1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
|
/*-
* Copyright (C) 2013 Intel Corporation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
__FBSDID("$FreeBSD$");
#include <sys/param.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/malloc.h>
#include <sys/module.h>
#include <sys/queue.h>
#include <sys/rman.h>
#include <vm/vm.h>
#include <vm/pmap.h>
#include <machine/bus.h>
#include <machine/pmap.h>
#include <machine/resource.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include "ntb_regs.h"
#include "ntb_hw.h"
/*
* The Non-Transparent Bridge (NTB) is a device on some Intel processors that
* allows you to connect two systems using a PCI-e link.
*
* This module contains the hardware abstraction layer for the NTB. It allows
* you to send and recieve interrupts, map the memory windows and send and
* receive messages in the scratch-pad registers.
*
* NOTE: Much of the code in this module is shared with Linux. Any patches may
* be picked up and redistributed in Linux with a dual GPL/BSD license.
*/
#define NTB_CONFIG_BAR 0
#define NTB_B2B_BAR_1 1
#define NTB_B2B_BAR_2 2
#define NTB_MAX_BARS 3
#define NTB_MW_TO_BAR(mw) ((mw) + 1)
#define MAX_MSIX_INTERRUPTS MAX(XEON_MAX_DB_BITS, SOC_MAX_DB_BITS)
#define NTB_HB_TIMEOUT 1 /* second */
#define SOC_LINK_RECOVERY_TIME 500
#define DEVICE2SOFTC(dev) ((struct ntb_softc *) device_get_softc(dev))
enum ntb_device_type {
NTB_XEON,
NTB_SOC
};
struct ntb_hw_info {
uint32_t device_id;
enum ntb_device_type type;
const char *desc;
};
struct ntb_pci_bar_info {
bus_space_tag_t pci_bus_tag;
bus_space_handle_t pci_bus_handle;
int pci_resource_id;
struct resource *pci_resource;
vm_paddr_t pbase;
void *vbase;
u_long size;
};
struct ntb_int_info {
struct resource *res;
int rid;
void *tag;
};
struct ntb_db_cb {
ntb_db_callback callback;
unsigned int db_num;
void *data;
struct ntb_softc *ntb;
};
struct ntb_softc {
device_t device;
enum ntb_device_type type;
struct ntb_pci_bar_info bar_info[NTB_MAX_BARS];
struct ntb_int_info int_info[MAX_MSIX_INTERRUPTS];
uint32_t allocated_interrupts;
struct callout heartbeat_timer;
struct callout lr_timer;
void *ntb_transport;
ntb_event_callback event_cb;
struct ntb_db_cb *db_cb;
struct {
uint32_t max_spads;
uint32_t max_db_bits;
uint32_t msix_cnt;
} limits;
struct {
uint32_t pdb;
uint32_t pdb_mask;
uint32_t sdb;
uint32_t sbar2_xlat;
uint32_t sbar4_xlat;
uint32_t spad_remote;
uint32_t spad_local;
uint32_t lnk_cntl;
uint32_t lnk_stat;
uint32_t spci_cmd;
} reg_ofs;
uint8_t conn_type;
uint8_t dev_type;
uint8_t bits_per_vector;
uint8_t link_status;
uint8_t link_width;
uint8_t link_speed;
};
#define ntb_reg_read(SIZE, offset) \
bus_space_read_ ## SIZE (ntb->bar_info[NTB_CONFIG_BAR].pci_bus_tag, \
ntb->bar_info[NTB_CONFIG_BAR].pci_bus_handle, (offset))
#define ntb_reg_write(SIZE, offset, val) \
bus_space_write_ ## SIZE (ntb->bar_info[NTB_CONFIG_BAR].pci_bus_tag, \
ntb->bar_info[NTB_CONFIG_BAR].pci_bus_handle, (offset), (val))
#define ntb_read_1(offset) ntb_reg_read(1, (offset))
#define ntb_read_2(offset) ntb_reg_read(2, (offset))
#define ntb_read_4(offset) ntb_reg_read(4, (offset))
#define ntb_read_8(offset) ntb_reg_read(8, (offset))
#define ntb_write_1(offset, val) ntb_reg_write(1, (offset), (val))
#define ntb_write_2(offset, val) ntb_reg_write(2, (offset), (val))
#define ntb_write_4(offset, val) ntb_reg_write(4, (offset), (val))
#define ntb_write_8(offset, val) ntb_reg_write(8, (offset), (val))
static int ntb_probe(device_t device);
static int ntb_attach(device_t device);
static int ntb_detach(device_t device);
static int ntb_map_pci_bar(struct ntb_softc *ntb);
static void ntb_unmap_pci_bar(struct ntb_softc *ntb);
static int ntb_setup_interrupts(struct ntb_softc *ntb);
static void ntb_teardown_interrupts(struct ntb_softc *ntb);
static void handle_soc_irq(void *arg);
static void handle_xeon_irq(void *arg);
static void handle_xeon_event_irq(void *arg);
static void ntb_handle_legacy_interrupt(void *arg);
static int ntb_create_callbacks(struct ntb_softc *ntb, int num_vectors);
static void ntb_free_callbacks(struct ntb_softc *ntb);
static struct ntb_hw_info *ntb_get_device_info(uint32_t device_id);
static int ntb_initialize_hw(struct ntb_softc *ntb);
static int ntb_setup_xeon(struct ntb_softc *ntb);
static int ntb_setup_soc(struct ntb_softc *ntb);
static void ntb_handle_heartbeat(void *arg);
static void ntb_handle_link_event(struct ntb_softc *ntb, int link_state);
static void recover_soc_link(void *arg);
static int ntb_check_link_status(struct ntb_softc *ntb);
static bool is_bar_for_data_transfer(int bar_num);
static struct ntb_hw_info pci_ids[] = {
{ 0x3C0D8086, NTB_XEON, "Xeon E5/Core i7 Non-Transparent Bridge B2B" },
{ 0x0C4E8086, NTB_SOC, "Atom Processor S1200 NTB Primary B2B" },
{ 0x0E0D8086, NTB_XEON, "Xeon E5 V2 Non-Transparent Bridge B2B" },
{ 0x00000000, NTB_SOC, NULL }
};
/*
* OS <-> Driver interface structures
*/
MALLOC_DEFINE(M_NTB, "ntb_hw", "ntb_hw driver memory allocations");
static device_method_t ntb_pci_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, ntb_probe),
DEVMETHOD(device_attach, ntb_attach),
DEVMETHOD(device_detach, ntb_detach),
DEVMETHOD_END
};
static driver_t ntb_pci_driver = {
"ntb_hw",
ntb_pci_methods,
sizeof(struct ntb_softc),
};
static devclass_t ntb_devclass;
DRIVER_MODULE(ntb_hw, pci, ntb_pci_driver, ntb_devclass, NULL, NULL);
MODULE_VERSION(ntb_hw, 1);
/*
* OS <-> Driver linkage functions
*/
static int
ntb_probe(device_t device)
{
struct ntb_hw_info *p = ntb_get_device_info(pci_get_devid(device));
if (p != NULL) {
device_set_desc(device, p->desc);
return (0);
} else
return (ENXIO);
}
#define DETACH_ON_ERROR(func) \
error = func; \
if (error < 0) { \
ntb_detach(device); \
return (error); \
}
static int
ntb_attach(device_t device)
{
struct ntb_softc *ntb = DEVICE2SOFTC(device);
struct ntb_hw_info *p = ntb_get_device_info(pci_get_devid(device));
int error;
ntb->device = device;
ntb->type = p->type;
/* Heartbeat timer for NTB_SOC since there is no link interrupt */
callout_init(&ntb->heartbeat_timer, CALLOUT_MPSAFE);
callout_init(&ntb->lr_timer, CALLOUT_MPSAFE);
DETACH_ON_ERROR(ntb_map_pci_bar(ntb));
DETACH_ON_ERROR(ntb_initialize_hw(ntb));
DETACH_ON_ERROR(ntb_setup_interrupts(ntb));
pci_enable_busmaster(ntb->device);
return (error);
}
static int
ntb_detach(device_t device)
{
struct ntb_softc *ntb = DEVICE2SOFTC(device);
callout_drain(&ntb->heartbeat_timer);
callout_drain(&ntb->lr_timer);
ntb_teardown_interrupts(ntb);
ntb_unmap_pci_bar(ntb);
return (0);
}
static int
ntb_map_pci_bar(struct ntb_softc *ntb)
{
struct ntb_pci_bar_info *current_bar;
int rc, i;
ntb->bar_info[NTB_CONFIG_BAR].pci_resource_id = PCIR_BAR(0);
ntb->bar_info[NTB_B2B_BAR_1].pci_resource_id = PCIR_BAR(2);
ntb->bar_info[NTB_B2B_BAR_2].pci_resource_id = PCIR_BAR(4);
for (i = 0; i< NTB_MAX_BARS; i++) {
current_bar = &ntb->bar_info[i];
current_bar->pci_resource =
bus_alloc_resource(ntb->device,
SYS_RES_MEMORY,
¤t_bar->pci_resource_id, 0, ~0, 1,
RF_ACTIVE);
if (current_bar->pci_resource == NULL) {
device_printf(ntb->device,
"unable to allocate pci resource\n");
return (ENXIO);
}
else {
current_bar->pci_bus_tag =
rman_get_bustag(current_bar->pci_resource);
current_bar->pci_bus_handle =
rman_get_bushandle(current_bar->pci_resource);
current_bar->pbase =
rman_get_start(current_bar->pci_resource);
current_bar->size =
rman_get_size(current_bar->pci_resource);
current_bar->vbase =
rman_get_virtual(current_bar->pci_resource);
if (is_bar_for_data_transfer(i)) {
/*
* Mark bar region as write combining to improve
* performance.
*/
rc = pmap_change_attr(
(vm_offset_t)current_bar->vbase,
current_bar->size,
VM_MEMATTR_WRITE_COMBINING);
if (rc != 0) {
device_printf(ntb->device,
"Couldn't mark bar as"
" WRITE_COMBINING\n");
return (rc);
}
}
device_printf(ntb->device,
"Bar size = %lx, v %p, p %p\n",
current_bar->size, current_bar->vbase,
(void *)(current_bar->pbase));
}
}
return (0);
}
static void
ntb_unmap_pci_bar(struct ntb_softc *ntb)
{
struct ntb_pci_bar_info *current_bar;
int i;
for (i = 0; i< NTB_MAX_BARS; i++) {
current_bar = &ntb->bar_info[i];
if (current_bar->pci_resource != NULL)
bus_release_resource(ntb->device, SYS_RES_MEMORY,
current_bar->pci_resource_id,
current_bar->pci_resource);
}
}
static int
ntb_setup_interrupts(struct ntb_softc *ntb)
{
void (*interrupt_handler)(void *);
void *int_arg;
bool use_msix = 0;
uint32_t num_vectors;
int i;
ntb->allocated_interrupts = 0;
/*
* On SOC, disable all interrupts. On XEON, disable all but Link
* Interrupt. The rest will be unmasked as callbacks are registered.
*/
if (ntb->type == NTB_SOC)
ntb_write_8(ntb->reg_ofs.pdb_mask, ~0);
else
ntb_write_2(ntb->reg_ofs.pdb_mask,
~(1 << ntb->limits.max_db_bits));
num_vectors = MIN(pci_msix_count(ntb->device),
ntb->limits.max_db_bits);
if (num_vectors >= 1) {
pci_alloc_msix(ntb->device, &num_vectors);
if (num_vectors >= 4)
use_msix = TRUE;
}
ntb_create_callbacks(ntb, num_vectors);
if (use_msix == TRUE) {
for (i = 0; i < num_vectors; i++) {
ntb->int_info[i].rid = i + 1;
ntb->int_info[i].res = bus_alloc_resource_any(
ntb->device, SYS_RES_IRQ, &ntb->int_info[i].rid,
RF_ACTIVE);
if (ntb->int_info[i].res == NULL) {
device_printf(ntb->device,
"bus_alloc_resource failed\n");
return (-1);
}
ntb->int_info[i].tag = NULL;
ntb->allocated_interrupts++;
if (ntb->type == NTB_SOC) {
interrupt_handler = handle_soc_irq;
int_arg = &ntb->db_cb[i];
} else {
if (i == num_vectors - 1) {
interrupt_handler = handle_xeon_event_irq;
int_arg = ntb;
} else {
interrupt_handler =
handle_xeon_irq;
int_arg = &ntb->db_cb[i];
}
}
if (bus_setup_intr(ntb->device, ntb->int_info[i].res,
INTR_MPSAFE | INTR_TYPE_MISC, NULL,
interrupt_handler, int_arg,
&ntb->int_info[i].tag) != 0) {
device_printf(ntb->device,
"bus_setup_intr failed\n");
return (ENXIO);
}
}
}
else {
ntb->int_info[0].rid = 0;
ntb->int_info[0].res = bus_alloc_resource_any(ntb->device, SYS_RES_IRQ,
&ntb->int_info[0].rid, RF_SHAREABLE|RF_ACTIVE);
interrupt_handler = ntb_handle_legacy_interrupt;
if (ntb->int_info[0].res == NULL) {
device_printf(ntb->device,
"bus_alloc_resource failed\n");
return (-1);
}
ntb->int_info[0].tag = NULL;
ntb->allocated_interrupts = 1;
if (bus_setup_intr(ntb->device, ntb->int_info[0].res,
INTR_MPSAFE | INTR_TYPE_MISC, NULL,
interrupt_handler, ntb, &ntb->int_info[0].tag) != 0) {
device_printf(ntb->device, "bus_setup_intr failed\n");
return (ENXIO);
}
}
return (0);
}
static void
ntb_teardown_interrupts(struct ntb_softc *ntb)
{
struct ntb_int_info *current_int;
int i;
for (i=0; i<ntb->allocated_interrupts; i++) {
current_int = &ntb->int_info[i];
if (current_int->tag != NULL)
bus_teardown_intr(ntb->device, current_int->res,
current_int->tag);
if (current_int->res != NULL)
bus_release_resource(ntb->device, SYS_RES_IRQ,
rman_get_rid(current_int->res), current_int->res);
}
ntb_free_callbacks(ntb);
pci_release_msi(ntb->device);
}
static void
handle_soc_irq(void *arg)
{
struct ntb_db_cb *db_cb = arg;
struct ntb_softc *ntb = db_cb->ntb;
ntb_write_8(ntb->reg_ofs.pdb, (uint64_t) 1 << db_cb->db_num);
if (db_cb->callback != NULL)
db_cb->callback(db_cb->data, db_cb->db_num);
}
static void
handle_xeon_irq(void *arg)
{
struct ntb_db_cb *db_cb = arg;
struct ntb_softc *ntb = db_cb->ntb;
/*
* On Xeon, there are 16 bits in the interrupt register
* but only 4 vectors. So, 5 bits are assigned to the first 3
* vectors, with the 4th having a single bit for link
* interrupts.
*/
ntb_write_2(ntb->reg_ofs.pdb,
((1 << ntb->bits_per_vector) - 1) <<
(db_cb->db_num * ntb->bits_per_vector));
if (db_cb->callback != NULL)
db_cb->callback(db_cb->data, db_cb->db_num);
}
/* Since we do not have a HW doorbell in SOC, this is only used in JF/JT */
static void
handle_xeon_event_irq(void *arg)
{
struct ntb_softc *ntb = arg;
int rc;
rc = ntb_check_link_status(ntb);
if (rc != 0)
device_printf(ntb->device, "Error determining link status\n");
/* bit 15 is always the link bit */
ntb_write_2(ntb->reg_ofs.pdb, 1 << ntb->limits.max_db_bits);
}
static void
ntb_handle_legacy_interrupt(void *arg)
{
struct ntb_softc *ntb = arg;
unsigned int i = 0;
uint64_t pdb64;
uint16_t pdb16;
if (ntb->type == NTB_SOC) {
pdb64 = ntb_read_8(ntb->reg_ofs.pdb);
while (pdb64) {
i = ffs(pdb64);
pdb64 &= pdb64 - 1;
handle_soc_irq(&ntb->db_cb[i]);
}
} else {
pdb16 = ntb_read_2(ntb->reg_ofs.pdb);
if ((pdb16 & XEON_DB_HW_LINK) != 0) {
handle_xeon_event_irq(ntb);
pdb16 &= ~XEON_DB_HW_LINK;
}
while (pdb16 != 0) {
i = ffs(pdb16);
pdb16 &= pdb16 - 1;
handle_xeon_irq(&ntb->db_cb[i]);
}
}
}
static int
ntb_create_callbacks(struct ntb_softc *ntb, int num_vectors)
{
int i;
ntb->db_cb = malloc(num_vectors * sizeof(struct ntb_db_cb), M_NTB,
M_ZERO | M_WAITOK);
for (i = 0; i < num_vectors; i++) {
ntb->db_cb[i].db_num = i;
ntb->db_cb[i].ntb = ntb;
}
return (0);
}
static void
ntb_free_callbacks(struct ntb_softc *ntb)
{
int i;
for (i = 0; i < ntb->limits.max_db_bits; i++)
ntb_unregister_db_callback(ntb, i);
free(ntb->db_cb, M_NTB);
}
static struct ntb_hw_info *
ntb_get_device_info(uint32_t device_id)
{
struct ntb_hw_info *ep = pci_ids;
while (ep->device_id) {
if (ep->device_id == device_id)
return (ep);
++ep;
}
return (NULL);
}
static int
ntb_initialize_hw(struct ntb_softc *ntb)
{
if (ntb->type == NTB_SOC)
return (ntb_setup_soc(ntb));
else
return (ntb_setup_xeon(ntb));
}
static int
ntb_setup_xeon(struct ntb_softc *ntb)
{
uint8_t val, connection_type;
val = pci_read_config(ntb->device, NTB_PPD_OFFSET, 1);
connection_type = val & XEON_PPD_CONN_TYPE;
switch (connection_type) {
case NTB_CONN_B2B:
ntb->conn_type = NTB_CONN_B2B;
break;
case NTB_CONN_CLASSIC:
case NTB_CONN_RP:
default:
device_printf(ntb->device, "Connection type %d not supported\n",
connection_type);
return (ENXIO);
}
if ((val & XEON_PPD_DEV_TYPE) != 0)
ntb->dev_type = NTB_DEV_DSD;
else
ntb->dev_type = NTB_DEV_USD;
ntb->reg_ofs.pdb = XEON_PDOORBELL_OFFSET;
ntb->reg_ofs.pdb_mask = XEON_PDBMSK_OFFSET;
ntb->reg_ofs.sbar2_xlat = XEON_SBAR2XLAT_OFFSET;
ntb->reg_ofs.sbar4_xlat = XEON_SBAR4XLAT_OFFSET;
ntb->reg_ofs.lnk_cntl = XEON_NTBCNTL_OFFSET;
ntb->reg_ofs.lnk_stat = XEON_LINK_STATUS_OFFSET;
ntb->reg_ofs.spad_local = XEON_SPAD_OFFSET;
ntb->reg_ofs.spci_cmd = XEON_PCICMD_OFFSET;
if (ntb->conn_type == NTB_CONN_B2B) {
ntb->reg_ofs.sdb = XEON_B2B_DOORBELL_OFFSET;
ntb->reg_ofs.spad_remote = XEON_B2B_SPAD_OFFSET;
ntb->limits.max_spads = XEON_MAX_SPADS;
} else {
ntb->reg_ofs.sdb = XEON_SDOORBELL_OFFSET;
ntb->reg_ofs.spad_remote = XEON_SPAD_OFFSET;
ntb->limits.max_spads = XEON_MAX_COMPAT_SPADS;
}
ntb->limits.max_db_bits = XEON_MAX_DB_BITS;
ntb->limits.msix_cnt = XEON_MSIX_CNT;
ntb->bits_per_vector = XEON_DB_BITS_PER_VEC;
/* Enable Bus Master and Memory Space on the secondary side */
ntb_write_2(ntb->reg_ofs.spci_cmd,
PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
return (0);
}
static int
ntb_setup_soc(struct ntb_softc *ntb)
{
uint32_t val, connection_type;
val = pci_read_config(ntb->device, NTB_PPD_OFFSET, 4);
connection_type = (val & SOC_PPD_CONN_TYPE) >> 8;
switch (connection_type) {
case NTB_CONN_B2B:
ntb->conn_type = NTB_CONN_B2B;
break;
case NTB_CONN_RP:
default:
device_printf(ntb->device, "Connection type %d not supported\n",
connection_type);
return (ENXIO);
}
if ((val & SOC_PPD_DEV_TYPE) != 0)
ntb->dev_type = NTB_DEV_DSD;
else
ntb->dev_type = NTB_DEV_USD;
/* Initiate PCI-E link training */
pci_write_config(ntb->device, NTB_PPD_OFFSET, val | SOC_PPD_INIT_LINK,
4);
ntb->reg_ofs.pdb = SOC_PDOORBELL_OFFSET;
ntb->reg_ofs.pdb_mask = SOC_PDBMSK_OFFSET;
ntb->reg_ofs.sbar2_xlat = SOC_SBAR2XLAT_OFFSET;
ntb->reg_ofs.sbar4_xlat = SOC_SBAR4XLAT_OFFSET;
ntb->reg_ofs.lnk_cntl = SOC_NTBCNTL_OFFSET;
ntb->reg_ofs.lnk_stat = SOC_LINK_STATUS_OFFSET;
ntb->reg_ofs.spad_local = SOC_SPAD_OFFSET;
ntb->reg_ofs.spci_cmd = SOC_PCICMD_OFFSET;
if (ntb->conn_type == NTB_CONN_B2B) {
ntb->reg_ofs.sdb = SOC_B2B_DOORBELL_OFFSET;
ntb->reg_ofs.spad_remote = SOC_B2B_SPAD_OFFSET;
ntb->limits.max_spads = SOC_MAX_SPADS;
} else {
ntb->reg_ofs.sdb = SOC_PDOORBELL_OFFSET;
ntb->reg_ofs.spad_remote = SOC_SPAD_OFFSET;
ntb->limits.max_spads = SOC_MAX_COMPAT_SPADS;
}
ntb->limits.max_db_bits = SOC_MAX_DB_BITS;
ntb->limits.msix_cnt = SOC_MSIX_CNT;
ntb->bits_per_vector = SOC_DB_BITS_PER_VEC;
/*
* FIXME - MSI-X bug on early SOC HW, remove once internal issue is
* resolved. Mask transaction layer internal parity errors.
*/
pci_write_config(ntb->device, 0xFC, 0x4, 4);
/*
* Some BIOSes aren't filling out the XLAT offsets.
* Check and correct the issue.
*/
if (ntb->dev_type == NTB_DEV_USD) {
if (ntb_read_8(SOC_PBAR2XLAT_OFFSET) == 0)
ntb_write_8(SOC_PBAR2XLAT_OFFSET,
SOC_PBAR2XLAT_USD_ADDR);
if (ntb_read_8(SOC_PBAR4XLAT_OFFSET) == 0)
ntb_write_8(SOC_PBAR4XLAT_OFFSET,
SOC_PBAR4XLAT_USD_ADDR);
if (ntb_read_8(SOC_MBAR23_OFFSET) == 0xC)
ntb_write_8(SOC_MBAR23_OFFSET, SOC_MBAR23_USD_ADDR);
if (ntb_read_8(SOC_MBAR45_OFFSET) == 0xC)
ntb_write_8(SOC_MBAR45_OFFSET, SOC_MBAR45_USD_ADDR);
} else {
if (ntb_read_8(SOC_PBAR2XLAT_OFFSET) == 0)
ntb_write_8(SOC_PBAR2XLAT_OFFSET,
SOC_PBAR2XLAT_DSD_ADDR);
if (ntb_read_8(SOC_PBAR4XLAT_OFFSET) == 0)
ntb_write_8(SOC_PBAR4XLAT_OFFSET,
SOC_PBAR4XLAT_DSD_ADDR);
if (ntb_read_8(SOC_MBAR23_OFFSET) == 0xC)
ntb_write_8(SOC_MBAR23_OFFSET, SOC_MBAR23_DSD_ADDR);
if (ntb_read_8(SOC_MBAR45_OFFSET) == 0xC)
ntb_write_8(SOC_MBAR45_OFFSET, SOC_MBAR45_DSD_ADDR);
}
/* Enable Bus Master and Memory Space on the secondary side */
ntb_write_2(ntb->reg_ofs.spci_cmd,
PCIM_CMD_MEMEN | PCIM_CMD_BUSMASTEREN);
callout_reset(&ntb->heartbeat_timer, 0, ntb_handle_heartbeat, ntb);
return (0);
}
/* SOC doesn't have link status interrupt, poll on that platform */
static void
ntb_handle_heartbeat(void *arg)
{
struct ntb_softc *ntb = arg;
uint32_t status32;
int rc = ntb_check_link_status(ntb);
if (rc != 0)
device_printf(ntb->device,
"Error determining link status\n");
/* Check to see if a link error is the cause of the link down */
if (ntb->link_status == NTB_LINK_DOWN) {
status32 = ntb_read_4(SOC_LTSSMSTATEJMP_OFFSET);
if ((status32 & SOC_LTSSMSTATEJMP_FORCEDETECT) != 0) {
callout_reset(&ntb->lr_timer, 0, recover_soc_link,
ntb);
return;
}
}
callout_reset(&ntb->heartbeat_timer, NTB_HB_TIMEOUT * hz,
ntb_handle_heartbeat, ntb);
}
static void
soc_perform_link_restart(struct ntb_softc *ntb)
{
uint32_t status;
/* Driver resets the NTB ModPhy lanes - magic! */
ntb_write_1(SOC_MODPHY_PCSREG6, 0xe0);
ntb_write_1(SOC_MODPHY_PCSREG4, 0x40);
ntb_write_1(SOC_MODPHY_PCSREG4, 0x60);
ntb_write_1(SOC_MODPHY_PCSREG6, 0x60);
/* Driver waits 100ms to allow the NTB ModPhy to settle */
pause("ModPhy", hz / 10);
/* Clear AER Errors, write to clear */
status = ntb_read_4(SOC_ERRCORSTS_OFFSET);
status &= PCIM_AER_COR_REPLAY_ROLLOVER;
ntb_write_4(SOC_ERRCORSTS_OFFSET, status);
/* Clear unexpected electrical idle event in LTSSM, write to clear */
status = ntb_read_4(SOC_LTSSMERRSTS0_OFFSET);
status |= SOC_LTSSMERRSTS0_UNEXPECTEDEI;
ntb_write_4(SOC_LTSSMERRSTS0_OFFSET, status);
/* Clear DeSkew Buffer error, write to clear */
status = ntb_read_4(SOC_DESKEWSTS_OFFSET);
status |= SOC_DESKEWSTS_DBERR;
ntb_write_4(SOC_DESKEWSTS_OFFSET, status);
status = ntb_read_4(SOC_IBSTERRRCRVSTS0_OFFSET);
status &= SOC_IBIST_ERR_OFLOW;
ntb_write_4(SOC_IBSTERRRCRVSTS0_OFFSET, status);
/* Releases the NTB state machine to allow the link to retrain */
status = ntb_read_4(SOC_LTSSMSTATEJMP_OFFSET);
status &= ~SOC_LTSSMSTATEJMP_FORCEDETECT;
ntb_write_4(SOC_LTSSMSTATEJMP_OFFSET, status);
}
static void
ntb_handle_link_event(struct ntb_softc *ntb, int link_state)
{
enum ntb_hw_event event;
uint16_t status;
if (ntb->link_status == link_state)
return;
if (link_state == NTB_LINK_UP) {
device_printf(ntb->device, "Link Up\n");
ntb->link_status = NTB_LINK_UP;
event = NTB_EVENT_HW_LINK_UP;
if (ntb->type == NTB_SOC)
status = ntb_read_2(ntb->reg_ofs.lnk_stat);
else
status = pci_read_config(ntb->device,
XEON_LINK_STATUS_OFFSET, 2);
ntb->link_width = (status & NTB_LINK_WIDTH_MASK) >> 4;
ntb->link_speed = (status & NTB_LINK_SPEED_MASK);
device_printf(ntb->device, "Link Width %d, Link Speed %d\n",
ntb->link_width, ntb->link_speed);
callout_reset(&ntb->heartbeat_timer, NTB_HB_TIMEOUT * hz,
ntb_handle_heartbeat, ntb);
} else {
device_printf(ntb->device, "Link Down\n");
ntb->link_status = NTB_LINK_DOWN;
event = NTB_EVENT_HW_LINK_DOWN;
/* Don't modify link width/speed, we need it in link recovery */
}
/* notify the upper layer if we have an event change */
if (ntb->event_cb != NULL)
ntb->event_cb(ntb->ntb_transport, event);
}
static void
recover_soc_link(void *arg)
{
struct ntb_softc *ntb = arg;
uint8_t speed, width;
uint32_t status32;
uint16_t status16;
soc_perform_link_restart(ntb);
pause("Link", SOC_LINK_RECOVERY_TIME * hz / 1000);
status32 = ntb_read_4(SOC_LTSSMSTATEJMP_OFFSET);
if ((status32 & SOC_LTSSMSTATEJMP_FORCEDETECT) != 0)
goto retry;
status32 = ntb_read_4(SOC_IBSTERRRCRVSTS0_OFFSET);
if ((status32 & SOC_IBIST_ERR_OFLOW) != 0)
goto retry;
status16 = ntb_read_2(ntb->reg_ofs.lnk_stat);
width = (status16 & NTB_LINK_WIDTH_MASK) >> 4;
speed = (status16 & NTB_LINK_SPEED_MASK);
if (ntb->link_width != width || ntb->link_speed != speed)
goto retry;
callout_reset(&ntb->heartbeat_timer, NTB_HB_TIMEOUT * hz,
ntb_handle_heartbeat, ntb);
return;
retry:
callout_reset(&ntb->lr_timer, NTB_HB_TIMEOUT * hz, recover_soc_link,
ntb);
}
static int
ntb_check_link_status(struct ntb_softc *ntb)
{
int link_state;
uint32_t ntb_cntl;
uint16_t status;
if (ntb->type == NTB_SOC) {
ntb_cntl = ntb_read_4(ntb->reg_ofs.lnk_cntl);
if ((ntb_cntl & SOC_CNTL_LINK_DOWN) != 0)
link_state = NTB_LINK_DOWN;
else
link_state = NTB_LINK_UP;
} else {
status = pci_read_config(ntb->device, XEON_LINK_STATUS_OFFSET,
2);
if ((status & NTB_LINK_STATUS_ACTIVE) != 0)
link_state = NTB_LINK_UP;
else
link_state = NTB_LINK_DOWN;
}
ntb_handle_link_event(ntb, link_state);
return (0);
}
/**
* ntb_register_event_callback() - register event callback
* @ntb: pointer to ntb_softc instance
* @func: callback function to register
*
* This function registers a callback for any HW driver events such as link
* up/down, power management notices and etc.
*
* RETURNS: An appropriate -ERRNO error value on error, or zero for success.
*/
int
ntb_register_event_callback(struct ntb_softc *ntb, ntb_event_callback func)
{
if (ntb->event_cb != NULL)
return (EINVAL);
ntb->event_cb = func;
return (0);
}
/**
* ntb_unregister_event_callback() - unregisters the event callback
* @ntb: pointer to ntb_softc instance
*
* This function unregisters the existing callback from transport
*/
void
ntb_unregister_event_callback(struct ntb_softc *ntb)
{
ntb->event_cb = NULL;
}
/**
* ntb_register_db_callback() - register a callback for doorbell interrupt
* @ntb: pointer to ntb_softc instance
* @idx: doorbell index to register callback, zero based
* @func: callback function to register
*
* This function registers a callback function for the doorbell interrupt
* on the primary side. The function will unmask the doorbell as well to
* allow interrupt.
*
* RETURNS: An appropriate -ERRNO error value on error, or zero for success.
*/
int
ntb_register_db_callback(struct ntb_softc *ntb, unsigned int idx, void *data,
ntb_db_callback func)
{
uint16_t mask;
if (idx >= ntb->allocated_interrupts || ntb->db_cb[idx].callback) {
device_printf(ntb->device, "Invalid Index.\n");
return (EINVAL);
}
ntb->db_cb[idx].callback = func;
ntb->db_cb[idx].data = data;
/* unmask interrupt */
mask = ntb_read_2(ntb->reg_ofs.pdb_mask);
mask &= ~(1 << (idx * ntb->bits_per_vector));
ntb_write_2(ntb->reg_ofs.pdb_mask, mask);
return (0);
}
/**
* ntb_unregister_db_callback() - unregister a callback for doorbell interrupt
* @ntb: pointer to ntb_softc instance
* @idx: doorbell index to register callback, zero based
*
* This function unregisters a callback function for the doorbell interrupt
* on the primary side. The function will also mask the said doorbell.
*/
void
ntb_unregister_db_callback(struct ntb_softc *ntb, unsigned int idx)
{
unsigned long mask;
if (idx >= ntb->allocated_interrupts || !ntb->db_cb[idx].callback)
return;
mask = ntb_read_2(ntb->reg_ofs.pdb_mask);
mask |= 1 << (idx * ntb->bits_per_vector);
ntb_write_2(ntb->reg_ofs.pdb_mask, mask);
ntb->db_cb[idx].callback = NULL;
}
/**
* ntb_find_transport() - find the transport pointer
* @transport: pointer to pci device
*
* Given the pci device pointer, return the transport pointer passed in when
* the transport attached when it was inited.
*
* RETURNS: pointer to transport.
*/
void *
ntb_find_transport(struct ntb_softc *ntb)
{
return (ntb->ntb_transport);
}
/**
* ntb_register_transport() - Register NTB transport with NTB HW driver
* @transport: transport identifier
*
* This function allows a transport to reserve the hardware driver for
* NTB usage.
*
* RETURNS: pointer to ntb_softc, NULL on error.
*/
struct ntb_softc *
ntb_register_transport(struct ntb_softc *ntb, void *transport)
{
/*
* TODO: when we have more than one transport, we will need to rewrite
* this to prevent race conditions
*/
if (ntb->ntb_transport != NULL)
return (NULL);
ntb->ntb_transport = transport;
return (ntb);
}
/**
* ntb_unregister_transport() - Unregister the transport with the NTB HW driver
* @ntb - ntb_softc of the transport to be freed
*
* This function unregisters the transport from the HW driver and performs any
* necessary cleanups.
*/
void
ntb_unregister_transport(struct ntb_softc *ntb)
{
int i;
if (ntb->ntb_transport == NULL)
return;
for (i = 0; i < ntb->allocated_interrupts; i++)
ntb_unregister_db_callback(ntb, i);
ntb_unregister_event_callback(ntb);
ntb->ntb_transport = NULL;
}
/**
* ntb_get_max_spads() - get the total scratch regs usable
* @ntb: pointer to ntb_softc instance
*
* This function returns the max 32bit scratchpad registers usable by the
* upper layer.
*
* RETURNS: total number of scratch pad registers available
*/
int
ntb_get_max_spads(struct ntb_softc *ntb)
{
return (ntb->limits.max_spads);
}
/**
* ntb_write_local_spad() - write to the secondary scratchpad register
* @ntb: pointer to ntb_softc instance
* @idx: index to the scratchpad register, 0 based
* @val: the data value to put into the register
*
* This function allows writing of a 32bit value to the indexed scratchpad
* register. The register resides on the secondary (external) side.
*
* RETURNS: An appropriate -ERRNO error value on error, or zero for success.
*/
int
ntb_write_local_spad(struct ntb_softc *ntb, unsigned int idx, uint32_t val)
{
if (idx >= ntb->limits.max_spads)
return (EINVAL);
ntb_write_4(ntb->reg_ofs.spad_local + idx * 4, val);
return (0);
}
/**
* ntb_read_local_spad() - read from the primary scratchpad register
* @ntb: pointer to ntb_softc instance
* @idx: index to scratchpad register, 0 based
* @val: pointer to 32bit integer for storing the register value
*
* This function allows reading of the 32bit scratchpad register on
* the primary (internal) side.
*
* RETURNS: An appropriate -ERRNO error value on error, or zero for success.
*/
int
ntb_read_local_spad(struct ntb_softc *ntb, unsigned int idx, uint32_t *val)
{
if (idx >= ntb->limits.max_spads)
return (EINVAL);
*val = ntb_read_4(ntb->reg_ofs.spad_local + idx * 4);
return (0);
}
/**
* ntb_write_remote_spad() - write to the secondary scratchpad register
* @ntb: pointer to ntb_softc instance
* @idx: index to the scratchpad register, 0 based
* @val: the data value to put into the register
*
* This function allows writing of a 32bit value to the indexed scratchpad
* register. The register resides on the secondary (external) side.
*
* RETURNS: An appropriate -ERRNO error value on error, or zero for success.
*/
int
ntb_write_remote_spad(struct ntb_softc *ntb, unsigned int idx, uint32_t val)
{
if (idx >= ntb->limits.max_spads)
return (EINVAL);
ntb_write_4(ntb->reg_ofs.spad_remote + idx * 4, val);
return (0);
}
/**
* ntb_read_remote_spad() - read from the primary scratchpad register
* @ntb: pointer to ntb_softc instance
* @idx: index to scratchpad register, 0 based
* @val: pointer to 32bit integer for storing the register value
*
* This function allows reading of the 32bit scratchpad register on
* the primary (internal) side.
*
* RETURNS: An appropriate -ERRNO error value on error, or zero for success.
*/
int
ntb_read_remote_spad(struct ntb_softc *ntb, unsigned int idx, uint32_t *val)
{
if (idx >= ntb->limits.max_spads)
return (EINVAL);
*val = ntb_read_4(ntb->reg_ofs.spad_remote + idx * 4);
return (0);
}
/**
* ntb_get_mw_vbase() - get virtual addr for the NTB memory window
* @ntb: pointer to ntb_softc instance
* @mw: memory window number
*
* This function provides the base virtual address of the memory window
* specified.
*
* RETURNS: pointer to virtual address, or NULL on error.
*/
void *
ntb_get_mw_vbase(struct ntb_softc *ntb, unsigned int mw)
{
if (mw >= NTB_NUM_MW)
return (NULL);
return (ntb->bar_info[NTB_MW_TO_BAR(mw)].vbase);
}
vm_paddr_t
ntb_get_mw_pbase(struct ntb_softc *ntb, unsigned int mw)
{
if (mw >= NTB_NUM_MW)
return (0);
return (ntb->bar_info[NTB_MW_TO_BAR(mw)].pbase);
}
/**
* ntb_get_mw_size() - return size of NTB memory window
* @ntb: pointer to ntb_softc instance
* @mw: memory window number
*
* This function provides the physical size of the memory window specified
*
* RETURNS: the size of the memory window or zero on error
*/
u_long
ntb_get_mw_size(struct ntb_softc *ntb, unsigned int mw)
{
if (mw >= NTB_NUM_MW)
return (0);
return (ntb->bar_info[NTB_MW_TO_BAR(mw)].size);
}
/**
* ntb_set_mw_addr - set the memory window address
* @ntb: pointer to ntb_softc instance
* @mw: memory window number
* @addr: base address for data
*
* This function sets the base physical address of the memory window. This
* memory address is where data from the remote system will be transfered into
* or out of depending on how the transport is configured.
*/
void
ntb_set_mw_addr(struct ntb_softc *ntb, unsigned int mw, uint64_t addr)
{
if (mw >= NTB_NUM_MW)
return;
switch (NTB_MW_TO_BAR(mw)) {
case NTB_B2B_BAR_1:
ntb_write_8(ntb->reg_ofs.sbar2_xlat, addr);
break;
case NTB_B2B_BAR_2:
ntb_write_8(ntb->reg_ofs.sbar4_xlat, addr);
break;
}
}
/**
* ntb_ring_sdb() - Set the doorbell on the secondary/external side
* @ntb: pointer to ntb_softc instance
* @db: doorbell to ring
*
* This function allows triggering of a doorbell on the secondary/external
* side that will initiate an interrupt on the remote host
*
* RETURNS: An appropriate -ERRNO error value on error, or zero for success.
*/
void
ntb_ring_sdb(struct ntb_softc *ntb, unsigned int db)
{
if (ntb->type == NTB_SOC)
ntb_write_8(ntb->reg_ofs.sdb, (uint64_t) 1 << db);
else
ntb_write_2(ntb->reg_ofs.sdb,
((1 << ntb->bits_per_vector) - 1) <<
(db * ntb->bits_per_vector));
}
/**
* ntb_query_link_status() - return the hardware link status
* @ndev: pointer to ntb_device instance
*
* Returns true if the hardware is connected to the remote system
*
* RETURNS: true or false based on the hardware link state
*/
bool
ntb_query_link_status(struct ntb_softc *ntb)
{
return (ntb->link_status == NTB_LINK_UP);
}
static bool
is_bar_for_data_transfer(int bar_num)
{
if ((bar_num > NTB_CONFIG_BAR) && (bar_num < NTB_MAX_BARS))
return true;
else
return false;
}
|