summaryrefslogtreecommitdiffstats
path: root/sys/dev/nvme/nvme_ctrlr.c
blob: ee4b901a9c7552650dc141e0f67da8425fcece14 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
/*-
 * Copyright (C) 2012-2015 Intel Corporation
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 */

#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");

#include <sys/param.h>
#include <sys/systm.h>
#include <sys/buf.h>
#include <sys/bus.h>
#include <sys/conf.h>
#include <sys/ioccom.h>
#include <sys/proc.h>
#include <sys/smp.h>
#include <sys/uio.h>

#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>

#include "nvme_private.h"

static void nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
						struct nvme_async_event_request *aer);

static int
nvme_ctrlr_allocate_bar(struct nvme_controller *ctrlr)
{

	ctrlr->resource_id = PCIR_BAR(0);

	ctrlr->resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
	    &ctrlr->resource_id, 0, ~0, 1, RF_ACTIVE);

	if(ctrlr->resource == NULL) {
		nvme_printf(ctrlr, "unable to allocate pci resource\n");
		return (ENOMEM);
	}

	ctrlr->bus_tag = rman_get_bustag(ctrlr->resource);
	ctrlr->bus_handle = rman_get_bushandle(ctrlr->resource);
	ctrlr->regs = (struct nvme_registers *)ctrlr->bus_handle;

	/*
	 * The NVMe spec allows for the MSI-X table to be placed behind
	 *  BAR 4/5, separate from the control/doorbell registers.  Always
	 *  try to map this bar, because it must be mapped prior to calling
	 *  pci_alloc_msix().  If the table isn't behind BAR 4/5,
	 *  bus_alloc_resource() will just return NULL which is OK.
	 */
	ctrlr->bar4_resource_id = PCIR_BAR(4);
	ctrlr->bar4_resource = bus_alloc_resource(ctrlr->dev, SYS_RES_MEMORY,
	    &ctrlr->bar4_resource_id, 0, ~0, 1, RF_ACTIVE);

	return (0);
}

static void
nvme_ctrlr_construct_admin_qpair(struct nvme_controller *ctrlr)
{
	struct nvme_qpair	*qpair;
	uint32_t		num_entries;

	qpair = &ctrlr->adminq;

	num_entries = NVME_ADMIN_ENTRIES;
	TUNABLE_INT_FETCH("hw.nvme.admin_entries", &num_entries);
	/*
	 * If admin_entries was overridden to an invalid value, revert it
	 *  back to our default value.
	 */
	if (num_entries < NVME_MIN_ADMIN_ENTRIES ||
	    num_entries > NVME_MAX_ADMIN_ENTRIES) {
		nvme_printf(ctrlr, "invalid hw.nvme.admin_entries=%d "
		    "specified\n", num_entries);
		num_entries = NVME_ADMIN_ENTRIES;
	}

	/*
	 * The admin queue's max xfer size is treated differently than the
	 *  max I/O xfer size.  16KB is sufficient here - maybe even less?
	 */
	nvme_qpair_construct(qpair, 
			     0, /* qpair ID */
			     0, /* vector */
			     num_entries,
			     NVME_ADMIN_TRACKERS,
			     ctrlr);
}

static int
nvme_ctrlr_construct_io_qpairs(struct nvme_controller *ctrlr)
{
	struct nvme_qpair	*qpair;
	union cap_lo_register	cap_lo;
	int			i, num_entries, num_trackers;

	num_entries = NVME_IO_ENTRIES;
	TUNABLE_INT_FETCH("hw.nvme.io_entries", &num_entries);

	/*
	 * NVMe spec sets a hard limit of 64K max entries, but
	 *  devices may specify a smaller limit, so we need to check
	 *  the MQES field in the capabilities register.
	 */
	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
	num_entries = min(num_entries, cap_lo.bits.mqes+1);

	num_trackers = NVME_IO_TRACKERS;
	TUNABLE_INT_FETCH("hw.nvme.io_trackers", &num_trackers);

	num_trackers = max(num_trackers, NVME_MIN_IO_TRACKERS);
	num_trackers = min(num_trackers, NVME_MAX_IO_TRACKERS);
	/*
	 * No need to have more trackers than entries in the submit queue.
	 *  Note also that for a queue size of N, we can only have (N-1)
	 *  commands outstanding, hence the "-1" here.
	 */
	num_trackers = min(num_trackers, (num_entries-1));

	ctrlr->ioq = malloc(ctrlr->num_io_queues * sizeof(struct nvme_qpair),
	    M_NVME, M_ZERO | M_WAITOK);

	for (i = 0; i < ctrlr->num_io_queues; i++) {
		qpair = &ctrlr->ioq[i];

		/*
		 * Admin queue has ID=0. IO queues start at ID=1 -
		 *  hence the 'i+1' here.
		 *
		 * For I/O queues, use the controller-wide max_xfer_size
		 *  calculated in nvme_attach().
		 */
		nvme_qpair_construct(qpair,
				     i+1, /* qpair ID */
				     ctrlr->msix_enabled ? i+1 : 0, /* vector */
				     num_entries,
				     num_trackers,
				     ctrlr);

		if (ctrlr->per_cpu_io_queues)
			bus_bind_intr(ctrlr->dev, qpair->res, i);
	}

	return (0);
}

static void
nvme_ctrlr_fail(struct nvme_controller *ctrlr)
{
	int i;

	ctrlr->is_failed = TRUE;
	nvme_qpair_fail(&ctrlr->adminq);
	for (i = 0; i < ctrlr->num_io_queues; i++)
		nvme_qpair_fail(&ctrlr->ioq[i]);
	nvme_notify_fail_consumers(ctrlr);
}

void
nvme_ctrlr_post_failed_request(struct nvme_controller *ctrlr,
    struct nvme_request *req)
{

	mtx_lock(&ctrlr->lock);
	STAILQ_INSERT_TAIL(&ctrlr->fail_req, req, stailq);
	mtx_unlock(&ctrlr->lock);
	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->fail_req_task);
}

static void
nvme_ctrlr_fail_req_task(void *arg, int pending)
{
	struct nvme_controller	*ctrlr = arg;
	struct nvme_request	*req;

	mtx_lock(&ctrlr->lock);
	while (!STAILQ_EMPTY(&ctrlr->fail_req)) {
		req = STAILQ_FIRST(&ctrlr->fail_req);
		STAILQ_REMOVE_HEAD(&ctrlr->fail_req, stailq);
		nvme_qpair_manual_complete_request(req->qpair, req,
		    NVME_SCT_GENERIC, NVME_SC_ABORTED_BY_REQUEST, TRUE);
	}
	mtx_unlock(&ctrlr->lock);
}

static int
nvme_ctrlr_wait_for_ready(struct nvme_controller *ctrlr, int desired_val)
{
	int ms_waited;
	union cc_register cc;
	union csts_register csts;

	cc.raw = nvme_mmio_read_4(ctrlr, cc);
	csts.raw = nvme_mmio_read_4(ctrlr, csts);

	if (cc.bits.en != desired_val) {
		nvme_printf(ctrlr, "%s called with desired_val = %d "
		    "but cc.en = %d\n", __func__, desired_val, cc.bits.en);
		return (ENXIO);
	}

	ms_waited = 0;

	while (csts.bits.rdy != desired_val) {
		DELAY(1000);
		if (ms_waited++ > ctrlr->ready_timeout_in_ms) {
			nvme_printf(ctrlr, "controller ready did not become %d "
			    "within %d ms\n", desired_val, ctrlr->ready_timeout_in_ms);
			return (ENXIO);
		}
		csts.raw = nvme_mmio_read_4(ctrlr, csts);
	}

	return (0);
}

static void
nvme_ctrlr_disable(struct nvme_controller *ctrlr)
{
	union cc_register cc;
	union csts_register csts;

	cc.raw = nvme_mmio_read_4(ctrlr, cc);
	csts.raw = nvme_mmio_read_4(ctrlr, csts);

	if (cc.bits.en == 1 && csts.bits.rdy == 0)
		nvme_ctrlr_wait_for_ready(ctrlr, 1);

	cc.bits.en = 0;
	nvme_mmio_write_4(ctrlr, cc, cc.raw);
	DELAY(5000);
	nvme_ctrlr_wait_for_ready(ctrlr, 0);
}

static int
nvme_ctrlr_enable(struct nvme_controller *ctrlr)
{
	union cc_register	cc;
	union csts_register	csts;
	union aqa_register	aqa;

	cc.raw = nvme_mmio_read_4(ctrlr, cc);
	csts.raw = nvme_mmio_read_4(ctrlr, csts);

	if (cc.bits.en == 1) {
		if (csts.bits.rdy == 1)
			return (0);
		else
			return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
	}

	nvme_mmio_write_8(ctrlr, asq, ctrlr->adminq.cmd_bus_addr);
	DELAY(5000);
	nvme_mmio_write_8(ctrlr, acq, ctrlr->adminq.cpl_bus_addr);
	DELAY(5000);

	aqa.raw = 0;
	/* acqs and asqs are 0-based. */
	aqa.bits.acqs = ctrlr->adminq.num_entries-1;
	aqa.bits.asqs = ctrlr->adminq.num_entries-1;
	nvme_mmio_write_4(ctrlr, aqa, aqa.raw);
	DELAY(5000);

	cc.bits.en = 1;
	cc.bits.css = 0;
	cc.bits.ams = 0;
	cc.bits.shn = 0;
	cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */
	cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */

	/* This evaluates to 0, which is according to spec. */
	cc.bits.mps = (PAGE_SIZE >> 13);

	nvme_mmio_write_4(ctrlr, cc, cc.raw);
	DELAY(5000);

	return (nvme_ctrlr_wait_for_ready(ctrlr, 1));
}

int
nvme_ctrlr_hw_reset(struct nvme_controller *ctrlr)
{
	int i;

	nvme_admin_qpair_disable(&ctrlr->adminq);
	for (i = 0; i < ctrlr->num_io_queues; i++)
		nvme_io_qpair_disable(&ctrlr->ioq[i]);

	DELAY(100*1000);

	nvme_ctrlr_disable(ctrlr);
	return (nvme_ctrlr_enable(ctrlr));
}

void
nvme_ctrlr_reset(struct nvme_controller *ctrlr)
{
	int cmpset;

	cmpset = atomic_cmpset_32(&ctrlr->is_resetting, 0, 1);

	if (cmpset == 0 || ctrlr->is_failed)
		/*
		 * Controller is already resetting or has failed.  Return
		 *  immediately since there is no need to kick off another
		 *  reset in these cases.
		 */
		return;

	taskqueue_enqueue(ctrlr->taskqueue, &ctrlr->reset_task);
}

static int
nvme_ctrlr_identify(struct nvme_controller *ctrlr)
{
	struct nvme_completion_poll_status	status;

	status.done = FALSE;
	nvme_ctrlr_cmd_identify_controller(ctrlr, &ctrlr->cdata,
	    nvme_completion_poll_cb, &status);
	while (status.done == FALSE)
		pause("nvme", 1);
	if (nvme_completion_is_error(&status.cpl)) {
		nvme_printf(ctrlr, "nvme_identify_controller failed!\n");
		return (ENXIO);
	}

	/*
	 * Use MDTS to ensure our default max_xfer_size doesn't exceed what the
	 *  controller supports.
	 */
	if (ctrlr->cdata.mdts > 0)
		ctrlr->max_xfer_size = min(ctrlr->max_xfer_size,
		    ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts)));

	return (0);
}

static int
nvme_ctrlr_set_num_qpairs(struct nvme_controller *ctrlr)
{
	struct nvme_completion_poll_status	status;
	int					cq_allocated, i, sq_allocated;

	status.done = FALSE;
	nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->num_io_queues,
	    nvme_completion_poll_cb, &status);
	while (status.done == FALSE)
		pause("nvme", 1);
	if (nvme_completion_is_error(&status.cpl)) {
		nvme_printf(ctrlr, "nvme_set_num_queues failed!\n");
		return (ENXIO);
	}

	/*
	 * Data in cdw0 is 0-based.
	 * Lower 16-bits indicate number of submission queues allocated.
	 * Upper 16-bits indicate number of completion queues allocated.
	 */
	sq_allocated = (status.cpl.cdw0 & 0xFFFF) + 1;
	cq_allocated = (status.cpl.cdw0 >> 16) + 1;

	/*
	 * Check that the controller was able to allocate the number of
	 *  queues we requested.  If not, revert to one IO queue pair.
	 */
	if (sq_allocated < ctrlr->num_io_queues ||
	    cq_allocated < ctrlr->num_io_queues) {

		/*
		 * Destroy extra IO queue pairs that were created at
		 *  controller construction time but are no longer
		 *  needed.  This will only happen when a controller
		 *  supports fewer queues than MSI-X vectors.  This
		 *  is not the normal case, but does occur with the
		 *  Chatham prototype board.
		 */
		for (i = 1; i < ctrlr->num_io_queues; i++)
			nvme_io_qpair_destroy(&ctrlr->ioq[i]);

		ctrlr->num_io_queues = 1;
		ctrlr->per_cpu_io_queues = 0;
	}

	return (0);
}

static int
nvme_ctrlr_create_qpairs(struct nvme_controller *ctrlr)
{
	struct nvme_completion_poll_status	status;
	struct nvme_qpair			*qpair;
	int					i;

	for (i = 0; i < ctrlr->num_io_queues; i++) {
		qpair = &ctrlr->ioq[i];

		status.done = FALSE;
		nvme_ctrlr_cmd_create_io_cq(ctrlr, qpair, qpair->vector,
		    nvme_completion_poll_cb, &status);
		while (status.done == FALSE)
			pause("nvme", 1);
		if (nvme_completion_is_error(&status.cpl)) {
			nvme_printf(ctrlr, "nvme_create_io_cq failed!\n");
			return (ENXIO);
		}

		status.done = FALSE;
		nvme_ctrlr_cmd_create_io_sq(qpair->ctrlr, qpair,
		    nvme_completion_poll_cb, &status);
		while (status.done == FALSE)
			pause("nvme", 1);
		if (nvme_completion_is_error(&status.cpl)) {
			nvme_printf(ctrlr, "nvme_create_io_sq failed!\n");
			return (ENXIO);
		}
	}

	return (0);
}

static int
nvme_ctrlr_construct_namespaces(struct nvme_controller *ctrlr)
{
	struct nvme_namespace	*ns;
	int			i, status;

	for (i = 0; i < ctrlr->cdata.nn; i++) {
		ns = &ctrlr->ns[i];
		status = nvme_ns_construct(ns, i+1, ctrlr);
		if (status != 0)
			return (status);
	}

	return (0);
}

static boolean_t
is_log_page_id_valid(uint8_t page_id)
{

	switch (page_id) {
	case NVME_LOG_ERROR:
	case NVME_LOG_HEALTH_INFORMATION:
	case NVME_LOG_FIRMWARE_SLOT:
		return (TRUE);
	}

	return (FALSE);
}

static uint32_t
nvme_ctrlr_get_log_page_size(struct nvme_controller *ctrlr, uint8_t page_id)
{
	uint32_t	log_page_size;

	switch (page_id) {
	case NVME_LOG_ERROR:
		log_page_size = min(
		    sizeof(struct nvme_error_information_entry) *
		    ctrlr->cdata.elpe,
		    NVME_MAX_AER_LOG_SIZE);
		break;
	case NVME_LOG_HEALTH_INFORMATION:
		log_page_size = sizeof(struct nvme_health_information_page);
		break;
	case NVME_LOG_FIRMWARE_SLOT:
		log_page_size = sizeof(struct nvme_firmware_page);
		break;
	default:
		log_page_size = 0;
		break;
	}

	return (log_page_size);
}

static void
nvme_ctrlr_log_critical_warnings(struct nvme_controller *ctrlr,
    union nvme_critical_warning_state state)
{

	if (state.bits.available_spare == 1)
		nvme_printf(ctrlr, "available spare space below threshold\n");

	if (state.bits.temperature == 1)
		nvme_printf(ctrlr, "temperature above threshold\n");

	if (state.bits.device_reliability == 1)
		nvme_printf(ctrlr, "device reliability degraded\n");

	if (state.bits.read_only == 1)
		nvme_printf(ctrlr, "media placed in read only mode\n");

	if (state.bits.volatile_memory_backup == 1)
		nvme_printf(ctrlr, "volatile memory backup device failed\n");

	if (state.bits.reserved != 0)
		nvme_printf(ctrlr,
		    "unknown critical warning(s): state = 0x%02x\n", state.raw);
}

static void
nvme_ctrlr_async_event_log_page_cb(void *arg, const struct nvme_completion *cpl)
{
	struct nvme_async_event_request		*aer = arg;
	struct nvme_health_information_page	*health_info;

	/*
	 * If the log page fetch for some reason completed with an error,
	 *  don't pass log page data to the consumers.  In practice, this case
	 *  should never happen.
	 */
	if (nvme_completion_is_error(cpl))
		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
		    aer->log_page_id, NULL, 0);
	else {
		if (aer->log_page_id == NVME_LOG_HEALTH_INFORMATION) {
			health_info = (struct nvme_health_information_page *)
			    aer->log_page_buffer;
			nvme_ctrlr_log_critical_warnings(aer->ctrlr,
			    health_info->critical_warning);
			/*
			 * Critical warnings reported through the
			 *  SMART/health log page are persistent, so
			 *  clear the associated bits in the async event
			 *  config so that we do not receive repeated
			 *  notifications for the same event.
			 */
			aer->ctrlr->async_event_config.raw &=
			    ~health_info->critical_warning.raw;
			nvme_ctrlr_cmd_set_async_event_config(aer->ctrlr,
			    aer->ctrlr->async_event_config, NULL, NULL);
		}


		/*
		 * Pass the cpl data from the original async event completion,
		 *  not the log page fetch.
		 */
		nvme_notify_async_consumers(aer->ctrlr, &aer->cpl,
		    aer->log_page_id, aer->log_page_buffer, aer->log_page_size);
	}

	/*
	 * Repost another asynchronous event request to replace the one
	 *  that just completed.
	 */
	nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
}

static void
nvme_ctrlr_async_event_cb(void *arg, const struct nvme_completion *cpl)
{
	struct nvme_async_event_request	*aer = arg;

	if (nvme_completion_is_error(cpl)) {
		/*
		 *  Do not retry failed async event requests.  This avoids
		 *  infinite loops where a new async event request is submitted
		 *  to replace the one just failed, only to fail again and
		 *  perpetuate the loop.
		 */
		return;
	}

	/* Associated log page is in bits 23:16 of completion entry dw0. */
	aer->log_page_id = (cpl->cdw0 & 0xFF0000) >> 16;

	nvme_printf(aer->ctrlr, "async event occurred (log page id=0x%x)\n",
	    aer->log_page_id);

	if (is_log_page_id_valid(aer->log_page_id)) {
		aer->log_page_size = nvme_ctrlr_get_log_page_size(aer->ctrlr,
		    aer->log_page_id);
		memcpy(&aer->cpl, cpl, sizeof(*cpl));
		nvme_ctrlr_cmd_get_log_page(aer->ctrlr, aer->log_page_id,
		    NVME_GLOBAL_NAMESPACE_TAG, aer->log_page_buffer,
		    aer->log_page_size, nvme_ctrlr_async_event_log_page_cb,
		    aer);
		/* Wait to notify consumers until after log page is fetched. */
	} else {
		nvme_notify_async_consumers(aer->ctrlr, cpl, aer->log_page_id,
		    NULL, 0);

		/*
		 * Repost another asynchronous event request to replace the one
		 *  that just completed.
		 */
		nvme_ctrlr_construct_and_submit_aer(aer->ctrlr, aer);
	}
}

static void
nvme_ctrlr_construct_and_submit_aer(struct nvme_controller *ctrlr,
    struct nvme_async_event_request *aer)
{
	struct nvme_request *req;

	aer->ctrlr = ctrlr;
	req = nvme_allocate_request_null(nvme_ctrlr_async_event_cb, aer);
	aer->req = req;

	/*
	 * Disable timeout here, since asynchronous event requests should by
	 *  nature never be timed out.
	 */
	req->timeout = FALSE;
	req->cmd.opc = NVME_OPC_ASYNC_EVENT_REQUEST;
	nvme_ctrlr_submit_admin_request(ctrlr, req);
}

static void
nvme_ctrlr_configure_aer(struct nvme_controller *ctrlr)
{
	struct nvme_completion_poll_status	status;
	struct nvme_async_event_request		*aer;
	uint32_t				i;

	ctrlr->async_event_config.raw = 0xFF;
	ctrlr->async_event_config.bits.reserved = 0;

	status.done = FALSE;
	nvme_ctrlr_cmd_get_feature(ctrlr, NVME_FEAT_TEMPERATURE_THRESHOLD,
	    0, NULL, 0, nvme_completion_poll_cb, &status);
	while (status.done == FALSE)
		pause("nvme", 1);
	if (nvme_completion_is_error(&status.cpl) ||
	    (status.cpl.cdw0 & 0xFFFF) == 0xFFFF ||
	    (status.cpl.cdw0 & 0xFFFF) == 0x0000) {
		nvme_printf(ctrlr, "temperature threshold not supported\n");
		ctrlr->async_event_config.bits.temperature = 0;
	}

	nvme_ctrlr_cmd_set_async_event_config(ctrlr,
	    ctrlr->async_event_config, NULL, NULL);

	/* aerl is a zero-based value, so we need to add 1 here. */
	ctrlr->num_aers = min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl+1));

	for (i = 0; i < ctrlr->num_aers; i++) {
		aer = &ctrlr->aer[i];
		nvme_ctrlr_construct_and_submit_aer(ctrlr, aer);
	}
}

static void
nvme_ctrlr_configure_int_coalescing(struct nvme_controller *ctrlr)
{

	ctrlr->int_coal_time = 0;
	TUNABLE_INT_FETCH("hw.nvme.int_coal_time",
	    &ctrlr->int_coal_time);

	ctrlr->int_coal_threshold = 0;
	TUNABLE_INT_FETCH("hw.nvme.int_coal_threshold",
	    &ctrlr->int_coal_threshold);

	nvme_ctrlr_cmd_set_interrupt_coalescing(ctrlr, ctrlr->int_coal_time,
	    ctrlr->int_coal_threshold, NULL, NULL);
}

static void
nvme_ctrlr_start(void *ctrlr_arg)
{
	struct nvme_controller *ctrlr = ctrlr_arg;
	int i;

	nvme_qpair_reset(&ctrlr->adminq);
	for (i = 0; i < ctrlr->num_io_queues; i++)
		nvme_qpair_reset(&ctrlr->ioq[i]);

	nvme_admin_qpair_enable(&ctrlr->adminq);

	if (nvme_ctrlr_identify(ctrlr) != 0) {
		nvme_ctrlr_fail(ctrlr);
		return;
	}

	if (nvme_ctrlr_set_num_qpairs(ctrlr) != 0) {
		nvme_ctrlr_fail(ctrlr);
		return;
	}

	if (nvme_ctrlr_create_qpairs(ctrlr) != 0) {
		nvme_ctrlr_fail(ctrlr);
		return;
	}

	if (nvme_ctrlr_construct_namespaces(ctrlr) != 0) {
		nvme_ctrlr_fail(ctrlr);
		return;
	}

	nvme_ctrlr_configure_aer(ctrlr);
	nvme_ctrlr_configure_int_coalescing(ctrlr);

	for (i = 0; i < ctrlr->num_io_queues; i++)
		nvme_io_qpair_enable(&ctrlr->ioq[i]);
}

void
nvme_ctrlr_start_config_hook(void *arg)
{
	struct nvme_controller *ctrlr = arg;

	nvme_ctrlr_start(ctrlr);
	config_intrhook_disestablish(&ctrlr->config_hook);

	ctrlr->is_initialized = 1;
	nvme_notify_new_controller(ctrlr);
}

static void
nvme_ctrlr_reset_task(void *arg, int pending)
{
	struct nvme_controller	*ctrlr = arg;
	int			status;

	nvme_printf(ctrlr, "resetting controller\n");
	status = nvme_ctrlr_hw_reset(ctrlr);
	/*
	 * Use pause instead of DELAY, so that we yield to any nvme interrupt
	 *  handlers on this CPU that were blocked on a qpair lock. We want
	 *  all nvme interrupts completed before proceeding with restarting the
	 *  controller.
	 *
	 * XXX - any way to guarantee the interrupt handlers have quiesced?
	 */
	pause("nvmereset", hz / 10);
	if (status == 0)
		nvme_ctrlr_start(ctrlr);
	else
		nvme_ctrlr_fail(ctrlr);

	atomic_cmpset_32(&ctrlr->is_resetting, 1, 0);
}

static void
nvme_ctrlr_intx_handler(void *arg)
{
	struct nvme_controller *ctrlr = arg;

	nvme_mmio_write_4(ctrlr, intms, 1);

	nvme_qpair_process_completions(&ctrlr->adminq);

	if (ctrlr->ioq[0].cpl)
		nvme_qpair_process_completions(&ctrlr->ioq[0]);

	nvme_mmio_write_4(ctrlr, intmc, 1);
}

static int
nvme_ctrlr_configure_intx(struct nvme_controller *ctrlr)
{

	ctrlr->num_io_queues = 1;
	ctrlr->per_cpu_io_queues = 0;
	ctrlr->rid = 0;
	ctrlr->res = bus_alloc_resource_any(ctrlr->dev, SYS_RES_IRQ,
	    &ctrlr->rid, RF_SHAREABLE | RF_ACTIVE);

	if (ctrlr->res == NULL) {
		nvme_printf(ctrlr, "unable to allocate shared IRQ\n");
		return (ENOMEM);
	}

	bus_setup_intr(ctrlr->dev, ctrlr->res,
	    INTR_TYPE_MISC | INTR_MPSAFE, NULL, nvme_ctrlr_intx_handler,
	    ctrlr, &ctrlr->tag);

	if (ctrlr->tag == NULL) {
		nvme_printf(ctrlr, "unable to setup intx handler\n");
		return (ENOMEM);
	}

	return (0);
}

static void
nvme_pt_done(void *arg, const struct nvme_completion *cpl)
{
	struct nvme_pt_command *pt = arg;

	bzero(&pt->cpl, sizeof(pt->cpl));
	pt->cpl.cdw0 = cpl->cdw0;
	pt->cpl.status = cpl->status;
	pt->cpl.status.p = 0;

	mtx_lock(pt->driver_lock);
	wakeup(pt);
	mtx_unlock(pt->driver_lock);
}

int
nvme_ctrlr_passthrough_cmd(struct nvme_controller *ctrlr,
    struct nvme_pt_command *pt, uint32_t nsid, int is_user_buffer,
    int is_admin_cmd)
{
	struct nvme_request	*req;
	struct mtx		*mtx;
	struct buf		*buf = NULL;
	int			ret = 0;

	if (pt->len > 0) {
		if (pt->len > ctrlr->max_xfer_size) {
			nvme_printf(ctrlr, "pt->len (%d) "
			    "exceeds max_xfer_size (%d)\n", pt->len,
			    ctrlr->max_xfer_size);
			return EIO;
		}
		if (is_user_buffer) {
			/*
			 * Ensure the user buffer is wired for the duration of
			 *  this passthrough command.
			 */
			PHOLD(curproc);
			buf = getpbuf(NULL);
			buf->b_data = pt->buf;
			buf->b_bufsize = pt->len;
			buf->b_iocmd = pt->is_read ? BIO_READ : BIO_WRITE;
#ifdef NVME_UNMAPPED_BIO_SUPPORT
			if (vmapbuf(buf, 1) < 0) {
#else
			if (vmapbuf(buf) < 0) {
#endif
				ret = EFAULT;
				goto err;
			}
			req = nvme_allocate_request_vaddr(buf->b_data, pt->len, 
			    nvme_pt_done, pt);
		} else
			req = nvme_allocate_request_vaddr(pt->buf, pt->len,
			    nvme_pt_done, pt);
	} else
		req = nvme_allocate_request_null(nvme_pt_done, pt);

	req->cmd.opc	= pt->cmd.opc;
	req->cmd.cdw10	= pt->cmd.cdw10;
	req->cmd.cdw11	= pt->cmd.cdw11;
	req->cmd.cdw12	= pt->cmd.cdw12;
	req->cmd.cdw13	= pt->cmd.cdw13;
	req->cmd.cdw14	= pt->cmd.cdw14;
	req->cmd.cdw15	= pt->cmd.cdw15;

	req->cmd.nsid = nsid;

	if (is_admin_cmd)
		mtx = &ctrlr->lock;
	else
		mtx = &ctrlr->ns[nsid-1].lock;

	mtx_lock(mtx);
	pt->driver_lock = mtx;

	if (is_admin_cmd)
		nvme_ctrlr_submit_admin_request(ctrlr, req);
	else
		nvme_ctrlr_submit_io_request(ctrlr, req);

	mtx_sleep(pt, mtx, PRIBIO, "nvme_pt", 0);
	mtx_unlock(mtx);

	pt->driver_lock = NULL;

err:
	if (buf != NULL) {
		relpbuf(buf, NULL);
		PRELE(curproc);
	}

	return (ret);
}

static int
nvme_ctrlr_ioctl(struct cdev *cdev, u_long cmd, caddr_t arg, int flag,
    struct thread *td)
{
	struct nvme_controller			*ctrlr;
	struct nvme_pt_command			*pt;

	ctrlr = cdev->si_drv1;

	switch (cmd) {
	case NVME_RESET_CONTROLLER:
		nvme_ctrlr_reset(ctrlr);
		break;
	case NVME_PASSTHROUGH_CMD:
		pt = (struct nvme_pt_command *)arg;
		return (nvme_ctrlr_passthrough_cmd(ctrlr, pt, pt->cmd.nsid,
		    1 /* is_user_buffer */, 1 /* is_admin_cmd */));
	default:
		return (ENOTTY);
	}

	return (0);
}

static struct cdevsw nvme_ctrlr_cdevsw = {
	.d_version =	D_VERSION,
	.d_flags =	0,
	.d_ioctl =	nvme_ctrlr_ioctl
};

int
nvme_ctrlr_construct(struct nvme_controller *ctrlr, device_t dev)
{
	union cap_lo_register	cap_lo;
	union cap_hi_register	cap_hi;
	int			i, per_cpu_io_queues, rid;
	int			num_vectors_requested, num_vectors_allocated;
	int			status, timeout_period;

	ctrlr->dev = dev;

	mtx_init(&ctrlr->lock, "nvme ctrlr lock", NULL, MTX_DEF);

	status = nvme_ctrlr_allocate_bar(ctrlr);

	if (status != 0)
		return (status);

	/*
	 * Software emulators may set the doorbell stride to something
	 *  other than zero, but this driver is not set up to handle that.
	 */
	cap_hi.raw = nvme_mmio_read_4(ctrlr, cap_hi);
	if (cap_hi.bits.dstrd != 0)
		return (ENXIO);

	ctrlr->min_page_size = 1 << (12 + cap_hi.bits.mpsmin);

	/* Get ready timeout value from controller, in units of 500ms. */
	cap_lo.raw = nvme_mmio_read_4(ctrlr, cap_lo);
	ctrlr->ready_timeout_in_ms = cap_lo.bits.to * 500;

	timeout_period = NVME_DEFAULT_TIMEOUT_PERIOD;
	TUNABLE_INT_FETCH("hw.nvme.timeout_period", &timeout_period);
	timeout_period = min(timeout_period, NVME_MAX_TIMEOUT_PERIOD);
	timeout_period = max(timeout_period, NVME_MIN_TIMEOUT_PERIOD);
	ctrlr->timeout_period = timeout_period;

	nvme_retry_count = NVME_DEFAULT_RETRY_COUNT;
	TUNABLE_INT_FETCH("hw.nvme.retry_count", &nvme_retry_count);

	per_cpu_io_queues = 1;
	TUNABLE_INT_FETCH("hw.nvme.per_cpu_io_queues", &per_cpu_io_queues);
	ctrlr->per_cpu_io_queues = per_cpu_io_queues ? TRUE : FALSE;

	if (ctrlr->per_cpu_io_queues)
		ctrlr->num_io_queues = mp_ncpus;
	else
		ctrlr->num_io_queues = 1;

	ctrlr->force_intx = 0;
	TUNABLE_INT_FETCH("hw.nvme.force_intx", &ctrlr->force_intx);

	ctrlr->enable_aborts = 0;
	TUNABLE_INT_FETCH("hw.nvme.enable_aborts", &ctrlr->enable_aborts);

	ctrlr->msix_enabled = 1;

	if (ctrlr->force_intx) {
		ctrlr->msix_enabled = 0;
		goto intx;
	}

	/* One vector per IO queue, plus one vector for admin queue. */
	num_vectors_requested = ctrlr->num_io_queues + 1;

	/*
	 * If we cannot even allocate 2 vectors (one for admin, one for
	 *  I/O), then revert to INTx.
	 */
	if (pci_msix_count(dev) < 2) {
		ctrlr->msix_enabled = 0;
		goto intx;
	} else if (pci_msix_count(dev) < num_vectors_requested) {
		ctrlr->per_cpu_io_queues = FALSE;
		ctrlr->num_io_queues = 1;
		num_vectors_requested = 2; /* one for admin, one for I/O */
	}

	num_vectors_allocated = num_vectors_requested;
	if (pci_alloc_msix(dev, &num_vectors_allocated) != 0) {
		ctrlr->msix_enabled = 0;
		goto intx;
	} else if (num_vectors_allocated < num_vectors_requested) {
		if (num_vectors_allocated < 2) {
			pci_release_msi(dev);
			ctrlr->msix_enabled = 0;
			goto intx;
		} else {
			ctrlr->per_cpu_io_queues = FALSE;
			ctrlr->num_io_queues = 1;
			/*
			 * Release whatever vectors were allocated, and just
			 *  reallocate the two needed for the admin and single
			 *  I/O qpair.
			 */
			num_vectors_allocated = 2;
			pci_release_msi(dev);
			if (pci_alloc_msix(dev, &num_vectors_allocated) != 0)
				panic("could not reallocate any vectors\n");
			if (num_vectors_allocated != 2)
				panic("could not reallocate 2 vectors\n");
		}
	}

	/*
	 * On earlier FreeBSD releases, there are reports that
	 *  pci_alloc_msix() can return successfully with all vectors
	 *  requested, but a subsequent bus_alloc_resource_any()
	 *  for one of those vectors fails.  This issue occurs more
	 *  readily with multiple devices using per-CPU vectors.
	 * To workaround this issue, try to allocate the resources now,
	 *  and fall back to INTx if we cannot allocate all of them.
	 *  This issue cannot be reproduced on more recent versions of
	 *  FreeBSD which have increased the maximum number of MSI-X
	 *  vectors, but adding the workaround makes it easier for
	 *  vendors wishing to import this driver into kernels based on
	 *  older versions of FreeBSD.
	 */
	for (i = 0; i < num_vectors_allocated; i++) {
		rid = i + 1;
		ctrlr->msi_res[i] = bus_alloc_resource_any(ctrlr->dev,
		    SYS_RES_IRQ, &rid, RF_ACTIVE);

		if (ctrlr->msi_res[i] == NULL) {
			ctrlr->msix_enabled = 0;
			while (i > 0) {
				i--;
				bus_release_resource(ctrlr->dev,
				    SYS_RES_IRQ,
				    rman_get_rid(ctrlr->msi_res[i]),
				    ctrlr->msi_res[i]);
			}
			pci_release_msi(dev);
			nvme_printf(ctrlr, "could not obtain all MSI-X "
			    "resources, reverting to intx\n");
			break;
		}
	}

intx:

	if (!ctrlr->msix_enabled)
		nvme_ctrlr_configure_intx(ctrlr);

	ctrlr->max_xfer_size = NVME_MAX_XFER_SIZE;
	nvme_ctrlr_construct_admin_qpair(ctrlr);
	status = nvme_ctrlr_construct_io_qpairs(ctrlr);

	if (status != 0)
		return (status);

	ctrlr->cdev = make_dev(&nvme_ctrlr_cdevsw, device_get_unit(dev),
	    UID_ROOT, GID_WHEEL, 0600, "nvme%d", device_get_unit(dev));

	if (ctrlr->cdev == NULL)
		return (ENXIO);

	ctrlr->cdev->si_drv1 = (void *)ctrlr;

	ctrlr->taskqueue = taskqueue_create("nvme_taskq", M_WAITOK,
	    taskqueue_thread_enqueue, &ctrlr->taskqueue);
	taskqueue_start_threads(&ctrlr->taskqueue, 1, PI_DISK, "nvme taskq");

	ctrlr->is_resetting = 0;
	ctrlr->is_initialized = 0;
	ctrlr->notification_sent = 0;
	TASK_INIT(&ctrlr->reset_task, 0, nvme_ctrlr_reset_task, ctrlr);

	TASK_INIT(&ctrlr->fail_req_task, 0, nvme_ctrlr_fail_req_task, ctrlr);
	STAILQ_INIT(&ctrlr->fail_req);
	ctrlr->is_failed = FALSE;

	return (0);
}

void
nvme_ctrlr_destruct(struct nvme_controller *ctrlr, device_t dev)
{
	int				i;

	/*
	 *  Notify the controller of a shutdown, even though this is due to
	 *   a driver unload, not a system shutdown (this path is not invoked
	 *   during shutdown).  This ensures the controller receives a
	 *   shutdown notification in case the system is shutdown before
	 *   reloading the driver.
	 */
	nvme_ctrlr_shutdown(ctrlr);

	nvme_ctrlr_disable(ctrlr);
	taskqueue_free(ctrlr->taskqueue);

	for (i = 0; i < NVME_MAX_NAMESPACES; i++)
		nvme_ns_destruct(&ctrlr->ns[i]);

	if (ctrlr->cdev)
		destroy_dev(ctrlr->cdev);

	for (i = 0; i < ctrlr->num_io_queues; i++) {
		nvme_io_qpair_destroy(&ctrlr->ioq[i]);
	}

	free(ctrlr->ioq, M_NVME);

	nvme_admin_qpair_destroy(&ctrlr->adminq);

	if (ctrlr->resource != NULL) {
		bus_release_resource(dev, SYS_RES_MEMORY,
		    ctrlr->resource_id, ctrlr->resource);
	}

	if (ctrlr->bar4_resource != NULL) {
		bus_release_resource(dev, SYS_RES_MEMORY,
		    ctrlr->bar4_resource_id, ctrlr->bar4_resource);
	}

	if (ctrlr->tag)
		bus_teardown_intr(ctrlr->dev, ctrlr->res, ctrlr->tag);

	if (ctrlr->res)
		bus_release_resource(ctrlr->dev, SYS_RES_IRQ,
		    rman_get_rid(ctrlr->res), ctrlr->res);

	if (ctrlr->msix_enabled)
		pci_release_msi(dev);
}

void
nvme_ctrlr_shutdown(struct nvme_controller *ctrlr)
{
	union cc_register	cc;
	union csts_register	csts;
	int			ticks = 0;

	cc.raw = nvme_mmio_read_4(ctrlr, cc);
	cc.bits.shn = NVME_SHN_NORMAL;
	nvme_mmio_write_4(ctrlr, cc, cc.raw);
	csts.raw = nvme_mmio_read_4(ctrlr, csts);
	while ((csts.bits.shst != NVME_SHST_COMPLETE) && (ticks++ < 5*hz)) {
		pause("nvme shn", 1);
		csts.raw = nvme_mmio_read_4(ctrlr, csts);
	}
	if (csts.bits.shst != NVME_SHST_COMPLETE)
		nvme_printf(ctrlr, "did not complete shutdown within 5 seconds "
		    "of notification\n");
}

void
nvme_ctrlr_submit_admin_request(struct nvme_controller *ctrlr,
    struct nvme_request *req)
{

	nvme_qpair_submit_request(&ctrlr->adminq, req);
}

void
nvme_ctrlr_submit_io_request(struct nvme_controller *ctrlr,
    struct nvme_request *req)
{
	struct nvme_qpair       *qpair;

	if (ctrlr->per_cpu_io_queues)
		qpair = &ctrlr->ioq[curcpu];
	else
		qpair = &ctrlr->ioq[0];

	nvme_qpair_submit_request(qpair, req);
}

device_t
nvme_ctrlr_get_device(struct nvme_controller *ctrlr)
{

	return (ctrlr->dev);
}

const struct nvme_controller_data *
nvme_ctrlr_get_data(struct nvme_controller *ctrlr)
{

	return (&ctrlr->cdata);
}
OpenPOWER on IntegriCloud