	tcount &= tc->tc_counter_mask;
	bt = tc->tc_offset;
	bintime_addx(&bt, tc->tc_scale * tcount);
	bintime2timespec(&bt, &ts);

	(*pseq)++;
	*tsp = ts;

	if (foff) {
		timespecadd(tsp, osp);
		if (tsp->tv_nsec < 0) {
			tsp->tv_nsec += 1000000000;
			tsp->tv_sec -= 1;
		}
	}
#ifdef PPS_SYNC
	if (fhard) {
		/* magic, at its best... */
		tcount = count - pps->ppscount[2];
		pps->ppscount[2] = count;
		tcount &= tc->tc_counter_mask;
		bt.sec = 0;
		bt.frac = 0;
		bintime_addx(&bt, tc->tc_scale * tcount);
		bintime2timespec(&bt, &ts);
		hardpps(tsp, ts.tv_nsec + 1000000000 * ts.tv_sec);
	}
#endif
}
OpenPOWER on IntegriCloud