summaryrefslogtreecommitdiffstats
path: root/sys/kern/kern_lockf.c
blob: 3f8e9f6c9b129c86c3fba365c602f62a54b52da4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
/*-
 * Copyright (c) 2008 Isilon Inc http://www.isilon.com/
 * Authors: Doug Rabson <dfr@rabson.org>
 * Developed with Red Inc: Alfred Perlstein <alfred@freebsd.org>
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */
/*-
 * Copyright (c) 1982, 1986, 1989, 1993
 *	The Regents of the University of California.  All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * Scooter Morris at Genentech Inc.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	@(#)ufs_lockf.c	8.3 (Berkeley) 1/6/94
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_debug_lockf.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/hash.h>
#include <sys/kernel.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/mount.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/sx.h>
#include <sys/unistd.h>
#include <sys/vnode.h>
#include <sys/malloc.h>
#include <sys/fcntl.h>
#include <sys/lockf.h>
#include <sys/taskqueue.h>

#ifdef LOCKF_DEBUG
#include <sys/sysctl.h>

#include <ufs/ufs/quota.h>
#include <ufs/ufs/inode.h>

static int	lockf_debug = 0; /* control debug output */
SYSCTL_INT(_debug, OID_AUTO, lockf_debug, CTLFLAG_RW, &lockf_debug, 0, "");
#endif

MALLOC_DEFINE(M_LOCKF, "lockf", "Byte-range locking structures");

struct owner_edge;
struct owner_vertex;
struct owner_vertex_list;
struct owner_graph;

#define NOLOCKF (struct lockf_entry *)0
#define SELF	0x1
#define OTHERS	0x2
static void	 lf_init(void *);
static int	 lf_hash_owner(caddr_t, struct flock *, int);
static int	 lf_owner_matches(struct lock_owner *, caddr_t, struct flock *,
    int);
static struct lockf_entry *
		 lf_alloc_lock(struct lock_owner *);
static void	 lf_free_lock(struct lockf_entry *);
static int	 lf_clearlock(struct lockf *, struct lockf_entry *);
static int	 lf_overlaps(struct lockf_entry *, struct lockf_entry *);
static int	 lf_blocks(struct lockf_entry *, struct lockf_entry *);
static void	 lf_free_edge(struct lockf_edge *);
static struct lockf_edge *
		 lf_alloc_edge(void);
static void	 lf_alloc_vertex(struct lockf_entry *);
static int	 lf_add_edge(struct lockf_entry *, struct lockf_entry *);
static void	 lf_remove_edge(struct lockf_edge *);
static void	 lf_remove_outgoing(struct lockf_entry *);
static void	 lf_remove_incoming(struct lockf_entry *);
static int	 lf_add_outgoing(struct lockf *, struct lockf_entry *);
static int	 lf_add_incoming(struct lockf *, struct lockf_entry *);
static int	 lf_findoverlap(struct lockf_entry **, struct lockf_entry *,
    int);
static struct lockf_entry *
		 lf_getblock(struct lockf *, struct lockf_entry *);
static int	 lf_getlock(struct lockf *, struct lockf_entry *, struct flock *);
static void	 lf_insert_lock(struct lockf *, struct lockf_entry *);
static void	 lf_wakeup_lock(struct lockf *, struct lockf_entry *);
static void	 lf_update_dependancies(struct lockf *, struct lockf_entry *,
    int all, struct lockf_entry_list *);
static void	 lf_set_start(struct lockf *, struct lockf_entry *, off_t,
	struct lockf_entry_list*);
static void	 lf_set_end(struct lockf *, struct lockf_entry *, off_t,
	struct lockf_entry_list*);
static int	 lf_setlock(struct lockf *, struct lockf_entry *,
    struct vnode *, void **cookiep);
static int	 lf_cancel(struct lockf *, struct lockf_entry *, void *);
static void	 lf_split(struct lockf *, struct lockf_entry *,
    struct lockf_entry *, struct lockf_entry_list *);
#ifdef LOCKF_DEBUG
static int	 graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
    struct owner_vertex_list *path);
static void	 graph_check(struct owner_graph *g, int checkorder);
static void	 graph_print_vertices(struct owner_vertex_list *set);
#endif
static int	 graph_delta_forward(struct owner_graph *g,
    struct owner_vertex *x, struct owner_vertex *y,
    struct owner_vertex_list *delta);
static int	 graph_delta_backward(struct owner_graph *g,
    struct owner_vertex *x, struct owner_vertex *y,
    struct owner_vertex_list *delta);
static int	 graph_add_indices(int *indices, int n,
    struct owner_vertex_list *set);
static int	 graph_assign_indices(struct owner_graph *g, int *indices,
    int nextunused, struct owner_vertex_list *set);
static int	 graph_add_edge(struct owner_graph *g,
    struct owner_vertex *x, struct owner_vertex *y);
static void	 graph_remove_edge(struct owner_graph *g,
    struct owner_vertex *x, struct owner_vertex *y);
static struct owner_vertex *graph_alloc_vertex(struct owner_graph *g,
    struct lock_owner *lo);
static void	 graph_free_vertex(struct owner_graph *g,
    struct owner_vertex *v);
static struct owner_graph * graph_init(struct owner_graph *g);
#ifdef LOCKF_DEBUG
static void	 lf_print(char *, struct lockf_entry *);
static void	 lf_printlist(char *, struct lockf_entry *);
static void	 lf_print_owner(struct lock_owner *);
#endif

/*
 * This structure is used to keep track of both local and remote lock
 * owners. The lf_owner field of the struct lockf_entry points back at
 * the lock owner structure. Each possible lock owner (local proc for
 * POSIX fcntl locks, local file for BSD flock locks or <pid,sysid>
 * pair for remote locks) is represented by a unique instance of
 * struct lock_owner.
 *
 * If a lock owner has a lock that blocks some other lock or a lock
 * that is waiting for some other lock, it also has a vertex in the
 * owner_graph below.
 *
 * Locks:
 * (s)		locked by state->ls_lock
 * (S)		locked by lf_lock_states_lock
 * (l)		locked by lf_lock_owners_lock
 * (g)		locked by lf_owner_graph_lock
 * (c)		const until freeing
 */
#define	LOCK_OWNER_HASH_SIZE	256

struct lock_owner {
	LIST_ENTRY(lock_owner) lo_link; /* (l) hash chain */
	int	lo_refs;	    /* (l) Number of locks referring to this */
	int	lo_flags;	    /* (c) Flags passwd to lf_advlock */
	caddr_t	lo_id;		    /* (c) Id value passed to lf_advlock */
	pid_t	lo_pid;		    /* (c) Process Id of the lock owner */
	int	lo_sysid;	    /* (c) System Id of the lock owner */
	struct owner_vertex *lo_vertex; /* (g) entry in deadlock graph */
};

LIST_HEAD(lock_owner_list, lock_owner);

static struct sx		lf_lock_states_lock;
static struct lockf_list	lf_lock_states; /* (S) */
static struct sx		lf_lock_owners_lock;
static struct lock_owner_list	lf_lock_owners[LOCK_OWNER_HASH_SIZE]; /* (l) */

/*
 * Structures for deadlock detection.
 *
 * We have two types of directed graph, the first is the set of locks,
 * both active and pending on a vnode. Within this graph, active locks
 * are terminal nodes in the graph (i.e. have no out-going
 * edges). Pending locks have out-going edges to each blocking active
 * lock that prevents the lock from being granted and also to each
 * older pending lock that would block them if it was active. The
 * graph for each vnode is naturally acyclic; new edges are only ever
 * added to or from new nodes (either new pending locks which only add
 * out-going edges or new active locks which only add in-coming edges)
 * therefore they cannot create loops in the lock graph.
 *
 * The second graph is a global graph of lock owners. Each lock owner
 * is a vertex in that graph and an edge is added to the graph
 * whenever an edge is added to a vnode graph, with end points
 * corresponding to owner of the new pending lock and the owner of the
 * lock upon which it waits. In order to prevent deadlock, we only add
 * an edge to this graph if the new edge would not create a cycle.
 * 
 * The lock owner graph is topologically sorted, i.e. if a node has
 * any outgoing edges, then it has an order strictly less than any
 * node to which it has an outgoing edge. We preserve this ordering
 * (and detect cycles) on edge insertion using Algorithm PK from the
 * paper "A Dynamic Topological Sort Algorithm for Directed Acyclic
 * Graphs" (ACM Journal of Experimental Algorithms, Vol 11, Article
 * No. 1.7)
 */
struct owner_vertex;

struct owner_edge {
	LIST_ENTRY(owner_edge) e_outlink; /* (g) link from's out-edge list */
	LIST_ENTRY(owner_edge) e_inlink;  /* (g) link to's in-edge list */
	int		e_refs;		  /* (g) number of times added */
	struct owner_vertex *e_from;	  /* (c) out-going from here */
	struct owner_vertex *e_to;	  /* (c) in-coming to here */
};
LIST_HEAD(owner_edge_list, owner_edge);

struct owner_vertex {
	TAILQ_ENTRY(owner_vertex) v_link; /* (g) workspace for edge insertion */
	uint32_t	v_gen;		  /* (g) workspace for edge insertion */
	int		v_order;	  /* (g) order of vertex in graph */
	struct owner_edge_list v_outedges;/* (g) list of out-edges */
	struct owner_edge_list v_inedges; /* (g) list of in-edges */
	struct lock_owner *v_owner;	  /* (c) corresponding lock owner */
};
TAILQ_HEAD(owner_vertex_list, owner_vertex);

struct owner_graph {
	struct owner_vertex** g_vertices; /* (g) pointers to vertices */
	int		g_size;		  /* (g) number of vertices */
	int		g_space;	  /* (g) space allocated for vertices */
	int		*g_indexbuf;	  /* (g) workspace for loop detection */
	uint32_t	g_gen;		  /* (g) increment when re-ordering */
};

static struct sx		lf_owner_graph_lock;
static struct owner_graph	lf_owner_graph;

/*
 * Initialise various structures and locks.
 */
static void
lf_init(void *dummy)
{
	int i;

	sx_init(&lf_lock_states_lock, "lock states lock");
	LIST_INIT(&lf_lock_states);

	sx_init(&lf_lock_owners_lock, "lock owners lock");
	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
		LIST_INIT(&lf_lock_owners[i]);

	sx_init(&lf_owner_graph_lock, "owner graph lock");
	graph_init(&lf_owner_graph);
}
SYSINIT(lf_init, SI_SUB_LOCK, SI_ORDER_FIRST, lf_init, NULL);

/*
 * Generate a hash value for a lock owner.
 */
static int
lf_hash_owner(caddr_t id, struct flock *fl, int flags)
{
	uint32_t h;

	if (flags & F_REMOTE) {
		h = HASHSTEP(0, fl->l_pid);
		h = HASHSTEP(h, fl->l_sysid);
	} else if (flags & F_FLOCK) {
		h = ((uintptr_t) id) >> 7;
	} else {
		struct proc *p = (struct proc *) id;
		h = HASHSTEP(0, p->p_pid);
		h = HASHSTEP(h, 0);
	}

	return (h % LOCK_OWNER_HASH_SIZE);
}

/*
 * Return true if a lock owner matches the details passed to
 * lf_advlock.
 */
static int
lf_owner_matches(struct lock_owner *lo, caddr_t id, struct flock *fl,
    int flags)
{
	if (flags & F_REMOTE) {
		return lo->lo_pid == fl->l_pid
			&& lo->lo_sysid == fl->l_sysid;
	} else {
		return lo->lo_id == id;
	}
}

static struct lockf_entry *
lf_alloc_lock(struct lock_owner *lo)
{
	struct lockf_entry *lf;

	lf = malloc(sizeof(struct lockf_entry), M_LOCKF, M_WAITOK|M_ZERO);

#ifdef LOCKF_DEBUG
	if (lockf_debug & 4)
		printf("Allocated lock %p\n", lf);
#endif
	if (lo) {
		sx_xlock(&lf_lock_owners_lock);
		lo->lo_refs++;
		sx_xunlock(&lf_lock_owners_lock);
		lf->lf_owner = lo;
	}

	return (lf);
}

static void
lf_free_lock(struct lockf_entry *lock)
{
	/*
	 * Adjust the lock_owner reference count and
	 * reclaim the entry if this is the last lock
	 * for that owner.
	 */
	struct lock_owner *lo = lock->lf_owner;
	if (lo) {
		KASSERT(LIST_EMPTY(&lock->lf_outedges),
		    ("freeing lock with dependancies"));
		KASSERT(LIST_EMPTY(&lock->lf_inedges),
		    ("freeing lock with dependants"));
		sx_xlock(&lf_lock_owners_lock);
		KASSERT(lo->lo_refs > 0, ("lock owner refcount"));
		lo->lo_refs--;
		if (lo->lo_refs == 0) {
#ifdef LOCKF_DEBUG
			if (lockf_debug & 1)
				printf("lf_free_lock: freeing lock owner %p\n",
				    lo);
#endif
			if (lo->lo_vertex) {
				sx_xlock(&lf_owner_graph_lock);
				graph_free_vertex(&lf_owner_graph,
				    lo->lo_vertex);
				sx_xunlock(&lf_owner_graph_lock);
			}
			LIST_REMOVE(lo, lo_link);
			free(lo, M_LOCKF);
#ifdef LOCKF_DEBUG
			if (lockf_debug & 4)
				printf("Freed lock owner %p\n", lo);
#endif
		}
		sx_unlock(&lf_lock_owners_lock);
	}
	if ((lock->lf_flags & F_REMOTE) && lock->lf_vnode) {
		vrele(lock->lf_vnode);
		lock->lf_vnode = NULL;
	}
#ifdef LOCKF_DEBUG
	if (lockf_debug & 4)
		printf("Freed lock %p\n", lock);
#endif
	free(lock, M_LOCKF);
}

/*
 * Advisory record locking support
 */
int
lf_advlockasync(struct vop_advlockasync_args *ap, struct lockf **statep,
    u_quad_t size)
{
	struct lockf *state, *freestate = NULL;
	struct flock *fl = ap->a_fl;
	struct lockf_entry *lock;
	struct vnode *vp = ap->a_vp;
	caddr_t id = ap->a_id;
	int flags = ap->a_flags;
	int hash;
	struct lock_owner *lo;
	off_t start, end, oadd;
	int error;

	/*
	 * Handle the F_UNLKSYS case first - no need to mess about
	 * creating a lock owner for this one.
	 */
	if (ap->a_op == F_UNLCKSYS) {
		lf_clearremotesys(fl->l_sysid);
		return (0);
	}

	/*
	 * Convert the flock structure into a start and end.
	 */
	switch (fl->l_whence) {

	case SEEK_SET:
	case SEEK_CUR:
		/*
		 * Caller is responsible for adding any necessary offset
		 * when SEEK_CUR is used.
		 */
		start = fl->l_start;
		break;

	case SEEK_END:
		if (size > OFF_MAX ||
		    (fl->l_start > 0 && size > OFF_MAX - fl->l_start))
			return (EOVERFLOW);
		start = size + fl->l_start;
		break;

	default:
		return (EINVAL);
	}
	if (start < 0)
		return (EINVAL);
	if (fl->l_len < 0) {
		if (start == 0)
			return (EINVAL);
		end = start - 1;
		start += fl->l_len;
		if (start < 0)
			return (EINVAL);
	} else if (fl->l_len == 0) {
		end = OFF_MAX;
	} else {
		oadd = fl->l_len - 1;
		if (oadd > OFF_MAX - start)
			return (EOVERFLOW);
		end = start + oadd;
	}
	/*
	 * Avoid the common case of unlocking when inode has no locks.
	 */
	VI_LOCK(vp);
	if ((*statep) == NULL) {
		if (ap->a_op != F_SETLK) {
			fl->l_type = F_UNLCK;
			VI_UNLOCK(vp);
			return (0);
		}
	}
	VI_UNLOCK(vp);

	/*
	 * Map our arguments to an existing lock owner or create one
	 * if this is the first time we have seen this owner.
	 */
	hash = lf_hash_owner(id, fl, flags);
	sx_xlock(&lf_lock_owners_lock);
	LIST_FOREACH(lo, &lf_lock_owners[hash], lo_link)
		if (lf_owner_matches(lo, id, fl, flags))
			break;
	if (!lo) {
		/*
		 * We initialise the lock with a reference
		 * count which matches the new lockf_entry
		 * structure created below.
		 */
		lo = malloc(sizeof(struct lock_owner), M_LOCKF,
		    M_WAITOK|M_ZERO);
#ifdef LOCKF_DEBUG
		if (lockf_debug & 4)
			printf("Allocated lock owner %p\n", lo);
#endif

		lo->lo_refs = 1;
		lo->lo_flags = flags;
		lo->lo_id = id;
		if (flags & F_REMOTE) {
			lo->lo_pid = fl->l_pid;
			lo->lo_sysid = fl->l_sysid;
		} else if (flags & F_FLOCK) {
			lo->lo_pid = -1;
			lo->lo_sysid = 0;
		} else {
			struct proc *p = (struct proc *) id;
			lo->lo_pid = p->p_pid;
			lo->lo_sysid = 0;
		}
		lo->lo_vertex = NULL;

#ifdef LOCKF_DEBUG
		if (lockf_debug & 1) {
			printf("lf_advlockasync: new lock owner %p ", lo);
			lf_print_owner(lo);
			printf("\n");
		}
#endif

		LIST_INSERT_HEAD(&lf_lock_owners[hash], lo, lo_link);
	} else {
		/*
		 * We have seen this lock owner before, increase its
		 * reference count to account for the new lockf_entry
		 * structure we create below.
		 */
		lo->lo_refs++;
	}
	sx_xunlock(&lf_lock_owners_lock);

	/*
	 * Create the lockf structure. We initialise the lf_owner
	 * field here instead of in lf_alloc_lock() to avoid paying
	 * the lf_lock_owners_lock tax twice.
	 */
	lock = lf_alloc_lock(NULL);
	lock->lf_start = start;
	lock->lf_end = end;
	lock->lf_owner = lo;
	lock->lf_vnode = vp;
	if (flags & F_REMOTE) {
		/*
		 * For remote locks, the caller may release its ref to
		 * the vnode at any time - we have to ref it here to
		 * prevent it from being recycled unexpectedly.
		 */
		vref(vp);
	}

	/*
	 * XXX The problem is that VTOI is ufs specific, so it will
	 * break LOCKF_DEBUG for all other FS's other than UFS because
	 * it casts the vnode->data ptr to struct inode *.
	 */
/*	lock->lf_inode = VTOI(ap->a_vp); */
	lock->lf_inode = (struct inode *)0;
	lock->lf_type = fl->l_type;
	LIST_INIT(&lock->lf_outedges);
	LIST_INIT(&lock->lf_inedges);
	lock->lf_async_task = ap->a_task;
	lock->lf_flags = ap->a_flags;

	/*
	 * Do the requested operation. First find our state structure
	 * and create a new one if necessary - the caller's *statep
	 * variable and the state's ls_threads count is protected by
	 * the vnode interlock.
	 */
	VI_LOCK(vp);
	if (vp->v_iflag & VI_DOOMED) {
		VI_UNLOCK(vp);
		lf_free_lock(lock);
		return (ENOENT);
	}

	/*
	 * Allocate a state structure if necessary.
	 */
	state = *statep;
	if (state == NULL) {
		struct lockf *ls;

		VI_UNLOCK(vp);

		ls = malloc(sizeof(struct lockf), M_LOCKF, M_WAITOK|M_ZERO);
		sx_init(&ls->ls_lock, "ls_lock");
		LIST_INIT(&ls->ls_active);
		LIST_INIT(&ls->ls_pending);
		ls->ls_threads = 1;

		sx_xlock(&lf_lock_states_lock);
		LIST_INSERT_HEAD(&lf_lock_states, ls, ls_link);
		sx_xunlock(&lf_lock_states_lock);

		/*
		 * Cope if we lost a race with some other thread while
		 * trying to allocate memory.
		 */
		VI_LOCK(vp);
		if (vp->v_iflag & VI_DOOMED) {
			VI_UNLOCK(vp);
			sx_xlock(&lf_lock_states_lock);
			LIST_REMOVE(ls, ls_link);
			sx_xunlock(&lf_lock_states_lock);
			sx_destroy(&ls->ls_lock);
			free(ls, M_LOCKF);
			lf_free_lock(lock);
			return (ENOENT);
		}
		if ((*statep) == NULL) {
			state = *statep = ls;
			VI_UNLOCK(vp);
		} else {
			state = *statep;
			state->ls_threads++;
			VI_UNLOCK(vp);

			sx_xlock(&lf_lock_states_lock);
			LIST_REMOVE(ls, ls_link);
			sx_xunlock(&lf_lock_states_lock);
			sx_destroy(&ls->ls_lock);
			free(ls, M_LOCKF);
		}
	} else {
		state->ls_threads++;
		VI_UNLOCK(vp);
	}

	sx_xlock(&state->ls_lock);
	/*
	 * Recheck the doomed vnode after state->ls_lock is
	 * locked. lf_purgelocks() requires that no new threads add
	 * pending locks when vnode is marked by VI_DOOMED flag.
	 */
	VI_LOCK(vp);
	if (vp->v_iflag & VI_DOOMED) {
		VI_UNLOCK(vp);
		lf_free_lock(lock);
		return (ENOENT);
	}
	VI_UNLOCK(vp);

	switch (ap->a_op) {
	case F_SETLK:
		error = lf_setlock(state, lock, vp, ap->a_cookiep);
		break;

	case F_UNLCK:
		error = lf_clearlock(state, lock);
		lf_free_lock(lock);
		break;

	case F_GETLK:
		error = lf_getlock(state, lock, fl);
		lf_free_lock(lock);
		break;

	case F_CANCEL:
		if (ap->a_cookiep)
			error = lf_cancel(state, lock, *ap->a_cookiep);
		else
			error = EINVAL;
		lf_free_lock(lock);
		break;

	default:
		lf_free_lock(lock);
		error = EINVAL;
		break;
	}

#ifdef INVARIANTS
	/*
	 * Check for some can't happen stuff. In this case, the active
	 * lock list becoming disordered or containing mutually
	 * blocking locks. We also check the pending list for locks
	 * which should be active (i.e. have no out-going edges).
	 */
	LIST_FOREACH(lock, &state->ls_active, lf_link) {
		struct lockf_entry *lf;
		if (LIST_NEXT(lock, lf_link))
			KASSERT((lock->lf_start
				<= LIST_NEXT(lock, lf_link)->lf_start),
			    ("locks disordered"));
		LIST_FOREACH(lf, &state->ls_active, lf_link) {
			if (lock == lf)
				break;
			KASSERT(!lf_blocks(lock, lf),
			    ("two conflicting active locks"));
			if (lock->lf_owner == lf->lf_owner)
				KASSERT(!lf_overlaps(lock, lf),
				    ("two overlapping locks from same owner"));
		}
	}
	LIST_FOREACH(lock, &state->ls_pending, lf_link) {
		KASSERT(!LIST_EMPTY(&lock->lf_outedges),
		    ("pending lock which should be active"));
	}
#endif
	sx_xunlock(&state->ls_lock);

	/*
	 * If we have removed the last active lock on the vnode and
	 * this is the last thread that was in-progress, we can free
	 * the state structure. We update the caller's pointer inside
	 * the vnode interlock but call free outside.
	 *
	 * XXX alternatively, keep the state structure around until
	 * the filesystem recycles - requires a callback from the
	 * filesystem.
	 */
	VI_LOCK(vp);

	state->ls_threads--;
	wakeup(state);
	if (LIST_EMPTY(&state->ls_active) && state->ls_threads == 0) {
		KASSERT(LIST_EMPTY(&state->ls_pending),
		    ("freeing state with pending locks"));
		freestate = state;
		*statep = NULL;
	}

	VI_UNLOCK(vp);

	if (freestate) {
		sx_xlock(&lf_lock_states_lock);
		LIST_REMOVE(freestate, ls_link);
		sx_xunlock(&lf_lock_states_lock);
		sx_destroy(&freestate->ls_lock);
		free(freestate, M_LOCKF);
	}
	return (error);
}

int
lf_advlock(struct vop_advlock_args *ap, struct lockf **statep, u_quad_t size)
{
	struct vop_advlockasync_args a;

	a.a_vp = ap->a_vp;
	a.a_id = ap->a_id;
	a.a_op = ap->a_op;
	a.a_fl = ap->a_fl;
	a.a_flags = ap->a_flags;
	a.a_task = NULL;
	a.a_cookiep = NULL;

	return (lf_advlockasync(&a, statep, size));
}

void
lf_purgelocks(struct vnode *vp, struct lockf **statep)
{
	struct lockf *state;
	struct lockf_entry *lock, *nlock;

	/*
	 * For this to work correctly, the caller must ensure that no
	 * other threads enter the locking system for this vnode,
	 * e.g. by checking VI_DOOMED. We wake up any threads that are
	 * sleeping waiting for locks on this vnode and then free all
	 * the remaining locks.
	 */
	VI_LOCK(vp);
	KASSERT(vp->v_iflag & VI_DOOMED,
	    ("lf_purgelocks: vp %p has not vgone yet", vp));
	state = *statep;
	if (state) {
		*statep = NULL;
		state->ls_threads++;
		VI_UNLOCK(vp);

		sx_xlock(&state->ls_lock);
		sx_xlock(&lf_owner_graph_lock);
		LIST_FOREACH_SAFE(lock, &state->ls_pending, lf_link, nlock) {
			LIST_REMOVE(lock, lf_link);
			lf_remove_outgoing(lock);
			lf_remove_incoming(lock);

			/*
			 * If its an async lock, we can just free it
			 * here, otherwise we let the sleeping thread
			 * free it.
			 */
			if (lock->lf_async_task) {
				lf_free_lock(lock);
			} else {
				lock->lf_flags |= F_INTR;
				wakeup(lock);
			}
		}
		sx_xunlock(&lf_owner_graph_lock);
		sx_xunlock(&state->ls_lock);

		/*
		 * Wait for all other threads, sleeping and otherwise
		 * to leave.
		 */
		VI_LOCK(vp);
		while (state->ls_threads > 1)
			msleep(state, VI_MTX(vp), 0, "purgelocks", 0);
		VI_UNLOCK(vp);

		/*
		 * We can just free all the active locks since they
		 * will have no dependancies (we removed them all
		 * above). We don't need to bother locking since we
		 * are the last thread using this state structure.
		 */
		KASSERT(LIST_EMPTY(&state->ls_pending),
		    ("lock pending for %p", state));
		LIST_FOREACH_SAFE(lock, &state->ls_active, lf_link, nlock) {
			LIST_REMOVE(lock, lf_link);
			lf_free_lock(lock);
		}
		sx_xlock(&lf_lock_states_lock);
		LIST_REMOVE(state, ls_link);
		sx_xunlock(&lf_lock_states_lock);
		sx_destroy(&state->ls_lock);
		free(state, M_LOCKF);
	} else {
		VI_UNLOCK(vp);
	}
}

/*
 * Return non-zero if locks 'x' and 'y' overlap.
 */
static int
lf_overlaps(struct lockf_entry *x, struct lockf_entry *y)
{

	return (x->lf_start <= y->lf_end && x->lf_end >= y->lf_start);
}

/*
 * Return non-zero if lock 'x' is blocked by lock 'y' (or vice versa).
 */
static int
lf_blocks(struct lockf_entry *x, struct lockf_entry *y)
{

	return x->lf_owner != y->lf_owner
		&& (x->lf_type == F_WRLCK || y->lf_type == F_WRLCK)
		&& lf_overlaps(x, y);
}

/*
 * Allocate a lock edge from the free list
 */
static struct lockf_edge *
lf_alloc_edge(void)
{

	return (malloc(sizeof(struct lockf_edge), M_LOCKF, M_WAITOK|M_ZERO));
}

/*
 * Free a lock edge.
 */
static void
lf_free_edge(struct lockf_edge *e)
{

	free(e, M_LOCKF);
}


/*
 * Ensure that the lock's owner has a corresponding vertex in the
 * owner graph.
 */
static void
lf_alloc_vertex(struct lockf_entry *lock)
{
	struct owner_graph *g = &lf_owner_graph;

	if (!lock->lf_owner->lo_vertex)
		lock->lf_owner->lo_vertex =
			graph_alloc_vertex(g, lock->lf_owner);
}

/*
 * Attempt to record an edge from lock x to lock y. Return EDEADLK if
 * the new edge would cause a cycle in the owner graph.
 */
static int
lf_add_edge(struct lockf_entry *x, struct lockf_entry *y)
{
	struct owner_graph *g = &lf_owner_graph;
	struct lockf_edge *e;
	int error;

#ifdef INVARIANTS
	LIST_FOREACH(e, &x->lf_outedges, le_outlink)
		KASSERT(e->le_to != y, ("adding lock edge twice"));
#endif

	/*
	 * Make sure the two owners have entries in the owner graph.
	 */
	lf_alloc_vertex(x);
	lf_alloc_vertex(y);

	error = graph_add_edge(g, x->lf_owner->lo_vertex,
	    y->lf_owner->lo_vertex);
	if (error)
		return (error);

	e = lf_alloc_edge();
	LIST_INSERT_HEAD(&x->lf_outedges, e, le_outlink);
	LIST_INSERT_HEAD(&y->lf_inedges, e, le_inlink);
	e->le_from = x;
	e->le_to = y;

	return (0);
}

/*
 * Remove an edge from the lock graph.
 */
static void
lf_remove_edge(struct lockf_edge *e)
{
	struct owner_graph *g = &lf_owner_graph;
	struct lockf_entry *x = e->le_from;
	struct lockf_entry *y = e->le_to;

	graph_remove_edge(g, x->lf_owner->lo_vertex, y->lf_owner->lo_vertex);
	LIST_REMOVE(e, le_outlink);
	LIST_REMOVE(e, le_inlink);
	e->le_from = NULL;
	e->le_to = NULL;
	lf_free_edge(e);
}

/*
 * Remove all out-going edges from lock x.
 */
static void
lf_remove_outgoing(struct lockf_entry *x)
{
	struct lockf_edge *e;

	while ((e = LIST_FIRST(&x->lf_outedges)) != NULL) {
		lf_remove_edge(e);
	}
}

/*
 * Remove all in-coming edges from lock x.
 */
static void
lf_remove_incoming(struct lockf_entry *x)
{
	struct lockf_edge *e;

	while ((e = LIST_FIRST(&x->lf_inedges)) != NULL) {
		lf_remove_edge(e);
	}
}

/*
 * Walk the list of locks for the file and create an out-going edge
 * from lock to each blocking lock.
 */
static int
lf_add_outgoing(struct lockf *state, struct lockf_entry *lock)
{
	struct lockf_entry *overlap;
	int error;

	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
		/*
		 * We may assume that the active list is sorted by
		 * lf_start.
		 */
		if (overlap->lf_start > lock->lf_end)
			break;
		if (!lf_blocks(lock, overlap))
			continue;

		/*
		 * We've found a blocking lock. Add the corresponding
		 * edge to the graphs and see if it would cause a
		 * deadlock.
		 */
		error = lf_add_edge(lock, overlap);

		/*
		 * The only error that lf_add_edge returns is EDEADLK.
		 * Remove any edges we added and return the error.
		 */
		if (error) {
			lf_remove_outgoing(lock);
			return (error);
		}
	}

	/*
	 * We also need to add edges to sleeping locks that block
	 * us. This ensures that lf_wakeup_lock cannot grant two
	 * mutually blocking locks simultaneously and also enforces a
	 * 'first come, first served' fairness model. Note that this
	 * only happens if we are blocked by at least one active lock
	 * due to the call to lf_getblock in lf_setlock below.
	 */
	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
		if (!lf_blocks(lock, overlap))
			continue;
		/*
		 * We've found a blocking lock. Add the corresponding
		 * edge to the graphs and see if it would cause a
		 * deadlock.
		 */
		error = lf_add_edge(lock, overlap);

		/*
		 * The only error that lf_add_edge returns is EDEADLK.
		 * Remove any edges we added and return the error.
		 */
		if (error) {
			lf_remove_outgoing(lock);
			return (error);
		}
	}

	return (0);
}

/*
 * Walk the list of pending locks for the file and create an in-coming
 * edge from lock to each blocking lock.
 */
static int
lf_add_incoming(struct lockf *state, struct lockf_entry *lock)
{
	struct lockf_entry *overlap;
	int error;

	LIST_FOREACH(overlap, &state->ls_pending, lf_link) {
		if (!lf_blocks(lock, overlap))
			continue;

		/*
		 * We've found a blocking lock. Add the corresponding
		 * edge to the graphs and see if it would cause a
		 * deadlock.
		 */
		error = lf_add_edge(overlap, lock);

		/*
		 * The only error that lf_add_edge returns is EDEADLK.
		 * Remove any edges we added and return the error.
		 */
		if (error) {
			lf_remove_incoming(lock);
			return (error);
		}
	}
	return (0);
}

/*
 * Insert lock into the active list, keeping list entries ordered by
 * increasing values of lf_start.
 */
static void
lf_insert_lock(struct lockf *state, struct lockf_entry *lock)
{
	struct lockf_entry *lf, *lfprev;

	if (LIST_EMPTY(&state->ls_active)) {
		LIST_INSERT_HEAD(&state->ls_active, lock, lf_link);
		return;
	}

	lfprev = NULL;
	LIST_FOREACH(lf, &state->ls_active, lf_link) {
		if (lf->lf_start > lock->lf_start) {
			LIST_INSERT_BEFORE(lf, lock, lf_link);
			return;
		}
		lfprev = lf;
	}
	LIST_INSERT_AFTER(lfprev, lock, lf_link);
}

/*
 * Wake up a sleeping lock and remove it from the pending list now
 * that all its dependancies have been resolved. The caller should
 * arrange for the lock to be added to the active list, adjusting any
 * existing locks for the same owner as needed.
 */
static void
lf_wakeup_lock(struct lockf *state, struct lockf_entry *wakelock)
{

	/*
	 * Remove from ls_pending list and wake up the caller
	 * or start the async notification, as appropriate.
	 */
	LIST_REMOVE(wakelock, lf_link);
#ifdef LOCKF_DEBUG
	if (lockf_debug & 1)
		lf_print("lf_wakeup_lock: awakening", wakelock);
#endif /* LOCKF_DEBUG */
	if (wakelock->lf_async_task) {
		taskqueue_enqueue(taskqueue_thread, wakelock->lf_async_task);
	} else {
		wakeup(wakelock);
	}
}

/*
 * Re-check all dependant locks and remove edges to locks that we no
 * longer block. If 'all' is non-zero, the lock has been removed and
 * we must remove all the dependancies, otherwise it has simply been
 * reduced but remains active. Any pending locks which have been been
 * unblocked are added to 'granted'
 */
static void
lf_update_dependancies(struct lockf *state, struct lockf_entry *lock, int all,
	struct lockf_entry_list *granted)
{
	struct lockf_edge *e, *ne;
	struct lockf_entry *deplock;

	LIST_FOREACH_SAFE(e, &lock->lf_inedges, le_inlink, ne) {
		deplock = e->le_from;
		if (all || !lf_blocks(lock, deplock)) {
			sx_xlock(&lf_owner_graph_lock);
			lf_remove_edge(e);
			sx_xunlock(&lf_owner_graph_lock);
			if (LIST_EMPTY(&deplock->lf_outedges)) {
				lf_wakeup_lock(state, deplock);
				LIST_INSERT_HEAD(granted, deplock, lf_link);
			}
		}
	}
}

/*
 * Set the start of an existing active lock, updating dependancies and
 * adding any newly woken locks to 'granted'.
 */
static void
lf_set_start(struct lockf *state, struct lockf_entry *lock, off_t new_start,
	struct lockf_entry_list *granted)
{

	KASSERT(new_start >= lock->lf_start, ("can't increase lock"));
	lock->lf_start = new_start;
	LIST_REMOVE(lock, lf_link);
	lf_insert_lock(state, lock);
	lf_update_dependancies(state, lock, FALSE, granted);
}

/*
 * Set the end of an existing active lock, updating dependancies and
 * adding any newly woken locks to 'granted'.
 */
static void
lf_set_end(struct lockf *state, struct lockf_entry *lock, off_t new_end,
	struct lockf_entry_list *granted)
{

	KASSERT(new_end <= lock->lf_end, ("can't increase lock"));
	lock->lf_end = new_end;
	lf_update_dependancies(state, lock, FALSE, granted);
}

/*
 * Add a lock to the active list, updating or removing any current
 * locks owned by the same owner and processing any pending locks that
 * become unblocked as a result. This code is also used for unlock
 * since the logic for updating existing locks is identical.
 *
 * As a result of processing the new lock, we may unblock existing
 * pending locks as a result of downgrading/unlocking. We simply
 * activate the newly granted locks by looping.
 *
 * Since the new lock already has its dependancies set up, we always
 * add it to the list (unless its an unlock request). This may
 * fragment the lock list in some pathological cases but its probably
 * not a real problem.
 */
static void
lf_activate_lock(struct lockf *state, struct lockf_entry *lock)
{
	struct lockf_entry *overlap, *lf;
	struct lockf_entry_list granted;
	int ovcase;

	LIST_INIT(&granted);
	LIST_INSERT_HEAD(&granted, lock, lf_link);

	while (!LIST_EMPTY(&granted)) {
		lock = LIST_FIRST(&granted);
		LIST_REMOVE(lock, lf_link);

		/*
		 * Skip over locks owned by other processes.  Handle
		 * any locks that overlap and are owned by ourselves.
		 */
		overlap = LIST_FIRST(&state->ls_active);
		for (;;) {
			ovcase = lf_findoverlap(&overlap, lock, SELF);

#ifdef LOCKF_DEBUG
			if (ovcase && (lockf_debug & 2)) {
				printf("lf_setlock: overlap %d", ovcase);
				lf_print("", overlap);
			}
#endif
			/*
			 * Six cases:
			 *	0) no overlap
			 *	1) overlap == lock
			 *	2) overlap contains lock
			 *	3) lock contains overlap
			 *	4) overlap starts before lock
			 *	5) overlap ends after lock
			 */
			switch (ovcase) {
			case 0: /* no overlap */
				break;

			case 1: /* overlap == lock */
				/*
				 * We have already setup the
				 * dependants for the new lock, taking
				 * into account a possible downgrade
				 * or unlock. Remove the old lock.
				 */
				LIST_REMOVE(overlap, lf_link);
				lf_update_dependancies(state, overlap, TRUE,
					&granted);
				lf_free_lock(overlap);
				break;

			case 2: /* overlap contains lock */
				/*
				 * Just split the existing lock.
				 */
				lf_split(state, overlap, lock, &granted);
				break;

			case 3: /* lock contains overlap */
				/*
				 * Delete the overlap and advance to
				 * the next entry in the list.
				 */
				lf = LIST_NEXT(overlap, lf_link);
				LIST_REMOVE(overlap, lf_link);
				lf_update_dependancies(state, overlap, TRUE,
					&granted);
				lf_free_lock(overlap);
				overlap = lf;
				continue;

			case 4: /* overlap starts before lock */
				/*
				 * Just update the overlap end and
				 * move on.
				 */
				lf_set_end(state, overlap, lock->lf_start - 1,
				    &granted);
				overlap = LIST_NEXT(overlap, lf_link);
				continue;

			case 5: /* overlap ends after lock */
				/*
				 * Change the start of overlap and
				 * re-insert.
				 */
				lf_set_start(state, overlap, lock->lf_end + 1,
				    &granted);
				break;
			}
			break;
		}
#ifdef LOCKF_DEBUG
		if (lockf_debug & 1) {
			if (lock->lf_type != F_UNLCK)
				lf_print("lf_activate_lock: activated", lock);
			else
				lf_print("lf_activate_lock: unlocked", lock);
			lf_printlist("lf_activate_lock", lock);
		}
#endif /* LOCKF_DEBUG */
		if (lock->lf_type != F_UNLCK)
			lf_insert_lock(state, lock);
	}
}

/*
 * Cancel a pending lock request, either as a result of a signal or a
 * cancel request for an async lock.
 */
static void
lf_cancel_lock(struct lockf *state, struct lockf_entry *lock)
{
	struct lockf_entry_list granted;

	/*
	 * Note it is theoretically possible that cancelling this lock
	 * may allow some other pending lock to become
	 * active. Consider this case:
	 *
	 * Owner	Action		Result		Dependancies
	 * 
	 * A:		lock [0..0]	succeeds	
	 * B:		lock [2..2]	succeeds	
	 * C:		lock [1..2]	blocked		C->B
	 * D:		lock [0..1]	blocked		C->B,D->A,D->C
	 * A:		unlock [0..0]			C->B,D->C
	 * C:		cancel [1..2]	
	 */

	LIST_REMOVE(lock, lf_link);

	/*
	 * Removing out-going edges is simple.
	 */
	sx_xlock(&lf_owner_graph_lock);
	lf_remove_outgoing(lock);
	sx_xunlock(&lf_owner_graph_lock);

	/*
	 * Removing in-coming edges may allow some other lock to
	 * become active - we use lf_update_dependancies to figure
	 * this out.
	 */
	LIST_INIT(&granted);
	lf_update_dependancies(state, lock, TRUE, &granted);
	lf_free_lock(lock);

	/*
	 * Feed any newly active locks to lf_activate_lock.
	 */
	while (!LIST_EMPTY(&granted)) {
		lock = LIST_FIRST(&granted);
		LIST_REMOVE(lock, lf_link);
		lf_activate_lock(state, lock);
	}
}

/*
 * Set a byte-range lock.
 */
static int
lf_setlock(struct lockf *state, struct lockf_entry *lock, struct vnode *vp,
    void **cookiep)
{
	static char lockstr[] = "lockf";
	int priority, error;

#ifdef LOCKF_DEBUG
	if (lockf_debug & 1)
		lf_print("lf_setlock", lock);
#endif /* LOCKF_DEBUG */

	/*
	 * Set the priority
	 */
	priority = PLOCK;
	if (lock->lf_type == F_WRLCK)
		priority += 4;
	if (!(lock->lf_flags & F_NOINTR))
		priority |= PCATCH;
	/*
	 * Scan lock list for this file looking for locks that would block us.
	 */
	if (lf_getblock(state, lock)) {
		/*
		 * Free the structure and return if nonblocking.
		 */
		if ((lock->lf_flags & F_WAIT) == 0
		    && lock->lf_async_task == NULL) {
			lf_free_lock(lock);
			error = EAGAIN;
			goto out;
		}

		/*
		 * For flock type locks, we must first remove
		 * any shared locks that we hold before we sleep
		 * waiting for an exclusive lock.
		 */
		if ((lock->lf_flags & F_FLOCK) &&
		    lock->lf_type == F_WRLCK) {
			lock->lf_type = F_UNLCK;
			lf_activate_lock(state, lock);
			lock->lf_type = F_WRLCK;
		}

		/*
		 * We are blocked. Create edges to each blocking lock,
		 * checking for deadlock using the owner graph. For
		 * simplicity, we run deadlock detection for all
		 * locks, posix and otherwise.
		 */
		sx_xlock(&lf_owner_graph_lock);
		error = lf_add_outgoing(state, lock);
		sx_xunlock(&lf_owner_graph_lock);

		if (error) {
#ifdef LOCKF_DEBUG
			if (lockf_debug & 1)
				lf_print("lf_setlock: deadlock", lock);
#endif
			lf_free_lock(lock);
			goto out;
		}

		/*
		 * We have added edges to everything that blocks
		 * us. Sleep until they all go away.
		 */
		LIST_INSERT_HEAD(&state->ls_pending, lock, lf_link);
#ifdef LOCKF_DEBUG
		if (lockf_debug & 1) {
			struct lockf_edge *e;
			LIST_FOREACH(e, &lock->lf_outedges, le_outlink) {
				lf_print("lf_setlock: blocking on", e->le_to);
				lf_printlist("lf_setlock", e->le_to);
			}
		}
#endif /* LOCKF_DEBUG */

		if ((lock->lf_flags & F_WAIT) == 0) {
			/*
			 * The caller requested async notification -
			 * this callback happens when the blocking
			 * lock is released, allowing the caller to
			 * make another attempt to take the lock.
			 */
			*cookiep = (void *) lock;
			error = EINPROGRESS;
			goto out;
		}

		error = sx_sleep(lock, &state->ls_lock, priority, lockstr, 0);
		/*
		 * We may have been awakened by a signal and/or by a
		 * debugger continuing us (in which cases we must
		 * remove our lock graph edges) and/or by another
		 * process releasing a lock (in which case our edges
		 * have already been removed and we have been moved to
		 * the active list). We may also have been woken by
		 * lf_purgelocks which we report to the caller as
		 * EINTR. In that case, lf_purgelocks will have
		 * removed our lock graph edges.
		 *
		 * Note that it is possible to receive a signal after
		 * we were successfully woken (and moved to the active
		 * list) but before we resumed execution. In this
		 * case, our lf_outedges list will be clear. We
		 * pretend there was no error.
		 *
		 * Note also, if we have been sleeping long enough, we
		 * may now have incoming edges from some newer lock
		 * which is waiting behind us in the queue.
		 */
		if (lock->lf_flags & F_INTR) {
			error = EINTR;
			lf_free_lock(lock);
			goto out;
		}
		if (LIST_EMPTY(&lock->lf_outedges)) {
			error = 0;
		} else {
			lf_cancel_lock(state, lock);
			goto out;
		}
#ifdef LOCKF_DEBUG
		if (lockf_debug & 1) {
			lf_print("lf_setlock: granted", lock);
		}
#endif
		goto out;
	}
	/*
	 * It looks like we are going to grant the lock. First add
	 * edges from any currently pending lock that the new lock
	 * would block.
	 */
	sx_xlock(&lf_owner_graph_lock);
	error = lf_add_incoming(state, lock);
	sx_xunlock(&lf_owner_graph_lock);
	if (error) {
#ifdef LOCKF_DEBUG
		if (lockf_debug & 1)
			lf_print("lf_setlock: deadlock", lock);
#endif
		lf_free_lock(lock);
		goto out;
	}

	/*
	 * No blocks!!  Add the lock.  Note that we will
	 * downgrade or upgrade any overlapping locks this
	 * process already owns.
	 */
	lf_activate_lock(state, lock);
	error = 0;
out:
	return (error);
}

/*
 * Remove a byte-range lock on an inode.
 *
 * Generally, find the lock (or an overlap to that lock)
 * and remove it (or shrink it), then wakeup anyone we can.
 */
static int
lf_clearlock(struct lockf *state, struct lockf_entry *unlock)
{
	struct lockf_entry *overlap;

	overlap = LIST_FIRST(&state->ls_active);

	if (overlap == NOLOCKF)
		return (0);
#ifdef LOCKF_DEBUG
	if (unlock->lf_type != F_UNLCK)
		panic("lf_clearlock: bad type");
	if (lockf_debug & 1)
		lf_print("lf_clearlock", unlock);
#endif /* LOCKF_DEBUG */

	lf_activate_lock(state, unlock);

	return (0);
}

/*
 * Check whether there is a blocking lock, and if so return its
 * details in '*fl'.
 */
static int
lf_getlock(struct lockf *state, struct lockf_entry *lock, struct flock *fl)
{
	struct lockf_entry *block;

#ifdef LOCKF_DEBUG
	if (lockf_debug & 1)
		lf_print("lf_getlock", lock);
#endif /* LOCKF_DEBUG */

	if ((block = lf_getblock(state, lock))) {
		fl->l_type = block->lf_type;
		fl->l_whence = SEEK_SET;
		fl->l_start = block->lf_start;
		if (block->lf_end == OFF_MAX)
			fl->l_len = 0;
		else
			fl->l_len = block->lf_end - block->lf_start + 1;
		fl->l_pid = block->lf_owner->lo_pid;
		fl->l_sysid = block->lf_owner->lo_sysid;
	} else {
		fl->l_type = F_UNLCK;
	}
	return (0);
}

/*
 * Cancel an async lock request.
 */
static int
lf_cancel(struct lockf *state, struct lockf_entry *lock, void *cookie)
{
	struct lockf_entry *reallock;

	/*
	 * We need to match this request with an existing lock
	 * request.
	 */
	LIST_FOREACH(reallock, &state->ls_pending, lf_link) {
		if ((void *) reallock == cookie) {
			/*
			 * Double-check that this lock looks right
			 * (maybe use a rolling ID for the cancel
			 * cookie instead?)
			 */
			if (!(reallock->lf_vnode == lock->lf_vnode
				&& reallock->lf_start == lock->lf_start
				&& reallock->lf_end == lock->lf_end)) {
				return (ENOENT);
			}

			/*
			 * Make sure this lock was async and then just
			 * remove it from its wait lists.
			 */
			if (!reallock->lf_async_task) {
				return (ENOENT);
			}

			/*
			 * Note that since any other thread must take
			 * state->ls_lock before it can possibly
			 * trigger the async callback, we are safe
			 * from a race with lf_wakeup_lock, i.e. we
			 * can free the lock (actually our caller does
			 * this).
			 */
			lf_cancel_lock(state, reallock);
			return (0);
		}
	}

	/*
	 * We didn't find a matching lock - not much we can do here.
	 */
	return (ENOENT);
}

/*
 * Walk the list of locks for an inode and
 * return the first blocking lock.
 */
static struct lockf_entry *
lf_getblock(struct lockf *state, struct lockf_entry *lock)
{
	struct lockf_entry *overlap;

	LIST_FOREACH(overlap, &state->ls_active, lf_link) {
		/*
		 * We may assume that the active list is sorted by
		 * lf_start.
		 */
		if (overlap->lf_start > lock->lf_end)
			break;
		if (!lf_blocks(lock, overlap))
			continue;
		return (overlap);
	}
	return (NOLOCKF);
}

/*
 * Walk the list of locks for an inode to find an overlapping lock (if
 * any) and return a classification of that overlap.
 *
 * Arguments:
 *	*overlap	The place in the lock list to start looking
 *	lock		The lock which is being tested
 *	type		Pass 'SELF' to test only locks with the same
 *			owner as lock, or 'OTHER' to test only locks
 *			with a different owner
 *
 * Returns one of six values:
 *	0) no overlap
 *	1) overlap == lock
 *	2) overlap contains lock
 *	3) lock contains overlap
 *	4) overlap starts before lock
 *	5) overlap ends after lock
 *
 * If there is an overlapping lock, '*overlap' is set to point at the
 * overlapping lock.
 *
 * NOTE: this returns only the FIRST overlapping lock.  There
 *	 may be more than one.
 */
static int
lf_findoverlap(struct lockf_entry **overlap, struct lockf_entry *lock, int type)
{
	struct lockf_entry *lf;
	off_t start, end;
	int res;

	if ((*overlap) == NOLOCKF) {
		return (0);
	}
#ifdef LOCKF_DEBUG
	if (lockf_debug & 2)
		lf_print("lf_findoverlap: looking for overlap in", lock);
#endif /* LOCKF_DEBUG */
	start = lock->lf_start;
	end = lock->lf_end;
	res = 0;
	while (*overlap) {
		lf = *overlap;
		if (lf->lf_start > end)
			break;
		if (((type & SELF) && lf->lf_owner != lock->lf_owner) ||
		    ((type & OTHERS) && lf->lf_owner == lock->lf_owner)) {
			*overlap = LIST_NEXT(lf, lf_link);
			continue;
		}
#ifdef LOCKF_DEBUG
		if (lockf_debug & 2)
			lf_print("\tchecking", lf);
#endif /* LOCKF_DEBUG */
		/*
		 * OK, check for overlap
		 *
		 * Six cases:
		 *	0) no overlap
		 *	1) overlap == lock
		 *	2) overlap contains lock
		 *	3) lock contains overlap
		 *	4) overlap starts before lock
		 *	5) overlap ends after lock
		 */
		if (start > lf->lf_end) {
			/* Case 0 */
#ifdef LOCKF_DEBUG
			if (lockf_debug & 2)
				printf("no overlap\n");
#endif /* LOCKF_DEBUG */
			*overlap = LIST_NEXT(lf, lf_link);
			continue;
		}
		if (lf->lf_start == start && lf->lf_end == end) {
			/* Case 1 */
#ifdef LOCKF_DEBUG
			if (lockf_debug & 2)
				printf("overlap == lock\n");
#endif /* LOCKF_DEBUG */
			res = 1;
			break;
		}
		if (lf->lf_start <= start && lf->lf_end >= end) {
			/* Case 2 */
#ifdef LOCKF_DEBUG
			if (lockf_debug & 2)
				printf("overlap contains lock\n");
#endif /* LOCKF_DEBUG */
			res = 2;
			break;
		}
		if (start <= lf->lf_start && end >= lf->lf_end) {
			/* Case 3 */
#ifdef LOCKF_DEBUG
			if (lockf_debug & 2)
				printf("lock contains overlap\n");
#endif /* LOCKF_DEBUG */
			res = 3;
			break;
		}
		if (lf->lf_start < start && lf->lf_end >= start) {
			/* Case 4 */
#ifdef LOCKF_DEBUG
			if (lockf_debug & 2)
				printf("overlap starts before lock\n");
#endif /* LOCKF_DEBUG */
			res = 4;
			break;
		}
		if (lf->lf_start > start && lf->lf_end > end) {
			/* Case 5 */
#ifdef LOCKF_DEBUG
			if (lockf_debug & 2)
				printf("overlap ends after lock\n");
#endif /* LOCKF_DEBUG */
			res = 5;
			break;
		}
		panic("lf_findoverlap: default");
	}
	return (res);
}

/*
 * Split an the existing 'lock1', based on the extent of the lock
 * described by 'lock2'. The existing lock should cover 'lock2'
 * entirely.
 *
 * Any pending locks which have been been unblocked are added to
 * 'granted'
 */
static void
lf_split(struct lockf *state, struct lockf_entry *lock1,
    struct lockf_entry *lock2, struct lockf_entry_list *granted)
{
	struct lockf_entry *splitlock;

#ifdef LOCKF_DEBUG
	if (lockf_debug & 2) {
		lf_print("lf_split", lock1);
		lf_print("splitting from", lock2);
	}
#endif /* LOCKF_DEBUG */
	/*
	 * Check to see if we don't need to split at all.
	 */
	if (lock1->lf_start == lock2->lf_start) {
		lf_set_start(state, lock1, lock2->lf_end + 1, granted);
		return;
	}
	if (lock1->lf_end == lock2->lf_end) {
		lf_set_end(state, lock1, lock2->lf_start - 1, granted);
		return;
	}
	/*
	 * Make a new lock consisting of the last part of
	 * the encompassing lock.
	 */
	splitlock = lf_alloc_lock(lock1->lf_owner);
	memcpy(splitlock, lock1, sizeof *splitlock);
	if (splitlock->lf_flags & F_REMOTE)
		vref(splitlock->lf_vnode);

	/*
	 * This cannot cause a deadlock since any edges we would add
	 * to splitlock already exist in lock1. We must be sure to add
	 * necessary dependancies to splitlock before we reduce lock1
	 * otherwise we may accidentally grant a pending lock that
	 * was blocked by the tail end of lock1.
	 */
	splitlock->lf_start = lock2->lf_end + 1;
	LIST_INIT(&splitlock->lf_outedges);
	LIST_INIT(&splitlock->lf_inedges);
	sx_xlock(&lf_owner_graph_lock);
	lf_add_incoming(state, splitlock);
	sx_xunlock(&lf_owner_graph_lock);

	lf_set_end(state, lock1, lock2->lf_start - 1, granted);

	/*
	 * OK, now link it in
	 */
	lf_insert_lock(state, splitlock);
}

struct lockdesc {
	STAILQ_ENTRY(lockdesc) link;
	struct vnode *vp;
	struct flock fl;
};
STAILQ_HEAD(lockdesclist, lockdesc);

int
lf_iteratelocks_sysid(int sysid, lf_iterator *fn, void *arg)
{
	struct lockf *ls;
	struct lockf_entry *lf;
	struct lockdesc *ldesc;
	struct lockdesclist locks;
	int error;

	/*
	 * In order to keep the locking simple, we iterate over the
	 * active lock lists to build a list of locks that need
	 * releasing. We then call the iterator for each one in turn.
	 *
	 * We take an extra reference to the vnode for the duration to
	 * make sure it doesn't go away before we are finished.
	 */
	STAILQ_INIT(&locks);
	sx_xlock(&lf_lock_states_lock);
	LIST_FOREACH(ls, &lf_lock_states, ls_link) {
		sx_xlock(&ls->ls_lock);
		LIST_FOREACH(lf, &ls->ls_active, lf_link) {
			if (lf->lf_owner->lo_sysid != sysid)
				continue;

			ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
			    M_WAITOK);
			ldesc->vp = lf->lf_vnode;
			vref(ldesc->vp);
			ldesc->fl.l_start = lf->lf_start;
			if (lf->lf_end == OFF_MAX)
				ldesc->fl.l_len = 0;
			else
				ldesc->fl.l_len =
					lf->lf_end - lf->lf_start + 1;
			ldesc->fl.l_whence = SEEK_SET;
			ldesc->fl.l_type = F_UNLCK;
			ldesc->fl.l_pid = lf->lf_owner->lo_pid;
			ldesc->fl.l_sysid = sysid;
			STAILQ_INSERT_TAIL(&locks, ldesc, link);
		}
		sx_xunlock(&ls->ls_lock);
	}
	sx_xunlock(&lf_lock_states_lock);

	/*
	 * Call the iterator function for each lock in turn. If the
	 * iterator returns an error code, just free the rest of the
	 * lockdesc structures.
	 */
	error = 0;
	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
		STAILQ_REMOVE_HEAD(&locks, link);
		if (!error)
			error = fn(ldesc->vp, &ldesc->fl, arg);
		vrele(ldesc->vp);
		free(ldesc, M_LOCKF);
	}

	return (error);
}

int
lf_iteratelocks_vnode(struct vnode *vp, lf_iterator *fn, void *arg)
{
	struct lockf *ls;
	struct lockf_entry *lf;
	struct lockdesc *ldesc;
	struct lockdesclist locks;
	int error;

	/*
	 * In order to keep the locking simple, we iterate over the
	 * active lock lists to build a list of locks that need
	 * releasing. We then call the iterator for each one in turn.
	 *
	 * We take an extra reference to the vnode for the duration to
	 * make sure it doesn't go away before we are finished.
	 */
	STAILQ_INIT(&locks);
	ls = vp->v_lockf;
	if (!ls)
		return (0);

	sx_xlock(&ls->ls_lock);
	LIST_FOREACH(lf, &ls->ls_active, lf_link) {
		ldesc = malloc(sizeof(struct lockdesc), M_LOCKF,
		    M_WAITOK);
		ldesc->vp = lf->lf_vnode;
		vref(ldesc->vp);
		ldesc->fl.l_start = lf->lf_start;
		if (lf->lf_end == OFF_MAX)
			ldesc->fl.l_len = 0;
		else
			ldesc->fl.l_len =
				lf->lf_end - lf->lf_start + 1;
		ldesc->fl.l_whence = SEEK_SET;
		ldesc->fl.l_type = F_UNLCK;
		ldesc->fl.l_pid = lf->lf_owner->lo_pid;
		ldesc->fl.l_sysid = lf->lf_owner->lo_sysid;
		STAILQ_INSERT_TAIL(&locks, ldesc, link);
	}
	sx_xunlock(&ls->ls_lock);

	/*
	 * Call the iterator function for each lock in turn. If the
	 * iterator returns an error code, just free the rest of the
	 * lockdesc structures.
	 */
	error = 0;
	while ((ldesc = STAILQ_FIRST(&locks)) != NULL) {
		STAILQ_REMOVE_HEAD(&locks, link);
		if (!error)
			error = fn(ldesc->vp, &ldesc->fl, arg);
		vrele(ldesc->vp);
		free(ldesc, M_LOCKF);
	}

	return (error);
}

static int
lf_clearremotesys_iterator(struct vnode *vp, struct flock *fl, void *arg)
{

	VOP_ADVLOCK(vp, 0, F_UNLCK, fl, F_REMOTE);
	return (0);
}

void
lf_clearremotesys(int sysid)
{

	KASSERT(sysid != 0, ("Can't clear local locks with F_UNLCKSYS"));
	lf_iteratelocks_sysid(sysid, lf_clearremotesys_iterator, NULL);
}

int
lf_countlocks(int sysid)
{
	int i;
	struct lock_owner *lo;
	int count;

	count = 0;
	sx_xlock(&lf_lock_owners_lock);
	for (i = 0; i < LOCK_OWNER_HASH_SIZE; i++)
		LIST_FOREACH(lo, &lf_lock_owners[i], lo_link)
			if (lo->lo_sysid == sysid)
				count += lo->lo_refs;
	sx_xunlock(&lf_lock_owners_lock);

	return (count);
}

#ifdef LOCKF_DEBUG

/*
 * Return non-zero if y is reachable from x using a brute force
 * search. If reachable and path is non-null, return the route taken
 * in path.
 */
static int
graph_reaches(struct owner_vertex *x, struct owner_vertex *y,
    struct owner_vertex_list *path)
{
	struct owner_edge *e;

	if (x == y) {
		if (path)
			TAILQ_INSERT_HEAD(path, x, v_link);
		return 1;
	}

	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
		if (graph_reaches(e->e_to, y, path)) {
			if (path)
				TAILQ_INSERT_HEAD(path, x, v_link);
			return 1;
		}
	}
	return 0;
}

/*
 * Perform consistency checks on the graph. Make sure the values of
 * v_order are correct. If checkorder is non-zero, check no vertex can
 * reach any other vertex with a smaller order.
 */
static void
graph_check(struct owner_graph *g, int checkorder)
{
	int i, j;

	for (i = 0; i < g->g_size; i++) {
		if (!g->g_vertices[i]->v_owner)
			continue;
		KASSERT(g->g_vertices[i]->v_order == i,
		    ("lock graph vertices disordered"));
		if (checkorder) {
			for (j = 0; j < i; j++) {
				if (!g->g_vertices[j]->v_owner)
					continue;
				KASSERT(!graph_reaches(g->g_vertices[i],
					g->g_vertices[j], NULL),
				    ("lock graph vertices disordered"));
			}
		}
	}
}

static void
graph_print_vertices(struct owner_vertex_list *set)
{
	struct owner_vertex *v;

	printf("{ ");
	TAILQ_FOREACH(v, set, v_link) {
		printf("%d:", v->v_order);
		lf_print_owner(v->v_owner);
		if (TAILQ_NEXT(v, v_link))
			printf(", ");
	}
	printf(" }\n");
}

#endif

/*
 * Calculate the sub-set of vertices v from the affected region [y..x]
 * where v is reachable from y. Return -1 if a loop was detected
 * (i.e. x is reachable from y, otherwise the number of vertices in
 * this subset.
 */
static int
graph_delta_forward(struct owner_graph *g, struct owner_vertex *x,
    struct owner_vertex *y, struct owner_vertex_list *delta)
{
	uint32_t gen;
	struct owner_vertex *v;
	struct owner_edge *e;
	int n;

	/*
	 * We start with a set containing just y. Then for each vertex
	 * v in the set so far unprocessed, we add each vertex that v
	 * has an out-edge to and that is within the affected region
	 * [y..x]. If we see the vertex x on our travels, stop
	 * immediately.
	 */
	TAILQ_INIT(delta);
	TAILQ_INSERT_TAIL(delta, y, v_link);
	v = y;
	n = 1;
	gen = g->g_gen;
	while (v) {
		LIST_FOREACH(e, &v->v_outedges, e_outlink) {
			if (e->e_to == x)
				return -1;
			if (e->e_to->v_order < x->v_order
			    && e->e_to->v_gen != gen) {
				e->e_to->v_gen = gen;
				TAILQ_INSERT_TAIL(delta, e->e_to, v_link);
				n++;
			}
		}
		v = TAILQ_NEXT(v, v_link);
	}

	return (n);
}

/*
 * Calculate the sub-set of vertices v from the affected region [y..x]
 * where v reaches x. Return the number of vertices in this subset.
 */
static int
graph_delta_backward(struct owner_graph *g, struct owner_vertex *x,
    struct owner_vertex *y, struct owner_vertex_list *delta)
{
	uint32_t gen;
	struct owner_vertex *v;
	struct owner_edge *e;
	int n;

	/*
	 * We start with a set containing just x. Then for each vertex
	 * v in the set so far unprocessed, we add each vertex that v
	 * has an in-edge from and that is within the affected region
	 * [y..x].
	 */
	TAILQ_INIT(delta);
	TAILQ_INSERT_TAIL(delta, x, v_link);
	v = x;
	n = 1;
	gen = g->g_gen;
	while (v) {
		LIST_FOREACH(e, &v->v_inedges, e_inlink) {
			if (e->e_from->v_order > y->v_order
			    && e->e_from->v_gen != gen) {
				e->e_from->v_gen = gen;
				TAILQ_INSERT_HEAD(delta, e->e_from, v_link);
				n++;
			}
		}
		v = TAILQ_PREV(v, owner_vertex_list, v_link);
	}

	return (n);
}

static int
graph_add_indices(int *indices, int n, struct owner_vertex_list *set)
{
	struct owner_vertex *v;
	int i, j;

	TAILQ_FOREACH(v, set, v_link) {
		for (i = n;
		     i > 0 && indices[i - 1] > v->v_order; i--)
			;
		for (j = n - 1; j >= i; j--)
			indices[j + 1] = indices[j];
		indices[i] = v->v_order;
		n++;
	}

	return (n);
}

static int
graph_assign_indices(struct owner_graph *g, int *indices, int nextunused,
    struct owner_vertex_list *set)
{
	struct owner_vertex *v, *vlowest;

	while (!TAILQ_EMPTY(set)) {
		vlowest = NULL;
		TAILQ_FOREACH(v, set, v_link) {
			if (!vlowest || v->v_order < vlowest->v_order)
				vlowest = v;
		}
		TAILQ_REMOVE(set, vlowest, v_link);
		vlowest->v_order = indices[nextunused];
		g->g_vertices[vlowest->v_order] = vlowest;
		nextunused++;
	}

	return (nextunused);
}

static int
graph_add_edge(struct owner_graph *g, struct owner_vertex *x,
    struct owner_vertex *y)
{
	struct owner_edge *e;
	struct owner_vertex_list deltaF, deltaB;
	int nF, nB, n, vi, i;
	int *indices;

	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);

	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
		if (e->e_to == y) {
			e->e_refs++;
			return (0);
		}
	}

#ifdef LOCKF_DEBUG
	if (lockf_debug & 8) {
		printf("adding edge %d:", x->v_order);
		lf_print_owner(x->v_owner);
		printf(" -> %d:", y->v_order);
		lf_print_owner(y->v_owner);
		printf("\n");
	}
#endif
	if (y->v_order < x->v_order) {
		/*
		 * The new edge violates the order. First find the set
		 * of affected vertices reachable from y (deltaF) and
		 * the set of affect vertices affected that reach x
		 * (deltaB), using the graph generation number to
		 * detect whether we have visited a given vertex
		 * already. We re-order the graph so that each vertex
		 * in deltaB appears before each vertex in deltaF.
		 *
		 * If x is a member of deltaF, then the new edge would
		 * create a cycle. Otherwise, we may assume that
		 * deltaF and deltaB are disjoint.
		 */
		g->g_gen++;
		if (g->g_gen == 0) {
			/*
			 * Generation wrap.
			 */
			for (vi = 0; vi < g->g_size; vi++) {
				g->g_vertices[vi]->v_gen = 0;
			}
			g->g_gen++;
		}
		nF = graph_delta_forward(g, x, y, &deltaF);
		if (nF < 0) {
#ifdef LOCKF_DEBUG
			if (lockf_debug & 8) {
				struct owner_vertex_list path;
				printf("deadlock: ");
				TAILQ_INIT(&path);
				graph_reaches(y, x, &path);
				graph_print_vertices(&path);
			}
#endif
			return (EDEADLK);
		}

#ifdef LOCKF_DEBUG
		if (lockf_debug & 8) {
			printf("re-ordering graph vertices\n");
			printf("deltaF = ");
			graph_print_vertices(&deltaF);
		}
#endif

		nB = graph_delta_backward(g, x, y, &deltaB);

#ifdef LOCKF_DEBUG
		if (lockf_debug & 8) {
			printf("deltaB = ");
			graph_print_vertices(&deltaB);
		}
#endif

		/*
		 * We first build a set of vertex indices (vertex
		 * order values) that we may use, then we re-assign
		 * orders first to those vertices in deltaB, then to
		 * deltaF. Note that the contents of deltaF and deltaB
		 * may be partially disordered - we perform an
		 * insertion sort while building our index set.
		 */
		indices = g->g_indexbuf;
		n = graph_add_indices(indices, 0, &deltaF);
		graph_add_indices(indices, n, &deltaB);

		/*
		 * We must also be sure to maintain the relative
		 * ordering of deltaF and deltaB when re-assigning
		 * vertices. We do this by iteratively removing the
		 * lowest ordered element from the set and assigning
		 * it the next value from our new ordering.
		 */
		i = graph_assign_indices(g, indices, 0, &deltaB);
		graph_assign_indices(g, indices, i, &deltaF);

#ifdef LOCKF_DEBUG
		if (lockf_debug & 8) {
			struct owner_vertex_list set;
			TAILQ_INIT(&set);
			for (i = 0; i < nB + nF; i++)
				TAILQ_INSERT_TAIL(&set,
				    g->g_vertices[indices[i]], v_link);
			printf("new ordering = ");
			graph_print_vertices(&set);
		}
#endif
	}

	KASSERT(x->v_order < y->v_order, ("Failed to re-order graph"));

#ifdef LOCKF_DEBUG
	if (lockf_debug & 8) {
		graph_check(g, TRUE);
	}
#endif

	e = malloc(sizeof(struct owner_edge), M_LOCKF, M_WAITOK);

	LIST_INSERT_HEAD(&x->v_outedges, e, e_outlink);
	LIST_INSERT_HEAD(&y->v_inedges, e, e_inlink);
	e->e_refs = 1;
	e->e_from = x;
	e->e_to = y;

	return (0);
}

/*
 * Remove an edge x->y from the graph.
 */
static void
graph_remove_edge(struct owner_graph *g, struct owner_vertex *x,
    struct owner_vertex *y)
{
	struct owner_edge *e;

	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);

	LIST_FOREACH(e, &x->v_outedges, e_outlink) {
		if (e->e_to == y)
			break;
	}
	KASSERT(e, ("Removing non-existent edge from deadlock graph"));

	e->e_refs--;
	if (e->e_refs == 0) {
#ifdef LOCKF_DEBUG
		if (lockf_debug & 8) {
			printf("removing edge %d:", x->v_order);
			lf_print_owner(x->v_owner);
			printf(" -> %d:", y->v_order);
			lf_print_owner(y->v_owner);
			printf("\n");
		}
#endif
		LIST_REMOVE(e, e_outlink);
		LIST_REMOVE(e, e_inlink);
		free(e, M_LOCKF);
	}
}

/*
 * Allocate a vertex from the free list. Return ENOMEM if there are
 * none.
 */
static struct owner_vertex *
graph_alloc_vertex(struct owner_graph *g, struct lock_owner *lo)
{
	struct owner_vertex *v;

	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);

	v = malloc(sizeof(struct owner_vertex), M_LOCKF, M_WAITOK);
	if (g->g_size == g->g_space) {
		g->g_vertices = realloc(g->g_vertices,
		    2 * g->g_space * sizeof(struct owner_vertex *),
		    M_LOCKF, M_WAITOK);
		free(g->g_indexbuf, M_LOCKF);
		g->g_indexbuf = malloc(2 * g->g_space * sizeof(int),
		    M_LOCKF, M_WAITOK);
		g->g_space = 2 * g->g_space;
	}
	v->v_order = g->g_size;
	v->v_gen = g->g_gen;
	g->g_vertices[g->g_size] = v;
	g->g_size++;

	LIST_INIT(&v->v_outedges);
	LIST_INIT(&v->v_inedges);
	v->v_owner = lo;

	return (v);
}

static void
graph_free_vertex(struct owner_graph *g, struct owner_vertex *v)
{
	struct owner_vertex *w;
	int i;

	sx_assert(&lf_owner_graph_lock, SX_XLOCKED);
	
	KASSERT(LIST_EMPTY(&v->v_outedges), ("Freeing vertex with edges"));
	KASSERT(LIST_EMPTY(&v->v_inedges), ("Freeing vertex with edges"));

	/*
	 * Remove from the graph's array and close up the gap,
	 * renumbering the other vertices.
	 */
	for (i = v->v_order + 1; i < g->g_size; i++) {
		w = g->g_vertices[i];
		w->v_order--;
		g->g_vertices[i - 1] = w;
	}
	g->g_size--;

	free(v, M_LOCKF);
}

static struct owner_graph *
graph_init(struct owner_graph *g)
{

	g->g_vertices = malloc(10 * sizeof(struct owner_vertex *),
	    M_LOCKF, M_WAITOK);
	g->g_size = 0;
	g->g_space = 10;
	g->g_indexbuf = malloc(g->g_space * sizeof(int), M_LOCKF, M_WAITOK);
	g->g_gen = 0;

	return (g);
}

#ifdef LOCKF_DEBUG
/*
 * Print description of a lock owner
 */
static void
lf_print_owner(struct lock_owner *lo)
{

	if (lo->lo_flags & F_REMOTE) {
		printf("remote pid %d, system %d",
		    lo->lo_pid, lo->lo_sysid);
	} else if (lo->lo_flags & F_FLOCK) {
		printf("file %p", lo->lo_id);
	} else {
		printf("local pid %d", lo->lo_pid);
	}
}

/*
 * Print out a lock.
 */
static void
lf_print(char *tag, struct lockf_entry *lock)
{

	printf("%s: lock %p for ", tag, (void *)lock);
	lf_print_owner(lock->lf_owner);
	if (lock->lf_inode != (struct inode *)0)
		printf(" in ino %ju on dev <%s>,",
		    (uintmax_t)lock->lf_inode->i_number,
		    devtoname(lock->lf_inode->i_dev));
	printf(" %s, start %jd, end ",
	    lock->lf_type == F_RDLCK ? "shared" :
	    lock->lf_type == F_WRLCK ? "exclusive" :
	    lock->lf_type == F_UNLCK ? "unlock" : "unknown",
	    (intmax_t)lock->lf_start);
	if (lock->lf_end == OFF_MAX)
		printf("EOF");
	else
		printf("%jd", (intmax_t)lock->lf_end);
	if (!LIST_EMPTY(&lock->lf_outedges))
		printf(" block %p\n",
		    (void *)LIST_FIRST(&lock->lf_outedges)->le_to);
	else
		printf("\n");
}

static void
lf_printlist(char *tag, struct lockf_entry *lock)
{
	struct lockf_entry *lf, *blk;
	struct lockf_edge *e;

	if (lock->lf_inode == (struct inode *)0)
		return;

	printf("%s: Lock list for ino %ju on dev <%s>:\n",
	    tag, (uintmax_t)lock->lf_inode->i_number,
	    devtoname(lock->lf_inode->i_dev));
	LIST_FOREACH(lf, &lock->lf_vnode->v_lockf->ls_active, lf_link) {
		printf("\tlock %p for ",(void *)lf);
		lf_print_owner(lock->lf_owner);
		printf(", %s, start %jd, end %jd",
		    lf->lf_type == F_RDLCK ? "shared" :
		    lf->lf_type == F_WRLCK ? "exclusive" :
		    lf->lf_type == F_UNLCK ? "unlock" :
		    "unknown", (intmax_t)lf->lf_start, (intmax_t)lf->lf_end);
		LIST_FOREACH(e, &lf->lf_outedges, le_outlink) {
			blk = e->le_to;
			printf("\n\t\tlock request %p for ", (void *)blk);
			lf_print_owner(blk->lf_owner);
			printf(", %s, start %jd, end %jd",
			    blk->lf_type == F_RDLCK ? "shared" :
			    blk->lf_type == F_WRLCK ? "exclusive" :
			    blk->lf_type == F_UNLCK ? "unlock" :
			    "unknown", (intmax_t)blk->lf_start,
			    (intmax_t)blk->lf_end);
			if (!LIST_EMPTY(&blk->lf_inedges))
				panic("lf_printlist: bad list");
		}
		printf("\n");
	}
}
#endif /* LOCKF_DEBUG */
OpenPOWER on IntegriCloud