summaryrefslogtreecommitdiffstats
path: root/sys/dev/nvme/nvme_qpair.c
blob: d0cb8c6212c758f58c00f694689cca6fcda466a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
/*-
 * Copyright (C) 2012-2014 Intel Corporation
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/bus.h>

#include <dev/pci/pcivar.h>

#include "nvme_private.h"

static void	_nvme_qpair_submit_request(struct nvme_qpair *qpair,
					   struct nvme_request *req);

struct nvme_opcode_string {

	uint16_t	opc;
	const char *	str;
};

static struct nvme_opcode_string admin_opcode[] = {
	{ NVME_OPC_DELETE_IO_SQ, "DELETE IO SQ" },
	{ NVME_OPC_CREATE_IO_SQ, "CREATE IO SQ" },
	{ NVME_OPC_GET_LOG_PAGE, "GET LOG PAGE" },
	{ NVME_OPC_DELETE_IO_CQ, "DELETE IO CQ" },
	{ NVME_OPC_CREATE_IO_CQ, "CREATE IO CQ" },
	{ NVME_OPC_IDENTIFY, "IDENTIFY" },
	{ NVME_OPC_ABORT, "ABORT" },
	{ NVME_OPC_SET_FEATURES, "SET FEATURES" },
	{ NVME_OPC_GET_FEATURES, "GET FEATURES" },
	{ NVME_OPC_ASYNC_EVENT_REQUEST, "ASYNC EVENT REQUEST" },
	{ NVME_OPC_FIRMWARE_ACTIVATE, "FIRMWARE ACTIVATE" },
	{ NVME_OPC_FIRMWARE_IMAGE_DOWNLOAD, "FIRMWARE IMAGE DOWNLOAD" },
	{ NVME_OPC_FORMAT_NVM, "FORMAT NVM" },
	{ NVME_OPC_SECURITY_SEND, "SECURITY SEND" },
	{ NVME_OPC_SECURITY_RECEIVE, "SECURITY RECEIVE" },
	{ 0xFFFF, "ADMIN COMMAND" }
};

static struct nvme_opcode_string io_opcode[] = {
	{ NVME_OPC_FLUSH, "FLUSH" },
	{ NVME_OPC_WRITE, "WRITE" },
	{ NVME_OPC_READ, "READ" },
	{ NVME_OPC_WRITE_UNCORRECTABLE, "WRITE UNCORRECTABLE" },
	{ NVME_OPC_COMPARE, "COMPARE" },
	{ NVME_OPC_DATASET_MANAGEMENT, "DATASET MANAGEMENT" },
	{ 0xFFFF, "IO COMMAND" }
};

static const char *
get_admin_opcode_string(uint16_t opc)
{
	struct nvme_opcode_string *entry;

	entry = admin_opcode;

	while (entry->opc != 0xFFFF) {
		if (entry->opc == opc)
			return (entry->str);
		entry++;
	}
	return (entry->str);
}

static const char *
get_io_opcode_string(uint16_t opc)
{
	struct nvme_opcode_string *entry;

	entry = io_opcode;

	while (entry->opc != 0xFFFF) {
		if (entry->opc == opc)
			return (entry->str);
		entry++;
	}
	return (entry->str);
}


static void
nvme_admin_qpair_print_command(struct nvme_qpair *qpair,
    struct nvme_command *cmd)
{

	nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%x "
	    "cdw10:%08x cdw11:%08x\n",
	    get_admin_opcode_string(cmd->opc), cmd->opc, qpair->id, cmd->cid,
	    cmd->nsid, cmd->cdw10, cmd->cdw11);
}

static void
nvme_io_qpair_print_command(struct nvme_qpair *qpair,
    struct nvme_command *cmd)
{

	switch (cmd->opc) {
	case NVME_OPC_WRITE:
	case NVME_OPC_READ:
	case NVME_OPC_WRITE_UNCORRECTABLE:
	case NVME_OPC_COMPARE:
		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d "
		    "lba:%llu len:%d\n",
		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid,
		    cmd->nsid,
		    ((unsigned long long)cmd->cdw11 << 32) + cmd->cdw10,
		    (cmd->cdw12 & 0xFFFF) + 1);
		break;
	case NVME_OPC_FLUSH:
	case NVME_OPC_DATASET_MANAGEMENT:
		nvme_printf(qpair->ctrlr, "%s sqid:%d cid:%d nsid:%d\n",
		    get_io_opcode_string(cmd->opc), qpair->id, cmd->cid,
		    cmd->nsid);
		break;
	default:
		nvme_printf(qpair->ctrlr, "%s (%02x) sqid:%d cid:%d nsid:%d\n",
		    get_io_opcode_string(cmd->opc), cmd->opc, qpair->id,
		    cmd->cid, cmd->nsid);
		break;
	}
}

static void
nvme_qpair_print_command(struct nvme_qpair *qpair, struct nvme_command *cmd)
{
	if (qpair->id == 0)
		nvme_admin_qpair_print_command(qpair, cmd);
	else
		nvme_io_qpair_print_command(qpair, cmd);
}

struct nvme_status_string {

	uint16_t	sc;
	const char *	str;
};

static struct nvme_status_string generic_status[] = {
	{ NVME_SC_SUCCESS, "SUCCESS" },
	{ NVME_SC_INVALID_OPCODE, "INVALID OPCODE" },
	{ NVME_SC_INVALID_FIELD, "INVALID_FIELD" },
	{ NVME_SC_COMMAND_ID_CONFLICT, "COMMAND ID CONFLICT" },
	{ NVME_SC_DATA_TRANSFER_ERROR, "DATA TRANSFER ERROR" },
	{ NVME_SC_ABORTED_POWER_LOSS, "ABORTED - POWER LOSS" },
	{ NVME_SC_INTERNAL_DEVICE_ERROR, "INTERNAL DEVICE ERROR" },
	{ NVME_SC_ABORTED_BY_REQUEST, "ABORTED - BY REQUEST" },
	{ NVME_SC_ABORTED_SQ_DELETION, "ABORTED - SQ DELETION" },
	{ NVME_SC_ABORTED_FAILED_FUSED, "ABORTED - FAILED FUSED" },
	{ NVME_SC_ABORTED_MISSING_FUSED, "ABORTED - MISSING FUSED" },
	{ NVME_SC_INVALID_NAMESPACE_OR_FORMAT, "INVALID NAMESPACE OR FORMAT" },
	{ NVME_SC_COMMAND_SEQUENCE_ERROR, "COMMAND SEQUENCE ERROR" },
	{ NVME_SC_LBA_OUT_OF_RANGE, "LBA OUT OF RANGE" },
	{ NVME_SC_CAPACITY_EXCEEDED, "CAPACITY EXCEEDED" },
	{ NVME_SC_NAMESPACE_NOT_READY, "NAMESPACE NOT READY" },
	{ 0xFFFF, "GENERIC" }
};

static struct nvme_status_string command_specific_status[] = {
	{ NVME_SC_COMPLETION_QUEUE_INVALID, "INVALID COMPLETION QUEUE" },
	{ NVME_SC_INVALID_QUEUE_IDENTIFIER, "INVALID QUEUE IDENTIFIER" },
	{ NVME_SC_MAXIMUM_QUEUE_SIZE_EXCEEDED, "MAX QUEUE SIZE EXCEEDED" },
	{ NVME_SC_ABORT_COMMAND_LIMIT_EXCEEDED, "ABORT CMD LIMIT EXCEEDED" },
	{ NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED, "ASYNC LIMIT EXCEEDED" },
	{ NVME_SC_INVALID_FIRMWARE_SLOT, "INVALID FIRMWARE SLOT" },
	{ NVME_SC_INVALID_FIRMWARE_IMAGE, "INVALID FIRMWARE IMAGE" },
	{ NVME_SC_INVALID_INTERRUPT_VECTOR, "INVALID INTERRUPT VECTOR" },
	{ NVME_SC_INVALID_LOG_PAGE, "INVALID LOG PAGE" },
	{ NVME_SC_INVALID_FORMAT, "INVALID FORMAT" },
	{ NVME_SC_FIRMWARE_REQUIRES_RESET, "FIRMWARE REQUIRES RESET" },
	{ NVME_SC_CONFLICTING_ATTRIBUTES, "CONFLICTING ATTRIBUTES" },
	{ NVME_SC_INVALID_PROTECTION_INFO, "INVALID PROTECTION INFO" },
	{ NVME_SC_ATTEMPTED_WRITE_TO_RO_PAGE, "WRITE TO RO PAGE" },
	{ 0xFFFF, "COMMAND SPECIFIC" }
};

static struct nvme_status_string media_error_status[] = {
	{ NVME_SC_WRITE_FAULTS, "WRITE FAULTS" },
	{ NVME_SC_UNRECOVERED_READ_ERROR, "UNRECOVERED READ ERROR" },
	{ NVME_SC_GUARD_CHECK_ERROR, "GUARD CHECK ERROR" },
	{ NVME_SC_APPLICATION_TAG_CHECK_ERROR, "APPLICATION TAG CHECK ERROR" },
	{ NVME_SC_REFERENCE_TAG_CHECK_ERROR, "REFERENCE TAG CHECK ERROR" },
	{ NVME_SC_COMPARE_FAILURE, "COMPARE FAILURE" },
	{ NVME_SC_ACCESS_DENIED, "ACCESS DENIED" },
	{ 0xFFFF, "MEDIA ERROR" }
};

static const char *
get_status_string(uint16_t sct, uint16_t sc)
{
	struct nvme_status_string *entry;

	switch (sct) {
	case NVME_SCT_GENERIC:
		entry = generic_status;
		break;
	case NVME_SCT_COMMAND_SPECIFIC:
		entry = command_specific_status;
		break;
	case NVME_SCT_MEDIA_ERROR:
		entry = media_error_status;
		break;
	case NVME_SCT_VENDOR_SPECIFIC:
		return ("VENDOR SPECIFIC");
	default:
		return ("RESERVED");
	}

	while (entry->sc != 0xFFFF) {
		if (entry->sc == sc)
			return (entry->str);
		entry++;
	}
	return (entry->str);
}

static void
nvme_qpair_print_completion(struct nvme_qpair *qpair, 
    struct nvme_completion *cpl)
{
	nvme_printf(qpair->ctrlr, "%s (%02x/%02x) sqid:%d cid:%d cdw0:%x\n",
	    get_status_string(cpl->status.sct, cpl->status.sc),
	    cpl->status.sct, cpl->status.sc, cpl->sqid, cpl->cid, cpl->cdw0);
}

static boolean_t
nvme_completion_is_retry(const struct nvme_completion *cpl)
{
	/*
	 * TODO: spec is not clear how commands that are aborted due
	 *  to TLER will be marked.  So for now, it seems
	 *  NAMESPACE_NOT_READY is the only case where we should
	 *  look at the DNR bit.
	 */
	switch (cpl->status.sct) {
	case NVME_SCT_GENERIC:
		switch (cpl->status.sc) {
		case NVME_SC_ABORTED_BY_REQUEST:
		case NVME_SC_NAMESPACE_NOT_READY:
			if (cpl->status.dnr)
				return (0);
			else
				return (1);
		case NVME_SC_INVALID_OPCODE:
		case NVME_SC_INVALID_FIELD:
		case NVME_SC_COMMAND_ID_CONFLICT:
		case NVME_SC_DATA_TRANSFER_ERROR:
		case NVME_SC_ABORTED_POWER_LOSS:
		case NVME_SC_INTERNAL_DEVICE_ERROR:
		case NVME_SC_ABORTED_SQ_DELETION:
		case NVME_SC_ABORTED_FAILED_FUSED:
		case NVME_SC_ABORTED_MISSING_FUSED:
		case NVME_SC_INVALID_NAMESPACE_OR_FORMAT:
		case NVME_SC_COMMAND_SEQUENCE_ERROR:
		case NVME_SC_LBA_OUT_OF_RANGE:
		case NVME_SC_CAPACITY_EXCEEDED:
		default:
			return (0);
		}
	case NVME_SCT_COMMAND_SPECIFIC:
	case NVME_SCT_MEDIA_ERROR:
	case NVME_SCT_VENDOR_SPECIFIC:
	default:
		return (0);
	}
}

static void
nvme_qpair_construct_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
    uint16_t cid)
{

	bus_dmamap_create(qpair->dma_tag_payload, 0, &tr->payload_dma_map);
	bus_dmamap_create(qpair->dma_tag, 0, &tr->prp_dma_map);

	bus_dmamap_load(qpair->dma_tag, tr->prp_dma_map, tr->prp,
	    sizeof(tr->prp), nvme_single_map, &tr->prp_bus_addr, 0);

	callout_init(&tr->timer, 1);
	tr->cid = cid;
	tr->qpair = qpair;
}

static void
nvme_qpair_complete_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr,
    struct nvme_completion *cpl, boolean_t print_on_error)
{
	struct nvme_request	*req;
	boolean_t		retry, error;

	req = tr->req;
	error = nvme_completion_is_error(cpl);
	retry = error && nvme_completion_is_retry(cpl) &&
	   req->retries < nvme_retry_count;

	if (error && print_on_error) {
		nvme_qpair_print_command(qpair, &req->cmd);
		nvme_qpair_print_completion(qpair, cpl);
	}

	qpair->act_tr[cpl->cid] = NULL;

	KASSERT(cpl->cid == req->cmd.cid, ("cpl cid does not match cmd cid\n"));

	if (req->cb_fn && !retry)
		req->cb_fn(req->cb_arg, cpl);

	mtx_lock(&qpair->lock);
	callout_stop(&tr->timer);

	if (retry) {
		req->retries++;
		nvme_qpair_submit_tracker(qpair, tr);
	} else {
		if (req->type != NVME_REQUEST_NULL)
			bus_dmamap_unload(qpair->dma_tag_payload,
			    tr->payload_dma_map);

		nvme_free_request(req);
		tr->req = NULL;

		TAILQ_REMOVE(&qpair->outstanding_tr, tr, tailq);
		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);

		/*
		 * If the controller is in the middle of resetting, don't
		 *  try to submit queued requests here - let the reset logic
		 *  handle that instead.
		 */
		if (!STAILQ_EMPTY(&qpair->queued_req) &&
		    !qpair->ctrlr->is_resetting) {
			req = STAILQ_FIRST(&qpair->queued_req);
			STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
			_nvme_qpair_submit_request(qpair, req);
		}
	}

	mtx_unlock(&qpair->lock);
}

static void
nvme_qpair_manual_complete_tracker(struct nvme_qpair *qpair,
    struct nvme_tracker *tr, uint32_t sct, uint32_t sc, uint32_t dnr,
    boolean_t print_on_error)
{
	struct nvme_completion	cpl;

	memset(&cpl, 0, sizeof(cpl));
	cpl.sqid = qpair->id;
	cpl.cid = tr->cid;
	cpl.status.sct = sct;
	cpl.status.sc = sc;
	cpl.status.dnr = dnr;
	nvme_qpair_complete_tracker(qpair, tr, &cpl, print_on_error);
}

void
nvme_qpair_manual_complete_request(struct nvme_qpair *qpair,
    struct nvme_request *req, uint32_t sct, uint32_t sc,
    boolean_t print_on_error)
{
	struct nvme_completion	cpl;
	boolean_t		error;

	memset(&cpl, 0, sizeof(cpl));
	cpl.sqid = qpair->id;
	cpl.status.sct = sct;
	cpl.status.sc = sc;

	error = nvme_completion_is_error(&cpl);

	if (error && print_on_error) {
		nvme_qpair_print_command(qpair, &req->cmd);
		nvme_qpair_print_completion(qpair, &cpl);
	}

	if (req->cb_fn)
		req->cb_fn(req->cb_arg, &cpl);

	nvme_free_request(req);
}

void
nvme_qpair_process_completions(struct nvme_qpair *qpair)
{
	struct nvme_tracker	*tr;
	struct nvme_completion	*cpl;

	qpair->num_intr_handler_calls++;

	if (!qpair->is_enabled)
		/*
		 * qpair is not enabled, likely because a controller reset is
		 *  is in progress.  Ignore the interrupt - any I/O that was
		 *  associated with this interrupt will get retried when the
		 *  reset is complete.
		 */
		return;

	while (1) {
		cpl = &qpair->cpl[qpair->cq_head];

		if (cpl->status.p != qpair->phase)
			break;

		tr = qpair->act_tr[cpl->cid];

		if (tr != NULL) {
			nvme_qpair_complete_tracker(qpair, tr, cpl, TRUE);
			qpair->sq_head = cpl->sqhd;
		} else {
			nvme_printf(qpair->ctrlr, 
			    "cpl does not map to outstanding cmd\n");
			nvme_dump_completion(cpl);
			KASSERT(0, ("received completion for unknown cmd\n"));
		}

		if (++qpair->cq_head == qpair->num_entries) {
			qpair->cq_head = 0;
			qpair->phase = !qpair->phase;
		}

		nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].cq_hdbl,
		    qpair->cq_head);
	}
}

static void
nvme_qpair_msix_handler(void *arg)
{
	struct nvme_qpair *qpair = arg;

	nvme_qpair_process_completions(qpair);
}

void
nvme_qpair_construct(struct nvme_qpair *qpair, uint32_t id,
    uint16_t vector, uint32_t num_entries, uint32_t num_trackers,
    struct nvme_controller *ctrlr)
{
	struct nvme_tracker	*tr;
	uint32_t		i;
	int			err;

	qpair->id = id;
	qpair->vector = vector;
	qpair->num_entries = num_entries;
	qpair->num_trackers = num_trackers;
	qpair->ctrlr = ctrlr;

	if (ctrlr->msix_enabled) {

		/*
		 * MSI-X vector resource IDs start at 1, so we add one to
		 *  the queue's vector to get the corresponding rid to use.
		 */
		qpair->rid = vector + 1;
		qpair->res = ctrlr->msi_res[vector];

		bus_setup_intr(ctrlr->dev, qpair->res,
		    INTR_TYPE_MISC | INTR_MPSAFE, NULL,
		    nvme_qpair_msix_handler, qpair, &qpair->tag);
	}

	mtx_init(&qpair->lock, "nvme qpair lock", NULL, MTX_DEF);

	/* Note: NVMe PRP format is restricted to 4-byte alignment. */
	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
	    4, PAGE_SIZE, BUS_SPACE_MAXADDR,
	    BUS_SPACE_MAXADDR, NULL, NULL, NVME_MAX_XFER_SIZE,
	    (NVME_MAX_XFER_SIZE/PAGE_SIZE)+1, PAGE_SIZE, 0,
	    NULL, NULL, &qpair->dma_tag_payload);
	if (err != 0)
		nvme_printf(ctrlr, "payload tag create failed %d\n", err);

	err = bus_dma_tag_create(bus_get_dma_tag(ctrlr->dev),
	    4, 0, BUS_SPACE_MAXADDR, BUS_SPACE_MAXADDR, NULL, NULL,
	    BUS_SPACE_MAXSIZE, 1, BUS_SPACE_MAXSIZE, 0,
	    NULL, NULL, &qpair->dma_tag);
	if (err != 0)
		nvme_printf(ctrlr, "tag create failed %d\n", err);

	qpair->num_cmds = 0;
	qpair->num_intr_handler_calls = 0;

	qpair->cmd = contigmalloc(qpair->num_entries *
	    sizeof(struct nvme_command), M_NVME, M_ZERO,
	    0, BUS_SPACE_MAXADDR, PAGE_SIZE, 0);
	qpair->cpl = contigmalloc(qpair->num_entries *
	    sizeof(struct nvme_completion), M_NVME, M_ZERO,
	    0, BUS_SPACE_MAXADDR, PAGE_SIZE, 0);

	err = bus_dmamap_create(qpair->dma_tag, 0, &qpair->cmd_dma_map);
	if (err != 0)
		nvme_printf(ctrlr, "cmd_dma_map create failed %d\n", err);

	err = bus_dmamap_create(qpair->dma_tag, 0, &qpair->cpl_dma_map);
	if (err != 0)
		nvme_printf(ctrlr, "cpl_dma_map create failed %d\n", err);

	bus_dmamap_load(qpair->dma_tag, qpair->cmd_dma_map,
	    qpair->cmd, qpair->num_entries * sizeof(struct nvme_command),
	    nvme_single_map, &qpair->cmd_bus_addr, 0);
	bus_dmamap_load(qpair->dma_tag, qpair->cpl_dma_map,
	    qpair->cpl, qpair->num_entries * sizeof(struct nvme_completion),
	    nvme_single_map, &qpair->cpl_bus_addr, 0);

	qpair->sq_tdbl_off = nvme_mmio_offsetof(doorbell[id].sq_tdbl);
	qpair->cq_hdbl_off = nvme_mmio_offsetof(doorbell[id].cq_hdbl);

	TAILQ_INIT(&qpair->free_tr);
	TAILQ_INIT(&qpair->outstanding_tr);
	STAILQ_INIT(&qpair->queued_req);

	for (i = 0; i < qpair->num_trackers; i++) {
		tr = malloc(sizeof(*tr), M_NVME, M_ZERO | M_WAITOK);
		nvme_qpair_construct_tracker(qpair, tr, i);
		TAILQ_INSERT_HEAD(&qpair->free_tr, tr, tailq);
	}

	qpair->act_tr = malloc(sizeof(struct nvme_tracker *) * qpair->num_entries,
	    M_NVME, M_ZERO | M_WAITOK);
}

static void
nvme_qpair_destroy(struct nvme_qpair *qpair)
{
	struct nvme_tracker	*tr;

	if (qpair->tag)
		bus_teardown_intr(qpair->ctrlr->dev, qpair->res, qpair->tag);

	if (qpair->res)
		bus_release_resource(qpair->ctrlr->dev, SYS_RES_IRQ,
		    rman_get_rid(qpair->res), qpair->res);

	if (qpair->cmd) {
		bus_dmamap_unload(qpair->dma_tag, qpair->cmd_dma_map);
		bus_dmamap_destroy(qpair->dma_tag, qpair->cmd_dma_map);
		contigfree(qpair->cmd,
		    qpair->num_entries * sizeof(struct nvme_command), M_NVME);
	}

	if (qpair->cpl) {
		bus_dmamap_unload(qpair->dma_tag, qpair->cpl_dma_map);
		bus_dmamap_destroy(qpair->dma_tag, qpair->cpl_dma_map);
		contigfree(qpair->cpl,
		    qpair->num_entries * sizeof(struct nvme_completion),
		    M_NVME);
	}

	if (qpair->dma_tag)
		bus_dma_tag_destroy(qpair->dma_tag);

	if (qpair->dma_tag_payload)
		bus_dma_tag_destroy(qpair->dma_tag_payload);

	if (qpair->act_tr)
		free(qpair->act_tr, M_NVME);

	while (!TAILQ_EMPTY(&qpair->free_tr)) {
		tr = TAILQ_FIRST(&qpair->free_tr);
		TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
		bus_dmamap_destroy(qpair->dma_tag, tr->payload_dma_map);
		bus_dmamap_destroy(qpair->dma_tag, tr->prp_dma_map);
		free(tr, M_NVME);
	}
}

static void
nvme_admin_qpair_abort_aers(struct nvme_qpair *qpair)
{
	struct nvme_tracker	*tr;

	tr = TAILQ_FIRST(&qpair->outstanding_tr);
	while (tr != NULL) {
		if (tr->req->cmd.opc == NVME_OPC_ASYNC_EVENT_REQUEST) {
			nvme_qpair_manual_complete_tracker(qpair, tr,
			    NVME_SCT_GENERIC, NVME_SC_ABORTED_SQ_DELETION, 0,
			    FALSE);
			tr = TAILQ_FIRST(&qpair->outstanding_tr);
		} else {
			tr = TAILQ_NEXT(tr, tailq);
		}
	}
}

void
nvme_admin_qpair_destroy(struct nvme_qpair *qpair)
{

	nvme_admin_qpair_abort_aers(qpair);
	nvme_qpair_destroy(qpair);
}

void
nvme_io_qpair_destroy(struct nvme_qpair *qpair)
{

	nvme_qpair_destroy(qpair);
}

static void
nvme_abort_complete(void *arg, const struct nvme_completion *status)
{
	struct nvme_tracker	*tr = arg;

	/*
	 * If cdw0 == 1, the controller was not able to abort the command
	 *  we requested.  We still need to check the active tracker array,
	 *  to cover race where I/O timed out at same time controller was
	 *  completing the I/O.
	 */
	if (status->cdw0 == 1 && tr->qpair->act_tr[tr->cid] != NULL) {
		/*
		 * An I/O has timed out, and the controller was unable to
		 *  abort it for some reason.  Construct a fake completion
		 *  status, and then complete the I/O's tracker manually.
		 */
		nvme_printf(tr->qpair->ctrlr,
		    "abort command failed, aborting command manually\n");
		nvme_qpair_manual_complete_tracker(tr->qpair, tr,
		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, 0, TRUE);
	}
}

static void
nvme_timeout(void *arg)
{
	struct nvme_tracker	*tr = arg;
	struct nvme_qpair	*qpair = tr->qpair;
	struct nvme_controller	*ctrlr = qpair->ctrlr;
	union csts_register	csts;

	/* Read csts to get value of cfs - controller fatal status. */
	csts.raw = nvme_mmio_read_4(ctrlr, csts);

	if (ctrlr->enable_aborts && csts.bits.cfs == 0) {
		/*
		 * If aborts are enabled, only use them if the controller is
		 *  not reporting fatal status.
		 */
		nvme_ctrlr_cmd_abort(ctrlr, tr->cid, qpair->id,
		    nvme_abort_complete, tr);
	} else
		nvme_ctrlr_reset(ctrlr);
}

void
nvme_qpair_submit_tracker(struct nvme_qpair *qpair, struct nvme_tracker *tr)
{
	struct nvme_request	*req;
	struct nvme_controller	*ctrlr;

	mtx_assert(&qpair->lock, MA_OWNED);

	req = tr->req;
	req->cmd.cid = tr->cid;
	qpair->act_tr[tr->cid] = tr;
	ctrlr = qpair->ctrlr;

	if (req->timeout)
#if __FreeBSD_version >= 800030
		callout_reset_curcpu(&tr->timer, ctrlr->timeout_period * hz,
		    nvme_timeout, tr);
#else
		callout_reset(&tr->timer, ctrlr->timeout_period * hz,
		    nvme_timeout, tr);
#endif

	/* Copy the command from the tracker to the submission queue. */
	memcpy(&qpair->cmd[qpair->sq_tail], &req->cmd, sizeof(req->cmd));

	if (++qpair->sq_tail == qpair->num_entries)
		qpair->sq_tail = 0;

	wmb();
	nvme_mmio_write_4(qpair->ctrlr, doorbell[qpair->id].sq_tdbl,
	    qpair->sq_tail);

	qpair->num_cmds++;
}

static void
nvme_payload_map(void *arg, bus_dma_segment_t *seg, int nseg, int error)
{
	struct nvme_tracker 	*tr = arg;
	uint32_t		cur_nseg;

	/*
	 * If the mapping operation failed, return immediately.  The caller
	 *  is responsible for detecting the error status and failing the
	 *  tracker manually.
	 */
	if (error != 0) {
		nvme_printf(tr->qpair->ctrlr,
		    "nvme_payload_map err %d\n", error);
		return;
	}

	/*
	 * Note that we specified PAGE_SIZE for alignment and max
	 *  segment size when creating the bus dma tags.  So here
	 *  we can safely just transfer each segment to its
	 *  associated PRP entry.
	 */
	tr->req->cmd.prp1 = seg[0].ds_addr;

	if (nseg == 2) {
		tr->req->cmd.prp2 = seg[1].ds_addr;
	} else if (nseg > 2) {
		cur_nseg = 1;
		tr->req->cmd.prp2 = (uint64_t)tr->prp_bus_addr;
		while (cur_nseg < nseg) {
			tr->prp[cur_nseg-1] =
			    (uint64_t)seg[cur_nseg].ds_addr;
			cur_nseg++;
		}
	} else {
		/*
		 * prp2 should not be used by the controller
		 *  since there is only one segment, but set
		 *  to 0 just to be safe.
		 */
		tr->req->cmd.prp2 = 0;
	}

	nvme_qpair_submit_tracker(tr->qpair, tr);
}

static void
_nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
{
	struct nvme_tracker	*tr;
	int			err = 0;

	mtx_assert(&qpair->lock, MA_OWNED);

	tr = TAILQ_FIRST(&qpair->free_tr);
	req->qpair = qpair;

	if (tr == NULL || !qpair->is_enabled) {
		/*
		 * No tracker is available, or the qpair is disabled due to
		 *  an in-progress controller-level reset or controller
		 *  failure.
		 */

		if (qpair->ctrlr->is_failed) {
			/*
			 * The controller has failed.  Post the request to a
			 *  task where it will be aborted, so that we do not
			 *  invoke the request's callback in the context
			 *  of the submission.
			 */
			nvme_ctrlr_post_failed_request(qpair->ctrlr, req);
		} else {
			/*
			 * Put the request on the qpair's request queue to be
			 *  processed when a tracker frees up via a command
			 *  completion or when the controller reset is
			 *  completed.
			 */
			STAILQ_INSERT_TAIL(&qpair->queued_req, req, stailq);
		}
		return;
	}

	TAILQ_REMOVE(&qpair->free_tr, tr, tailq);
	TAILQ_INSERT_TAIL(&qpair->outstanding_tr, tr, tailq);
	tr->req = req;

	switch (req->type) {
	case NVME_REQUEST_VADDR:
		KASSERT(req->payload_size <= qpair->ctrlr->max_xfer_size,
		    ("payload_size (%d) exceeds max_xfer_size (%d)\n",
		    req->payload_size, qpair->ctrlr->max_xfer_size));
		err = bus_dmamap_load(tr->qpair->dma_tag_payload,
		    tr->payload_dma_map, req->u.payload, req->payload_size,
		    nvme_payload_map, tr, 0);
		if (err != 0)
			nvme_printf(qpair->ctrlr,
			    "bus_dmamap_load returned 0x%x!\n", err);
		break;
	case NVME_REQUEST_NULL:
		nvme_qpair_submit_tracker(tr->qpair, tr);
		break;
#ifdef NVME_UNMAPPED_BIO_SUPPORT
	case NVME_REQUEST_BIO:
		KASSERT(req->u.bio->bio_bcount <= qpair->ctrlr->max_xfer_size,
		    ("bio->bio_bcount (%jd) exceeds max_xfer_size (%d)\n",
		    (intmax_t)req->u.bio->bio_bcount,
		    qpair->ctrlr->max_xfer_size));
		err = bus_dmamap_load_bio(tr->qpair->dma_tag_payload,
		    tr->payload_dma_map, req->u.bio, nvme_payload_map, tr, 0);
		if (err != 0)
			nvme_printf(qpair->ctrlr,
			    "bus_dmamap_load_bio returned 0x%x!\n", err);
		break;
#endif
	default:
		panic("unknown nvme request type 0x%x\n", req->type);
		break;
	}

	if (err != 0) {
		/*
		 * The dmamap operation failed, so we manually fail the
		 *  tracker here with DATA_TRANSFER_ERROR status.
		 *
		 * nvme_qpair_manual_complete_tracker must not be called
		 *  with the qpair lock held.
		 */
		mtx_unlock(&qpair->lock);
		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
		    NVME_SC_DATA_TRANSFER_ERROR, 1 /* do not retry */, TRUE);
		mtx_lock(&qpair->lock);
	}
}

void
nvme_qpair_submit_request(struct nvme_qpair *qpair, struct nvme_request *req)
{

	mtx_lock(&qpair->lock);
	_nvme_qpair_submit_request(qpair, req);
	mtx_unlock(&qpair->lock);
}

static void
nvme_qpair_enable(struct nvme_qpair *qpair)
{

	qpair->is_enabled = TRUE;
}

void
nvme_qpair_reset(struct nvme_qpair *qpair)
{

	qpair->sq_head = qpair->sq_tail = qpair->cq_head = 0;

	/*
	 * First time through the completion queue, HW will set phase
	 *  bit on completions to 1.  So set this to 1 here, indicating
	 *  we're looking for a 1 to know which entries have completed.
	 *  we'll toggle the bit each time when the completion queue
	 *  rolls over.
	 */
	qpair->phase = 1;

	memset(qpair->cmd, 0,
	    qpair->num_entries * sizeof(struct nvme_command));
	memset(qpair->cpl, 0,
	    qpair->num_entries * sizeof(struct nvme_completion));
}

void
nvme_admin_qpair_enable(struct nvme_qpair *qpair)
{
	struct nvme_tracker		*tr;
	struct nvme_tracker		*tr_temp;

	/*
	 * Manually abort each outstanding admin command.  Do not retry
	 *  admin commands found here, since they will be left over from
	 *  a controller reset and its likely the context in which the
	 *  command was issued no longer applies.
	 */
	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
		nvme_printf(qpair->ctrlr,
		    "aborting outstanding admin command\n");
		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
		    NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE);
	}

	nvme_qpair_enable(qpair);
}

void
nvme_io_qpair_enable(struct nvme_qpair *qpair)
{
	STAILQ_HEAD(, nvme_request)	temp;
	struct nvme_tracker		*tr;
	struct nvme_tracker		*tr_temp;
	struct nvme_request		*req;

	/*
	 * Manually abort each outstanding I/O.  This normally results in a
	 *  retry, unless the retry count on the associated request has
	 *  reached its limit.
	 */
	TAILQ_FOREACH_SAFE(tr, &qpair->outstanding_tr, tailq, tr_temp) {
		nvme_printf(qpair->ctrlr, "aborting outstanding i/o\n");
		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
		    NVME_SC_ABORTED_BY_REQUEST, 0, TRUE);
	}

	mtx_lock(&qpair->lock);

	nvme_qpair_enable(qpair);

	STAILQ_INIT(&temp);
	STAILQ_SWAP(&qpair->queued_req, &temp, nvme_request);

	while (!STAILQ_EMPTY(&temp)) {
		req = STAILQ_FIRST(&temp);
		STAILQ_REMOVE_HEAD(&temp, stailq);
		nvme_printf(qpair->ctrlr, "resubmitting queued i/o\n");
		nvme_qpair_print_command(qpair, &req->cmd);
		_nvme_qpair_submit_request(qpair, req);
	}

	mtx_unlock(&qpair->lock);
}

static void
nvme_qpair_disable(struct nvme_qpair *qpair)
{
	struct nvme_tracker *tr;

	qpair->is_enabled = FALSE;
	mtx_lock(&qpair->lock);
	TAILQ_FOREACH(tr, &qpair->outstanding_tr, tailq)
		callout_stop(&tr->timer);
	mtx_unlock(&qpair->lock);
}

void
nvme_admin_qpair_disable(struct nvme_qpair *qpair)
{

	nvme_qpair_disable(qpair);
	nvme_admin_qpair_abort_aers(qpair);
}

void
nvme_io_qpair_disable(struct nvme_qpair *qpair)
{

	nvme_qpair_disable(qpair);
}

void
nvme_qpair_fail(struct nvme_qpair *qpair)
{
	struct nvme_tracker		*tr;
	struct nvme_request		*req;

	mtx_lock(&qpair->lock);

	while (!STAILQ_EMPTY(&qpair->queued_req)) {
		req = STAILQ_FIRST(&qpair->queued_req);
		STAILQ_REMOVE_HEAD(&qpair->queued_req, stailq);
		nvme_printf(qpair->ctrlr, "failing queued i/o\n");
		mtx_unlock(&qpair->lock);
		nvme_qpair_manual_complete_request(qpair, req, NVME_SCT_GENERIC,
		    NVME_SC_ABORTED_BY_REQUEST, TRUE);
		mtx_lock(&qpair->lock);
	}

	/* Manually abort each outstanding I/O. */
	while (!TAILQ_EMPTY(&qpair->outstanding_tr)) {
		tr = TAILQ_FIRST(&qpair->outstanding_tr);
		/*
		 * Do not remove the tracker.  The abort_tracker path will
		 *  do that for us.
		 */
		nvme_printf(qpair->ctrlr, "failing outstanding i/o\n");
		mtx_unlock(&qpair->lock);
		nvme_qpair_manual_complete_tracker(qpair, tr, NVME_SCT_GENERIC,
		    NVME_SC_ABORTED_BY_REQUEST, 1 /* do not retry */, TRUE);
		mtx_lock(&qpair->lock);
	}

	mtx_unlock(&qpair->lock);
}

OpenPOWER on IntegriCloud