1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
|
/*-
* Copyright (c) 2000-2004 Mark R V Murray
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer
* in this position and unchanged.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/random.h>
#include <sys/sysctl.h>
#include <sys/systm.h>
#include <crypto/rijndael/rijndael-api-fst.h>
#include <crypto/sha2/sha2.h>
#include <dev/random/hash.h>
#include <dev/random/randomdev_soft.h>
#include <dev/random/yarrow.h>
RANDOM_CHECK_UINT(gengateinterval, 4, 64);
RANDOM_CHECK_UINT(bins, 2, 16);
RANDOM_CHECK_UINT(fastthresh, BLOCKSIZE/4, BLOCKSIZE);
RANDOM_CHECK_UINT(slowthresh, BLOCKSIZE/4, BLOCKSIZE);
RANDOM_CHECK_UINT(slowoverthresh, 1, 5);
/* Structure holding the entropy state */
static struct random_state random_state;
static void generator_gate(void);
static void reseed(u_int);
/* The reseed thread mutex */
struct mtx random_reseed_mtx;
/* Process a single stochastic event off the harvest queue */
void
random_process_event(struct harvest *event)
{
u_int pl, overthreshhold[2];
struct source *source;
enum esource src;
/* Unpack the event into the appropriate source accumulator */
pl = random_state.which;
source = &random_state.pool[pl].source[event->source];
yarrow_hash_iterate(&random_state.pool[pl].hash, event->entropy,
sizeof(event->entropy));
yarrow_hash_iterate(&random_state.pool[pl].hash, &event->somecounter,
sizeof(event->somecounter));
source->frac += event->frac;
source->bits += event->bits + source->frac/1024;
source->frac %= 1024;
/* Count the over-threshold sources in each pool */
for (pl = 0; pl < 2; pl++) {
overthreshhold[pl] = 0;
for (src = RANDOM_START; src < ENTROPYSOURCE; src++) {
if (random_state.pool[pl].source[src].bits
> random_state.pool[pl].thresh)
overthreshhold[pl]++;
}
}
/* if any fast source over threshhold, reseed */
if (overthreshhold[FAST])
reseed(FAST);
/* if enough slow sources are over threshhold, reseed */
if (overthreshhold[SLOW] >= random_state.slowoverthresh)
reseed(SLOW);
/* Invert the fast/slow pool selector bit */
random_state.which = !random_state.which;
}
void
random_yarrow_init_alg(struct sysctl_ctx_list *clist, struct sysctl_oid *in_o)
{
int i;
struct sysctl_oid *random_yarrow_o;
/* Yarrow parameters. Do not adjust these unless you have
* have a very good clue about what they do!
*/
random_yarrow_o = SYSCTL_ADD_NODE(clist,
SYSCTL_CHILDREN(in_o),
OID_AUTO, "yarrow", CTLFLAG_RW, 0,
"Yarrow Parameters");
SYSCTL_ADD_PROC(clist,
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
"gengateinterval", CTLTYPE_INT|CTLFLAG_RW,
&random_state.gengateinterval, 10,
random_check_uint_gengateinterval, "I",
"Generation gate interval");
SYSCTL_ADD_PROC(clist,
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
"bins", CTLTYPE_INT|CTLFLAG_RW,
&random_state.bins, 10,
random_check_uint_bins, "I",
"Execution time tuner");
SYSCTL_ADD_PROC(clist,
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
"fastthresh", CTLTYPE_INT|CTLFLAG_RW,
&random_state.pool[0].thresh, (3*BLOCKSIZE)/4,
random_check_uint_fastthresh, "I",
"Fast reseed threshold");
SYSCTL_ADD_PROC(clist,
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
"slowthresh", CTLTYPE_INT|CTLFLAG_RW,
&random_state.pool[1].thresh, BLOCKSIZE,
random_check_uint_slowthresh, "I",
"Slow reseed threshold");
SYSCTL_ADD_PROC(clist,
SYSCTL_CHILDREN(random_yarrow_o), OID_AUTO,
"slowoverthresh", CTLTYPE_INT|CTLFLAG_RW,
&random_state.slowoverthresh, 2,
random_check_uint_slowoverthresh, "I",
"Slow over-threshold reseed");
random_state.gengateinterval = 10;
random_state.bins = 10;
random_state.pool[0].thresh = (3*BLOCKSIZE)/4;
random_state.pool[1].thresh = BLOCKSIZE;
random_state.slowoverthresh = 2;
random_state.which = FAST;
/* Initialise the fast and slow entropy pools */
for (i = 0; i < 2; i++)
yarrow_hash_init(&random_state.pool[i].hash);
/* Clear the counter */
for (i = 0; i < 4; i++)
random_state.counter[i] = 0;
/* Set up a lock for the reseed process */
mtx_init(&random_reseed_mtx, "random reseed", NULL, MTX_DEF);
}
void
random_yarrow_deinit_alg(void)
{
mtx_destroy(&random_reseed_mtx);
}
static void
reseed(u_int fastslow)
{
/* Interrupt-context stack is a limited resource; make large
* structures static.
*/
static u_char v[TIMEBIN][KEYSIZE]; /* v[i] */
static struct yarrowhash context;
u_char hash[KEYSIZE]; /* h' */
u_char temp[KEYSIZE];
u_int i;
enum esource j;
/* The reseed task must not be jumped on */
mtx_lock(&random_reseed_mtx);
/* 1. Hash the accumulated entropy into v[0] */
yarrow_hash_init(&context);
/* Feed the slow pool hash in if slow */
if (fastslow == SLOW)
yarrow_hash_iterate(&context,
&random_state.pool[SLOW].hash,
sizeof(struct yarrowhash));
yarrow_hash_iterate(&context,
&random_state.pool[FAST].hash, sizeof(struct yarrowhash));
yarrow_hash_finish(&context, v[0]);
/* 2. Compute hash values for all v. _Supposed_ to be computationally
* intensive.
*/
if (random_state.bins > TIMEBIN)
random_state.bins = TIMEBIN;
for (i = 1; i < random_state.bins; i++) {
yarrow_hash_init(&context);
/* v[i] #= h(v[i - 1]) */
yarrow_hash_iterate(&context, v[i - 1], KEYSIZE);
/* v[i] #= h(v[0]) */
yarrow_hash_iterate(&context, v[0], KEYSIZE);
/* v[i] #= h(i) */
yarrow_hash_iterate(&context, &i, sizeof(u_int));
/* Return the hashval */
yarrow_hash_finish(&context, v[i]);
}
/* 3. Compute a new key; h' is the identity function here;
* it is not being ignored!
*/
yarrow_hash_init(&context);
yarrow_hash_iterate(&context, &random_state.key, KEYSIZE);
for (i = 1; i < random_state.bins; i++)
yarrow_hash_iterate(&context, &v[i], KEYSIZE);
yarrow_hash_finish(&context, temp);
yarrow_encrypt_init(&random_state.key, temp);
/* 4. Recompute the counter */
for (i = 0; i < 4; i++)
random_state.counter[i] = 0;
yarrow_encrypt(&random_state.key, random_state.counter, temp);
memcpy(random_state.counter, temp, sizeof(random_state.counter));
/* 5. Reset entropy estimate accumulators to zero */
for (i = 0; i <= fastslow; i++) {
for (j = RANDOM_START; j < ENTROPYSOURCE; j++) {
random_state.pool[i].source[j].bits = 0;
random_state.pool[i].source[j].frac = 0;
}
}
/* 6. Wipe memory of intermediate values */
memset((void *)v, 0, sizeof(v));
memset((void *)temp, 0, sizeof(temp));
memset((void *)hash, 0, sizeof(hash));
/* 7. Dump to seed file */
/* XXX Not done here yet */
/* Unblock the device if it was blocked due to being unseeded */
random_yarrow_unblock();
/* Release the reseed mutex */
mtx_unlock(&random_reseed_mtx);
}
/* Internal function to return processed entropy from the PRNG */
int
random_yarrow_read(void *buf, int count)
{
static int cur = 0;
static int gate = 1;
static u_char genval[KEYSIZE];
size_t tomove;
int i;
int retval;
/* The reseed task must not be jumped on */
mtx_lock(&random_reseed_mtx);
if (gate) {
generator_gate();
random_state.outputblocks = 0;
gate = 0;
}
if (count > 0 && (size_t)count >= sizeof(random_state.counter)) {
retval = 0;
for (i = 0; i < count; i += (int)sizeof(random_state.counter)) {
random_state.counter[0]++;
yarrow_encrypt(&random_state.key, random_state.counter,
genval);
tomove = min(count - i, sizeof(random_state.counter));
memcpy((char *)buf + i, genval, tomove);
if (++random_state.outputblocks >=
random_state.gengateinterval) {
generator_gate();
random_state.outputblocks = 0;
}
retval += (int)tomove;
cur = 0;
}
}
else {
if (!cur) {
random_state.counter[0]++;
yarrow_encrypt(&random_state.key, random_state.counter,
genval);
memcpy(buf, genval, (size_t)count);
cur = (int)sizeof(random_state.counter) - count;
if (++random_state.outputblocks >=
random_state.gengateinterval) {
generator_gate();
random_state.outputblocks = 0;
}
retval = count;
}
else {
retval = MIN(cur, count);
memcpy(buf,
&genval[(int)sizeof(random_state.counter) - cur],
(size_t)retval);
cur -= retval;
}
}
mtx_unlock(&random_reseed_mtx);
return retval;
}
static void
generator_gate(void)
{
u_int i;
u_char temp[KEYSIZE];
for (i = 0; i < KEYSIZE; i += sizeof(random_state.counter)) {
random_state.counter[0]++;
yarrow_encrypt(&random_state.key, random_state.counter,
&(temp[i]));
}
yarrow_encrypt_init(&random_state.key, temp);
memset((void *)temp, 0, KEYSIZE);
}
/* Helper routine to perform explicit reseeds */
void
random_yarrow_reseed(void)
{
reseed(SLOW);
}
|