summaryrefslogtreecommitdiffstats
path: root/sys/i386/i386/vm_machdep.c
blob: 64577c1e0a4610f2dbdbb72731403fea627548ca (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
/*-
 * Copyright (c) 1982, 1986 The Regents of the University of California.
 * Copyright (c) 1989, 1990 William Jolitz
 * Copyright (c) 1994 John Dyson
 * All rights reserved.
 *
 * This code is derived from software contributed to Berkeley by
 * the Systems Programming Group of the University of Utah Computer
 * Science Department, and William Jolitz.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. All advertising materials mentioning features or use of this software
 *    must display the following acknowledgement:
 *	This product includes software developed by the University of
 *	California, Berkeley and its contributors.
 * 4. Neither the name of the University nor the names of its contributors
 *    may be used to endorse or promote products derived from this software
 *    without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 *	from: @(#)vm_machdep.c	7.3 (Berkeley) 5/13/91
 *	Utah $Hdr: vm_machdep.c 1.16.1.1 89/06/23$
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include "opt_isa.h"
#include "opt_npx.h"
#include "opt_reset.h"
#include "opt_cpu.h"
#include "opt_xbox.h"

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bio.h>
#include <sys/buf.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mbuf.h>
#include <sys/mutex.h>
#include <sys/pioctl.h>
#include <sys/proc.h>
#include <sys/sysent.h>
#include <sys/sf_buf.h>
#include <sys/smp.h>
#include <sys/sched.h>
#include <sys/sysctl.h>
#include <sys/unistd.h>
#include <sys/vnode.h>
#include <sys/vmmeter.h>

#include <machine/cpu.h>
#include <machine/cputypes.h>
#include <machine/md_var.h>
#include <machine/pcb.h>
#include <machine/pcb_ext.h>
#include <machine/smp.h>
#include <machine/vm86.h>

#ifdef CPU_ELAN
#include <machine/elan_mmcr.h>
#endif

#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_param.h>

#ifdef PC98
#include <pc98/cbus/cbus.h>
#else
#include <isa/isareg.h>
#endif

#ifdef XBOX
#include <machine/xbox.h>
#endif

#ifndef NSFBUFS
#define	NSFBUFS		(512 + maxusers * 16)
#endif

_Static_assert(OFFSETOF_CURTHREAD == offsetof(struct pcpu, pc_curthread),
    "OFFSETOF_CURTHREAD does not correspond with offset of pc_curthread.");
_Static_assert(OFFSETOF_CURPCB == offsetof(struct pcpu, pc_curpcb),
    "OFFSETOF_CURPCB does not correspond with offset of pc_curpcb.");
_Static_assert(__OFFSETOF_MONITORBUF == offsetof(struct pcpu, pc_monitorbuf),
    "__OFFSETOF_MONINORBUF does not correspond with offset of pc_monitorbuf.");

static void	cpu_reset_real(void);
#ifdef SMP
static void	cpu_reset_proxy(void);
static u_int	cpu_reset_proxyid;
static volatile u_int	cpu_reset_proxy_active;
#endif

union savefpu *
get_pcb_user_save_td(struct thread *td)
{
	vm_offset_t p;

	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
	    roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN);
	KASSERT((p % XSAVE_AREA_ALIGN) == 0, ("Unaligned pcb_user_save area"));
	return ((union savefpu *)p);
}

union savefpu *
get_pcb_user_save_pcb(struct pcb *pcb)
{
	vm_offset_t p;

	p = (vm_offset_t)(pcb + 1);
	return ((union savefpu *)p);
}

struct pcb *
get_pcb_td(struct thread *td)
{
	vm_offset_t p;

	p = td->td_kstack + td->td_kstack_pages * PAGE_SIZE -
	    roundup2(cpu_max_ext_state_size, XSAVE_AREA_ALIGN) -
	    sizeof(struct pcb);
	return ((struct pcb *)p);
}

void *
alloc_fpusave(int flags)
{
	void *res;
	struct savefpu_ymm *sf;

	res = malloc(cpu_max_ext_state_size, M_DEVBUF, flags);
	if (use_xsave) {
		sf = (struct savefpu_ymm *)res;
		bzero(&sf->sv_xstate.sx_hd, sizeof(sf->sv_xstate.sx_hd));
		sf->sv_xstate.sx_hd.xstate_bv = xsave_mask;
	}
	return (res);
}
/*
 * Finish a fork operation, with process p2 nearly set up.
 * Copy and update the pcb, set up the stack so that the child
 * ready to run and return to user mode.
 */
void
cpu_fork(struct thread *td1, struct proc *p2, struct thread *td2, int flags)
{
	register struct proc *p1;
	struct pcb *pcb2;
	struct mdproc *mdp2;

	p1 = td1->td_proc;
	if ((flags & RFPROC) == 0) {
		if ((flags & RFMEM) == 0) {
			/* unshare user LDT */
			struct mdproc *mdp1 = &p1->p_md;
			struct proc_ldt *pldt, *pldt1;

			mtx_lock_spin(&dt_lock);
			if ((pldt1 = mdp1->md_ldt) != NULL &&
			    pldt1->ldt_refcnt > 1) {
				pldt = user_ldt_alloc(mdp1, pldt1->ldt_len);
				if (pldt == NULL)
					panic("could not copy LDT");
				mdp1->md_ldt = pldt;
				set_user_ldt(mdp1);
				user_ldt_deref(pldt1);
			} else
				mtx_unlock_spin(&dt_lock);
		}
		return;
	}

	/* Ensure that td1's pcb is up to date. */
	if (td1 == curthread)
		td1->td_pcb->pcb_gs = rgs();
	critical_enter();
	if (PCPU_GET(fpcurthread) == td1)
		npxsave(td1->td_pcb->pcb_save);
	critical_exit();

	/* Point the pcb to the top of the stack */
	pcb2 = get_pcb_td(td2);
	td2->td_pcb = pcb2;

	/* Copy td1's pcb */
	bcopy(td1->td_pcb, pcb2, sizeof(*pcb2));

	/* Properly initialize pcb_save */
	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
	bcopy(get_pcb_user_save_td(td1), get_pcb_user_save_pcb(pcb2),
	    cpu_max_ext_state_size);

	/* Point mdproc and then copy over td1's contents */
	mdp2 = &p2->p_md;
	bcopy(&p1->p_md, mdp2, sizeof(*mdp2));

	/*
	 * Create a new fresh stack for the new process.
	 * Copy the trap frame for the return to user mode as if from a
	 * syscall.  This copies most of the user mode register values.
	 * The -16 is so we can expand the trapframe if we go to vm86.
	 */
	td2->td_frame = (struct trapframe *)((caddr_t)td2->td_pcb - 16) - 1;
	bcopy(td1->td_frame, td2->td_frame, sizeof(struct trapframe));

	td2->td_frame->tf_eax = 0;		/* Child returns zero */
	td2->td_frame->tf_eflags &= ~PSL_C;	/* success */
	td2->td_frame->tf_edx = 1;

	/*
	 * If the parent process has the trap bit set (i.e. a debugger had
	 * single stepped the process to the system call), we need to clear
	 * the trap flag from the new frame unless the debugger had set PF_FORK
	 * on the parent.  Otherwise, the child will receive a (likely
	 * unexpected) SIGTRAP when it executes the first instruction after
	 * returning  to userland.
	 */
	if ((p1->p_pfsflags & PF_FORK) == 0)
		td2->td_frame->tf_eflags &= ~PSL_T;

	/*
	 * Set registers for trampoline to user mode.  Leave space for the
	 * return address on stack.  These are the kernel mode register values.
	 */
#if defined(PAE) || defined(PAE_TABLES)
	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdpt);
#else
	pcb2->pcb_cr3 = vtophys(vmspace_pmap(p2->p_vmspace)->pm_pdir);
#endif
	pcb2->pcb_edi = 0;
	pcb2->pcb_esi = (int)fork_return;	/* fork_trampoline argument */
	pcb2->pcb_ebp = 0;
	pcb2->pcb_esp = (int)td2->td_frame - sizeof(void *);
	pcb2->pcb_ebx = (int)td2;		/* fork_trampoline argument */
	pcb2->pcb_eip = (int)fork_trampoline;
	pcb2->pcb_psl = PSL_KERNEL;		/* ints disabled */
	/*-
	 * pcb2->pcb_dr*:	cloned above.
	 * pcb2->pcb_savefpu:	cloned above.
	 * pcb2->pcb_flags:	cloned above.
	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
	 * pcb2->pcb_gs:	cloned above.
	 * pcb2->pcb_ext:	cleared below.
	 */

	/*
	 * XXX don't copy the i/o pages.  this should probably be fixed.
	 */
	pcb2->pcb_ext = 0;

	/* Copy the LDT, if necessary. */
	mtx_lock_spin(&dt_lock);
	if (mdp2->md_ldt != NULL) {
		if (flags & RFMEM) {
			mdp2->md_ldt->ldt_refcnt++;
		} else {
			mdp2->md_ldt = user_ldt_alloc(mdp2,
			    mdp2->md_ldt->ldt_len);
			if (mdp2->md_ldt == NULL)
				panic("could not copy LDT");
		}
	}
	mtx_unlock_spin(&dt_lock);

	/* Setup to release spin count in fork_exit(). */
	td2->td_md.md_spinlock_count = 1;
	td2->td_md.md_saved_flags = PSL_KERNEL | PSL_I;

	/*
	 * Now, cpu_switch() can schedule the new process.
	 * pcb_esp is loaded pointing to the cpu_switch() stack frame
	 * containing the return address when exiting cpu_switch.
	 * This will normally be to fork_trampoline(), which will have
	 * %ebx loaded with the new proc's pointer.  fork_trampoline()
	 * will set up a stack to call fork_return(p, frame); to complete
	 * the return to user-mode.
	 */
}

/*
 * Intercept the return address from a freshly forked process that has NOT
 * been scheduled yet.
 *
 * This is needed to make kernel threads stay in kernel mode.
 */
void
cpu_fork_kthread_handler(struct thread *td, void (*func)(void *), void *arg)
{
	/*
	 * Note that the trap frame follows the args, so the function
	 * is really called like this:  func(arg, frame);
	 */
	td->td_pcb->pcb_esi = (int) func;	/* function */
	td->td_pcb->pcb_ebx = (int) arg;	/* first arg */
}

void
cpu_exit(struct thread *td)
{

	/*
	 * If this process has a custom LDT, release it.  Reset pc->pcb_gs
	 * and %gs before we free it in case they refer to an LDT entry.
	 */
	mtx_lock_spin(&dt_lock);
	if (td->td_proc->p_md.md_ldt) {
		td->td_pcb->pcb_gs = _udatasel;
		load_gs(_udatasel);
		user_ldt_free(td);
	} else
		mtx_unlock_spin(&dt_lock);
}

void
cpu_thread_exit(struct thread *td)
{

	critical_enter();
	if (td == PCPU_GET(fpcurthread))
		npxdrop();
	critical_exit();

	/* Disable any hardware breakpoints. */
	if (td->td_pcb->pcb_flags & PCB_DBREGS) {
		reset_dbregs();
		td->td_pcb->pcb_flags &= ~PCB_DBREGS;
	}
}

void
cpu_thread_clean(struct thread *td)
{
	struct pcb *pcb;

	pcb = td->td_pcb; 
	if (pcb->pcb_ext != NULL) {
		/* if (pcb->pcb_ext->ext_refcount-- == 1) ?? */
		/*
		 * XXX do we need to move the TSS off the allocated pages
		 * before freeing them?  (not done here)
		 */
		kmem_free(kernel_arena, (vm_offset_t)pcb->pcb_ext,
		    ctob(IOPAGES + 1));
		pcb->pcb_ext = NULL;
	}
}

void
cpu_thread_swapin(struct thread *td)
{
}

void
cpu_thread_swapout(struct thread *td)
{
}

void
cpu_thread_alloc(struct thread *td)
{
	struct pcb *pcb;
	struct xstate_hdr *xhdr;

	td->td_pcb = pcb = get_pcb_td(td);
	td->td_frame = (struct trapframe *)((caddr_t)pcb - 16) - 1;
	pcb->pcb_ext = NULL; 
	pcb->pcb_save = get_pcb_user_save_pcb(pcb);
	if (use_xsave) {
		xhdr = (struct xstate_hdr *)(pcb->pcb_save + 1);
		bzero(xhdr, sizeof(*xhdr));
		xhdr->xstate_bv = xsave_mask;
	}
}

void
cpu_thread_free(struct thread *td)
{

	cpu_thread_clean(td);
}

void
cpu_set_syscall_retval(struct thread *td, int error)
{

	switch (error) {
	case 0:
		td->td_frame->tf_eax = td->td_retval[0];
		td->td_frame->tf_edx = td->td_retval[1];
		td->td_frame->tf_eflags &= ~PSL_C;
		break;

	case ERESTART:
		/*
		 * Reconstruct pc, assuming lcall $X,y is 7 bytes, int
		 * 0x80 is 2 bytes. We saved this in tf_err.
		 */
		td->td_frame->tf_eip -= td->td_frame->tf_err;
		break;

	case EJUSTRETURN:
		break;

	default:
		td->td_frame->tf_eax = SV_ABI_ERRNO(td->td_proc, error);
		td->td_frame->tf_eflags |= PSL_C;
		break;
	}
}

/*
 * Initialize machine state, mostly pcb and trap frame for a new
 * thread, about to return to userspace.  Put enough state in the new
 * thread's PCB to get it to go back to the fork_return(), which
 * finalizes the thread state and handles peculiarities of the first
 * return to userspace for the new thread.
 */
void
cpu_copy_thread(struct thread *td, struct thread *td0)
{
	struct pcb *pcb2;

	/* Point the pcb to the top of the stack. */
	pcb2 = td->td_pcb;

	/*
	 * Copy the upcall pcb.  This loads kernel regs.
	 * Those not loaded individually below get their default
	 * values here.
	 */
	bcopy(td0->td_pcb, pcb2, sizeof(*pcb2));
	pcb2->pcb_flags &= ~(PCB_NPXINITDONE | PCB_NPXUSERINITDONE |
	    PCB_KERNNPX);
	pcb2->pcb_save = get_pcb_user_save_pcb(pcb2);
	bcopy(get_pcb_user_save_td(td0), pcb2->pcb_save,
	    cpu_max_ext_state_size);

	/*
	 * Create a new fresh stack for the new thread.
	 */
	bcopy(td0->td_frame, td->td_frame, sizeof(struct trapframe));

	/* If the current thread has the trap bit set (i.e. a debugger had
	 * single stepped the process to the system call), we need to clear
	 * the trap flag from the new frame. Otherwise, the new thread will
	 * receive a (likely unexpected) SIGTRAP when it executes the first
	 * instruction after returning to userland.
	 */
	td->td_frame->tf_eflags &= ~PSL_T;

	/*
	 * Set registers for trampoline to user mode.  Leave space for the
	 * return address on stack.  These are the kernel mode register values.
	 */
	pcb2->pcb_edi = 0;
	pcb2->pcb_esi = (int)fork_return;		    /* trampoline arg */
	pcb2->pcb_ebp = 0;
	pcb2->pcb_esp = (int)td->td_frame - sizeof(void *); /* trampoline arg */
	pcb2->pcb_ebx = (int)td;			    /* trampoline arg */
	pcb2->pcb_eip = (int)fork_trampoline;
	pcb2->pcb_psl &= ~(PSL_I);	/* interrupts must be disabled */
	pcb2->pcb_gs = rgs();
	/*
	 * If we didn't copy the pcb, we'd need to do the following registers:
	 * pcb2->pcb_cr3:	cloned above.
	 * pcb2->pcb_dr*:	cloned above.
	 * pcb2->pcb_savefpu:	cloned above.
	 * pcb2->pcb_flags:	cloned above.
	 * pcb2->pcb_onfault:	cloned above (always NULL here?).
	 * pcb2->pcb_gs:	cloned above.
	 * pcb2->pcb_ext:	cleared below.
	 */
	pcb2->pcb_ext = NULL;

	/* Setup to release spin count in fork_exit(). */
	td->td_md.md_spinlock_count = 1;
	td->td_md.md_saved_flags = PSL_KERNEL | PSL_I;
}

/*
 * Set that machine state for performing an upcall that starts
 * the entry function with the given argument.
 */
void
cpu_set_upcall(struct thread *td, void (*entry)(void *), void *arg,
    stack_t *stack)
{

	/* 
	 * Do any extra cleaning that needs to be done.
	 * The thread may have optional components
	 * that are not present in a fresh thread.
	 * This may be a recycled thread so make it look
	 * as though it's newly allocated.
	 */
	cpu_thread_clean(td);

	/*
	 * Set the trap frame to point at the beginning of the entry
	 * function.
	 */
	td->td_frame->tf_ebp = 0; 
	td->td_frame->tf_esp =
	    (((int)stack->ss_sp + stack->ss_size - 4) & ~0x0f) - 4;
	td->td_frame->tf_eip = (int)entry;

	/* Pass the argument to the entry point. */
	suword((void *)(td->td_frame->tf_esp + sizeof(void *)),
	    (int)arg);
}

int
cpu_set_user_tls(struct thread *td, void *tls_base)
{
	struct segment_descriptor sd;
	uint32_t base;

	/*
	 * Construct a descriptor and store it in the pcb for
	 * the next context switch.  Also store it in the gdt
	 * so that the load of tf_fs into %fs will activate it
	 * at return to userland.
	 */
	base = (uint32_t)tls_base;
	sd.sd_lobase = base & 0xffffff;
	sd.sd_hibase = (base >> 24) & 0xff;
	sd.sd_lolimit = 0xffff;	/* 4GB limit, wraps around */
	sd.sd_hilimit = 0xf;
	sd.sd_type  = SDT_MEMRWA;
	sd.sd_dpl   = SEL_UPL;
	sd.sd_p     = 1;
	sd.sd_xx    = 0;
	sd.sd_def32 = 1;
	sd.sd_gran  = 1;
	critical_enter();
	/* set %gs */
	td->td_pcb->pcb_gsd = sd;
	if (td == curthread) {
		PCPU_GET(fsgs_gdt)[1] = sd;
		load_gs(GSEL(GUGS_SEL, SEL_UPL));
	}
	critical_exit();
	return (0);
}

/*
 * Convert kernel VA to physical address
 */
vm_paddr_t
kvtop(void *addr)
{
	vm_paddr_t pa;

	pa = pmap_kextract((vm_offset_t)addr);
	if (pa == 0)
		panic("kvtop: zero page frame");
	return (pa);
}

#ifdef SMP
static void
cpu_reset_proxy()
{
	cpuset_t tcrp;

	cpu_reset_proxy_active = 1;
	while (cpu_reset_proxy_active == 1)
		;	/* Wait for other cpu to see that we've started */
	CPU_SETOF(cpu_reset_proxyid, &tcrp);
	stop_cpus(tcrp);
	printf("cpu_reset_proxy: Stopped CPU %d\n", cpu_reset_proxyid);
	DELAY(1000000);
	cpu_reset_real();
}
#endif

void
cpu_reset()
{
#ifdef XBOX
	if (arch_i386_is_xbox) {
		/* Kick the PIC16L, it can reboot the box */
		pic16l_reboot();
		for (;;);
	}
#endif

#ifdef SMP
	cpuset_t map;
	u_int cnt;

	if (smp_started) {
		map = all_cpus;
		CPU_CLR(PCPU_GET(cpuid), &map);
		CPU_NAND(&map, &stopped_cpus);
		if (!CPU_EMPTY(&map)) {
			printf("cpu_reset: Stopping other CPUs\n");
			stop_cpus(map);
		}

		if (PCPU_GET(cpuid) != 0) {
			cpu_reset_proxyid = PCPU_GET(cpuid);
			cpustop_restartfunc = cpu_reset_proxy;
			cpu_reset_proxy_active = 0;
			printf("cpu_reset: Restarting BSP\n");

			/* Restart CPU #0. */
			/* XXX: restart_cpus(1 << 0); */
			CPU_SETOF(0, &started_cpus);
			wmb();

			cnt = 0;
			while (cpu_reset_proxy_active == 0 && cnt < 10000000)
				cnt++;	/* Wait for BSP to announce restart */
			if (cpu_reset_proxy_active == 0)
				printf("cpu_reset: Failed to restart BSP\n");
			enable_intr();
			cpu_reset_proxy_active = 2;

			while (1);
			/* NOTREACHED */
		}

		DELAY(1000000);
	}
#endif
	cpu_reset_real();
	/* NOTREACHED */
}

static void
cpu_reset_real()
{
	struct region_descriptor null_idt;
#ifndef PC98
	int b;
#endif

	disable_intr();
#ifdef CPU_ELAN
	if (elan_mmcr != NULL)
		elan_mmcr->RESCFG = 1;
#endif

	if (cpu == CPU_GEODE1100) {
		/* Attempt Geode's own reset */
		outl(0xcf8, 0x80009044ul);
		outl(0xcfc, 0xf);
	}

#ifdef PC98
	/*
	 * Attempt to do a CPU reset via CPU reset port.
	 */
	if ((inb(0x35) & 0xa0) != 0xa0) {
		outb(0x37, 0x0f);		/* SHUT0 = 0. */
		outb(0x37, 0x0b);		/* SHUT1 = 0. */
	}
	outb(0xf0, 0x00);		/* Reset. */
#else
#if !defined(BROKEN_KEYBOARD_RESET)
	/*
	 * Attempt to do a CPU reset via the keyboard controller,
	 * do not turn off GateA20, as any machine that fails
	 * to do the reset here would then end up in no man's land.
	 */
	outb(IO_KBD + 4, 0xFE);
	DELAY(500000);	/* wait 0.5 sec to see if that did it */
#endif

	/*
	 * Attempt to force a reset via the Reset Control register at
	 * I/O port 0xcf9.  Bit 2 forces a system reset when it
	 * transitions from 0 to 1.  Bit 1 selects the type of reset
	 * to attempt: 0 selects a "soft" reset, and 1 selects a
	 * "hard" reset.  We try a "hard" reset.  The first write sets
	 * bit 1 to select a "hard" reset and clears bit 2.  The
	 * second write forces a 0 -> 1 transition in bit 2 to trigger
	 * a reset.
	 */
	outb(0xcf9, 0x2);
	outb(0xcf9, 0x6);
	DELAY(500000);  /* wait 0.5 sec to see if that did it */

	/*
	 * Attempt to force a reset via the Fast A20 and Init register
	 * at I/O port 0x92.  Bit 1 serves as an alternate A20 gate.
	 * Bit 0 asserts INIT# when set to 1.  We are careful to only
	 * preserve bit 1 while setting bit 0.  We also must clear bit
	 * 0 before setting it if it isn't already clear.
	 */
	b = inb(0x92);
	if (b != 0xff) {
		if ((b & 0x1) != 0)
			outb(0x92, b & 0xfe);
		outb(0x92, b | 0x1);
		DELAY(500000);  /* wait 0.5 sec to see if that did it */
	}
#endif /* PC98 */

	printf("No known reset method worked, attempting CPU shutdown\n");
	DELAY(1000000); /* wait 1 sec for printf to complete */

	/* Wipe the IDT. */
	null_idt.rd_limit = 0;
	null_idt.rd_base = 0;
	lidt(&null_idt);

	/* "good night, sweet prince .... <THUNK!>" */
	breakpoint();

	/* NOTREACHED */
	while(1);
}

/*
 * Get an sf_buf from the freelist.  May block if none are available.
 */
void
sf_buf_map(struct sf_buf *sf, int flags)
{
	pt_entry_t opte, *ptep;

	/*
	 * Update the sf_buf's virtual-to-physical mapping, flushing the
	 * virtual address from the TLB.  Since the reference count for 
	 * the sf_buf's old mapping was zero, that mapping is not 
	 * currently in use.  Consequently, there is no need to exchange 
	 * the old and new PTEs atomically, even under PAE.
	 */
	ptep = vtopte(sf->kva);
	opte = *ptep;
	*ptep = VM_PAGE_TO_PHYS(sf->m) | pgeflag | PG_RW | PG_V |
	    pmap_cache_bits(sf->m->md.pat_mode, 0);

	/*
	 * Avoid unnecessary TLB invalidations: If the sf_buf's old
	 * virtual-to-physical mapping was not used, then any processor
	 * that has invalidated the sf_buf's virtual address from its TLB
	 * since the last used mapping need not invalidate again.
	 */
#ifdef SMP
	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
		CPU_ZERO(&sf->cpumask);

	sf_buf_shootdown(sf, flags);
#else
	if ((opte & (PG_V | PG_A)) ==  (PG_V | PG_A))
		pmap_invalidate_page(kernel_pmap, sf->kva);
#endif
}

#ifdef SMP
void
sf_buf_shootdown(struct sf_buf *sf, int flags)
{
	cpuset_t other_cpus;
	u_int cpuid;

	sched_pin();
	cpuid = PCPU_GET(cpuid);
	if (!CPU_ISSET(cpuid, &sf->cpumask)) {
		CPU_SET(cpuid, &sf->cpumask);
		invlpg(sf->kva);
	}
	if ((flags & SFB_CPUPRIVATE) == 0) {
		other_cpus = all_cpus;
		CPU_CLR(cpuid, &other_cpus);
		CPU_NAND(&other_cpus, &sf->cpumask);
		if (!CPU_EMPTY(&other_cpus)) {
			CPU_OR(&sf->cpumask, &other_cpus);
			smp_masked_invlpg(other_cpus, sf->kva, kernel_pmap);
		}
	}
	sched_unpin();
}
#endif

/*
 * MD part of sf_buf_free().
 */
int
sf_buf_unmap(struct sf_buf *sf)
{

	return (0);
}

static void
sf_buf_invalidate(struct sf_buf *sf)
{
	vm_page_t m = sf->m;

	/*
	 * Use pmap_qenter to update the pte for
	 * existing mapping, in particular, the PAT
	 * settings are recalculated.
	 */
	pmap_qenter(sf->kva, &m, 1);
	pmap_invalidate_cache_range(sf->kva, sf->kva + PAGE_SIZE, FALSE);
}

/*
 * Invalidate the cache lines that may belong to the page, if
 * (possibly old) mapping of the page by sf buffer exists.  Returns
 * TRUE when mapping was found and cache invalidated.
 */
boolean_t
sf_buf_invalidate_cache(vm_page_t m)
{

	return (sf_buf_process_page(m, sf_buf_invalidate));
}

/*
 * Software interrupt handler for queued VM system processing.
 */   
void  
swi_vm(void *dummy) 
{     
	if (busdma_swi_pending != 0)
		busdma_swi();
}

/*
 * Tell whether this address is in some physical memory region.
 * Currently used by the kernel coredump code in order to avoid
 * dumping the ``ISA memory hole'' which could cause indefinite hangs,
 * or other unpredictable behaviour.
 */

int
is_physical_memory(vm_paddr_t addr)
{

#ifdef DEV_ISA
	/* The ISA ``memory hole''. */
	if (addr >= 0xa0000 && addr < 0x100000)
		return 0;
#endif

	/*
	 * stuff other tests for known memory-mapped devices (PCI?)
	 * here
	 */

	return 1;
}
OpenPOWER on IntegriCloud