summaryrefslogtreecommitdiffstats
path: root/sys/isa/atrtc.c
blob: cf0a7f66dfcfabbea99d4023820dbe07b9e8ea44 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
/*-
 * Copyright (c) 1990 The Regents of the University of California.
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * William Jolitz and Don Ahn.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from: @(#)clock.c	7.2 (Berkeley) 5/12/91
 *	$Id: clock.c,v 1.12 1994/08/11 00:28:24 wollman Exp $
 */

/*
 * Primitive clock interrupt routines.
 */
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/time.h>
#include <sys/kernel.h>
#include <machine/segments.h>
#include <machine/frame.h>
#include <i386/isa/icu.h>
#include <i386/isa/isa.h>
#include <i386/isa/rtc.h>
#include <i386/isa/timerreg.h>
#include <machine/cpu.h>

/* X-tals being what they are, it's nice to be able to fudge this one... */
/* Note, the name changed here from XTALSPEED to TIMER_FREQ rgrimes 4/26/93 */
#ifndef TIMER_FREQ
#define	TIMER_FREQ	1193182	/* XXX - should be in isa.h */
#endif
#define TIMER_DIV(x) ((TIMER_FREQ+(x)/2)/(x))

void hardclock();
static 	int beeping;
int 	timer0_divisor = TIMER_DIV(100);	/* XXX should be hz */
u_int 	timer0_prescale;
static 	char timer0_state = 0, timer2_state = 0;
static 	char timer0_reprogram = 0;
static 	void (*timer_func)() = hardclock;
static 	void (*new_function)();
static 	u_int new_rate;
static 	u_int hardclock_divisor;

#ifdef I586_CPU
int pentium_mhz = 0;
#endif

void
clkintr(frame)
	struct clockframe frame;
{
#ifdef I586_CPU
	/*
	 * This resets the CPU cycle counter to zero, to make our
	 * job easier in microtime().  Some fancy ifdefs could speed
	 * this up for Pentium-only kernels.
	 * We want this to be done as close as possible to the actual
	 * timer incrementing in hardclock(), because there is a window
	 * between the two where the value is no longer valid.  Experimentation
	 * may reveal a good precompensation to apply in microtime().
	 */
	if(pentium_mhz) {
		__asm __volatile("movl $0x10,%%ecx\n"
				 "xorl %%eax,%%eax\n"
				 "movl %%eax,%%edx\n"
				 ".byte 0x0f, 0x30\n"
				 "#%0%1"
				 : "=m"(frame)	/* no outputs */
				 : "b"(&frame) /* fake input */
				 : "ax", "cx", "dx");
	}
#endif
	hardclock(&frame);
}

#if 0
void
timerintr(struct clockframe frame)
{
	timer_func(&frame);
	switch (timer0_state) {
	case 0:
		break;
	case 1:
		if ((timer0_prescale+=timer0_divisor) >= hardclock_divisor) {
			hardclock(&frame);
			timer0_prescale = 0;
		}
		break;
	case 2:
		disable_intr();
		outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
		outb(TIMER_CNTR0, TIMER_DIV(new_rate)%256);
		outb(TIMER_CNTR0, TIMER_DIV(new_rate)/256);
		enable_intr();
		timer0_divisor = TIMER_DIV(new_rate);
		timer0_prescale = 0;
		timer_func = new_function;
		timer0_state = 1;
		break;
	case 3:
		if ((timer0_prescale+=timer0_divisor) >= hardclock_divisor) {
			hardclock(&frame);
			disable_intr();
			outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);
			outb(TIMER_CNTR0, TIMER_DIV(hz)%256);
			outb(TIMER_CNTR0, TIMER_DIV(hz)/256);
			enable_intr();
			timer0_divisor = TIMER_DIV(hz);
			timer0_prescale = 0;
			timer_func = hardclock;;
			timer0_state = 0;
		}
		break;
	}
}

#endif

int
acquire_timer0(int rate, void (*function)() )
{
	if (timer0_state || !function) 	
		return -1;

	new_function = function;
	new_rate = rate;
	timer0_state = 2;
	return 0;
}


int
acquire_timer2(int mode)
{
	if (timer2_state) 	
		return -1;
	timer2_state = 1;
	outb(TIMER_MODE, TIMER_SEL2 | (mode &0x3f));
	return 0;
}


int
release_timer0()
{
	if (!timer0_state)
		return -1;
	timer0_state = 3;
	return 0;
}


int
release_timer2()
{
	if (!timer2_state)
		return -1;
	timer2_state = 0;
	outb(TIMER_MODE, TIMER_SEL2|TIMER_SQWAVE|TIMER_16BIT);
	return 0;
}


static int
getit() 
{
	int high, low;

	disable_intr();
	/* select timer0 and latch counter value */
	outb(TIMER_MODE, TIMER_SEL0);
	low = inb(TIMER_CNTR0);
	high = inb(TIMER_CNTR0);
	enable_intr();
	return ((high << 8) | low);
}

#ifdef I586_CPU
static long long cycles_per_sec = 0;

/*
 * Figure out how fast the cyclecounter runs.  This must be run with
 * clock interrupts disabled, but with the timer/counter programmed
 * and running.
 */
void
calibrate_cyclecounter(void)
{
	volatile long edx, eax, lasteax, lastedx;

	__asm __volatile(".byte 0x0f, 0x31" : "=a"(lasteax), "=d"(lastedx) : );
	DELAY(1000000);
	__asm __volatile(".byte 0x0f, 0x31" : "=a"(eax), "=d"(edx) : );

	/*
	 * This assumes that you will never have a clock rate higher
	 * than 4GHz, probably a good assumption.
	 */
	cycles_per_sec = (long long)edx + eax;
	cycles_per_sec -= (long long)lastedx + lasteax;
	pentium_mhz = ((long)cycles_per_sec + 500000) / 1000000; /* round up */
}
#endif

/*
 * Wait "n" microseconds.
 * Relies on timer 1 counting down from (TIMER_FREQ / hz) 
 * Note: timer had better have been programmed before this is first used!
 */
void
DELAY(int n)
{
	int counter_limit, prev_tick, tick, ticks_left, sec, usec;

#ifdef DELAYDEBUG
	int getit_calls = 1;
	int n1;
	static int state = 0;

	if (state == 0) {
		state = 1;
		for (n1 = 1; n1 <= 10000000; n1 *= 10)
			DELAY(n1);
		state = 2;
	}
	if (state == 1)
		printf("DELAY(%d)...", n);
#endif
	/*
	 * Read the counter first, so that the rest of the setup overhead is
	 * counted.  Guess the initial overhead is 20 usec (on most systems it
	 * takes about 1.5 usec for each of the i/o's in getit().  The loop
	 * takes about 6 usec on a 486/33 and 13 usec on a 386/20.  The
	 * multiplications and divisions to scale the count take a while).
	 */
	prev_tick = getit(0, 0);
	n -= 20;
	/*
	 * Calculate (n * (TIMER_FREQ / 1e6)) without using floating point 
	 * and without any avoidable overflows.
	 */
	sec = n / 1000000;
	usec = n - sec * 1000000;
	ticks_left = sec * TIMER_FREQ
		     + usec * (TIMER_FREQ / 1000000)
		     + usec * ((TIMER_FREQ % 1000000) / 1000) / 1000
		     + usec * (TIMER_FREQ % 1000) / 1000000;

	while (ticks_left > 0) {
		tick = getit(0, 0);
#ifdef DELAYDEBUG
		++getit_calls;
#endif
		if (tick > prev_tick)
			ticks_left -= prev_tick - (tick - timer0_divisor);
		else
			ticks_left -= prev_tick - tick;
		prev_tick = tick;
	}
#ifdef DELAYDEBUG
	if (state == 1)
		printf(" %d calls to getit() at %d usec each\n",
		       getit_calls, (n + 5) / getit_calls);
#endif
}


static void
sysbeepstop()
{
	outb(IO_PPI, inb(IO_PPI)&0xFC);	/* disable counter2 output to speaker */
	release_timer2();
	beeping = 0;
}


int 
sysbeep(int pitch, int period)
{

	if (acquire_timer2(TIMER_SQWAVE|TIMER_16BIT)) 
		return -1;
	disable_intr();
	outb(TIMER_CNTR2, pitch);
	outb(TIMER_CNTR2, (pitch>>8));
	enable_intr();
	if (!beeping) {
	outb(IO_PPI, inb(IO_PPI) | 3);	/* enable counter2 output to speaker */
		beeping = period;
		timeout(sysbeepstop, 0, period);
	}
	return 0;
}


void
startrtclock() 
{
	int s;

	/* initialize 8253 clock */
	outb(TIMER_MODE, TIMER_SEL0|TIMER_RATEGEN|TIMER_16BIT);

	/* Correct rounding will buy us a better precision in timekeeping */
	outb (IO_TIMER1, TIMER_DIV(hz)%256);
	outb (IO_TIMER1, TIMER_DIV(hz)/256);
	timer0_divisor = hardclock_divisor = TIMER_DIV(hz);

	/* initialize brain-dead battery powered clock */
	outb (IO_RTC, RTC_STATUSA);
	outb (IO_RTC+1, 0x26);
	outb (IO_RTC, RTC_STATUSB);
	outb (IO_RTC+1, 2);

	outb (IO_RTC, RTC_DIAG);
	if (s = inb (IO_RTC+1))
		printf("RTC BIOS diagnostic error %b\n", s, RTCDG_BITS);
}


/* convert 2 digit BCD number */
int
bcd(int i)
{
	return ((i/16)*10 + (i%16));
}


/* convert years to seconds (from 1970) */
unsigned long
ytos(int y)
{
	int i;
	unsigned long ret;

	ret = 0;
	for(i = 1970; i < y; i++) {
		if (i % 4) ret += 365*24*60*60;
		else ret += 366*24*60*60;
	}
	return ret;
}


/* convert months to seconds */
unsigned long
mtos(int m, int leap)
{
	int i;
	unsigned long ret;

	ret = 0;
	for(i=1; i<m; i++) {
		switch(i){
		case 1: case 3: case 5: case 7: case 8: case 10: case 12:
			ret += 31*24*60*60; break;
		case 4: case 6: case 9: case 11:
			ret += 30*24*60*60; break;
		case 2:
			if (leap) ret += 29*24*60*60;
			else ret += 28*24*60*60;
		}
	}
	return ret;
}


/*
 * Initialize the time of day register, based on the time base which is, e.g.
 * from a filesystem.
 */
void
inittodr(time_t base)
{
	unsigned long sec;
	int leap, day_week, t, yd;
	int sa,s;

	/* do we have a realtime clock present? (otherwise we loop below) */
	sa = rtcin(RTC_STATUSA);
	if (sa == 0xff || sa == 0) return;

	/* ready for a read? */
	while ((sa&RTCSA_TUP) == RTCSA_TUP)
		sa = rtcin(RTC_STATUSA);

	sec = bcd(rtcin(RTC_YEAR)) + 1900;
	if (sec < 1970)
		sec += 100;

	leap = !(sec % 4); sec = ytos(sec); 			/* year    */
	yd = mtos(bcd(rtcin(RTC_MONTH)),leap); sec+=yd;		/* month   */
	t = (bcd(rtcin(RTC_DAY))-1) * 24*60*60; sec+=t; yd+=t;	/* date    */
	day_week = rtcin(RTC_WDAY);				/* day     */
	sec += bcd(rtcin(RTC_HRS)) * 60*60;			/* hour    */
	sec += bcd(rtcin(RTC_MIN)) * 60;			/* minutes */
	sec += bcd(rtcin(RTC_SEC));				/* seconds */
	sec += tz.tz_minuteswest * 60;
	time.tv_sec = sec;
}


#ifdef garbage
/*
 * Initialze the time of day register, based on the time base which is, e.g.
 * from a filesystem.
 */
test_inittodr(time_t base)
{

	outb(IO_RTC,9); /* year    */
	printf("%d ",bcd(inb(IO_RTC+1)));
	outb(IO_RTC,8); /* month   */
	printf("%d ",bcd(inb(IO_RTC+1)));
	outb(IO_RTC,7); /* day     */
	printf("%d ",bcd(inb(IO_RTC+1)));
	outb(IO_RTC,4); /* hour    */
	printf("%d ",bcd(inb(IO_RTC+1)));
	outb(IO_RTC,2); /* minutes */
	printf("%d ",bcd(inb(IO_RTC+1)));
	outb(IO_RTC,0); /* seconds */
	printf("%d\n",bcd(inb(IO_RTC+1)));

	time.tv_sec = base;
}
#endif

/*
 * Wire clock interrupt in.
 */
#define V(s)	__CONCAT(V, s)
extern void V(clk)();


void
enablertclock() 
{
	setidt(ICU_OFFSET+0, &V(clk), SDT_SYS386IGT, SEL_KPL);
	INTREN(IRQ0);
}


/*
 * Delay for some number of milliseconds.
 */
void
spinwait(int millisecs)
{
	DELAY(1000 * millisecs);
}

void
cpu_initclocks()
{
	enablertclock();
}

void
setstatclockrate(int newhz)
{
}
OpenPOWER on IntegriCloud