1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
|
/*
* Copyright (C) 2012 Matteo Landi, Luigi Rizzo. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* $FreeBSD$
* $Id: netmap_mem2.c 10830 2012-03-22 18:06:01Z luigi $
*
* New memory allocator for netmap
*/
/*
* The new version allocates three regions:
* nm_if_pool for the struct netmap_if
* nm_ring_pool for the struct netmap_ring
* nm_buf_pool for the packet buffers.
*
* All regions need to be page-sized as we export them to
* userspace through mmap. Only the latter need to be dma-able,
* but for convenience use the same type of allocator for all.
*
* Once mapped, the three regions are exported to userspace
* as a contiguous block, starting from nm_if_pool. Each
* cluster (and pool) is an integral number of pages.
* [ . . . ][ . . . . . .][ . . . . . . . . . .]
* nm_if nm_ring nm_buf
*
* The userspace areas contain offsets of the objects in userspace.
* When (at init time) we write these offsets, we find out the index
* of the object, and from there locate the offset from the beginning
* of the region.
*
* Allocator for a pool of memory objects of the same size.
* The pool is split into smaller clusters, whose size is a
* multiple of the page size. The cluster size is chosen
* to minimize the waste for a given max cluster size
* (we do it by brute force, as we have relatively few object
* per cluster).
*
* To be polite with the cache, objects are aligned to
* the cache line, or 64 bytes. Sizes are rounded to multiple of 64.
* For each object we have
* one entry in the bitmap to signal the state. Allocation scans
* the bitmap, but since this is done only on attach, we are not
* too worried about performance
*/
/*
* MEMORY SIZES:
*
* (all the parameters below will become tunables)
*
* struct netmap_if is variable size but small.
* Assuming each NIC has 8+2 rings, (4+1 tx, 4+1 rx) the netmap_if
* uses 120 bytes on a 64-bit machine.
* We allocate NETMAP_IF_MAX_SIZE (1024) which should work even for
* cards with 48 ring pairs.
* The total number of 'struct netmap_if' could be slightly larger
* that the total number of rings on all interfaces on the system.
*/
#define NETMAP_IF_MAX_SIZE 1024
#define NETMAP_IF_MAX_NUM 512
/*
* netmap rings are up to 2..4k descriptors, 8 bytes each,
* plus some glue at the beginning (32 bytes).
* We set the default ring size to 9 pages (36K) and enable
* a few hundreds of them.
*/
#define NETMAP_RING_MAX_SIZE (9*PAGE_SIZE)
#define NETMAP_RING_MAX_NUM 200 /* approx 8MB */
/*
* Buffers: the more the better. Buffer size is NETMAP_BUF_SIZE,
* 2k or slightly less, aligned to 64 bytes.
* A large 10G interface can have 2k*18 = 36k buffers per interface,
* or about 72MB of memory. Up to us to use more.
*/
#ifndef CONSERVATIVE
#define NETMAP_BUF_MAX_NUM 100000 /* 200MB */
#else /* CONSERVATIVE */
#define NETMAP_BUF_MAX_NUM 20000 /* 40MB */
#endif
struct netmap_obj_pool {
char name[16]; /* name of the allocator */
u_int objtotal; /* actual total number of objects. */
u_int objfree; /* number of free objects. */
u_int clustentries; /* actual objects per cluster */
/* the total memory space is _numclusters*_clustsize */
u_int _numclusters; /* how many clusters */
u_int _clustsize; /* cluster size */
u_int _objsize; /* actual object size */
u_int _memtotal; /* _numclusters*_clustsize */
struct lut_entry *lut; /* virt,phys addresses, objtotal entries */
uint32_t *bitmap; /* one bit per buffer, 1 means free */
};
struct netmap_mem_d {
NM_LOCK_T nm_mtx; /* protect the allocator ? */
u_int nm_totalsize; /* shorthand */
/* pointers to the three allocators */
struct netmap_obj_pool *nm_if_pool;
struct netmap_obj_pool *nm_ring_pool;
struct netmap_obj_pool *nm_buf_pool;
};
struct lut_entry *netmap_buffer_lut; /* exported */
/*
* Convert a userspace offset to a phisical address.
* XXX re-do in a simpler way.
*
* The idea here is to hide userspace applications the fact that pre-allocated
* memory is not contiguous, but fragmented across different clusters and
* smaller memory allocators. Consequently, first of all we need to find which
* allocator is owning provided offset, then we need to find out the physical
* address associated to target page (this is done using the look-up table.
*/
static inline vm_paddr_t
netmap_ofstophys(vm_offset_t offset)
{
const struct netmap_obj_pool *p[] = {
nm_mem->nm_if_pool,
nm_mem->nm_ring_pool,
nm_mem->nm_buf_pool };
int i;
vm_offset_t o = offset;
for (i = 0; i < 3; offset -= p[i]->_memtotal, i++) {
if (offset >= p[i]->_memtotal)
continue;
// XXX now scan the clusters
return p[i]->lut[offset / p[i]->_objsize].paddr +
offset % p[i]->_objsize;
}
D("invalid ofs 0x%x out of 0x%x 0x%x 0x%x", (u_int)o,
p[0]->_memtotal, p[0]->_memtotal + p[1]->_memtotal,
p[0]->_memtotal + p[1]->_memtotal + p[2]->_memtotal);
return 0; // XXX bad address
}
/*
* we store objects by kernel address, need to find the offset
* within the pool to export the value to userspace.
* Algorithm: scan until we find the cluster, then add the
* actual offset in the cluster
*/
static ssize_t
netmap_obj_offset(struct netmap_obj_pool *p, const void *vaddr)
{
int i, k = p->clustentries, n = p->objtotal;
ssize_t ofs = 0;
for (i = 0; i < n; i += k, ofs += p->_clustsize) {
const char *base = p->lut[i].vaddr;
ssize_t relofs = (const char *) vaddr - base;
if (relofs < 0 || relofs > p->_clustsize)
continue;
ofs = ofs + relofs;
ND("%s: return offset %d (cluster %d) for pointer %p",
p->name, ofs, i, vaddr);
return ofs;
}
D("address %p is not contained inside any cluster (%s)",
vaddr, p->name);
return 0; /* An error occurred */
}
/* Helper functions which convert virtual addresses to offsets */
#define netmap_if_offset(v) \
netmap_obj_offset(nm_mem->nm_if_pool, (v))
#define netmap_ring_offset(v) \
(nm_mem->nm_if_pool->_memtotal + \
netmap_obj_offset(nm_mem->nm_ring_pool, (v)))
#define netmap_buf_offset(v) \
(nm_mem->nm_if_pool->_memtotal + \
nm_mem->nm_ring_pool->_memtotal + \
netmap_obj_offset(nm_mem->nm_buf_pool, (v)))
static void *
netmap_obj_malloc(struct netmap_obj_pool *p, int len)
{
uint32_t i = 0; /* index in the bitmap */
uint32_t mask, j; /* slot counter */
void *vaddr = NULL;
if (len > p->_objsize) {
D("%s request size %d too large", p->name, len);
// XXX cannot reduce the size
return NULL;
}
if (p->objfree == 0) {
D("%s allocator: run out of memory", p->name);
return NULL;
}
/* termination is guaranteed by p->free */
while (vaddr == NULL) {
uint32_t cur = p->bitmap[i];
if (cur == 0) { /* bitmask is fully used */
i++;
continue;
}
/* locate a slot */
for (j = 0, mask = 1; (cur & mask) == 0; j++, mask <<= 1)
;
p->bitmap[i] &= ~mask; /* mark object as in use */
p->objfree--;
vaddr = p->lut[i * 32 + j].vaddr;
}
ND("%s allocator: allocated object @ [%d][%d]: vaddr %p", i, j, vaddr);
return vaddr;
}
/*
* free by index, not by address
*/
static void
netmap_obj_free(struct netmap_obj_pool *p, uint32_t j)
{
if (j >= p->objtotal) {
D("invalid index %u, max %u", j, p->objtotal);
return;
}
p->bitmap[j / 32] |= (1 << (j % 32));
p->objfree++;
return;
}
static void
netmap_obj_free_va(struct netmap_obj_pool *p, void *vaddr)
{
int i, j, n = p->_memtotal / p->_clustsize;
for (i = 0, j = 0; i < n; i++, j += p->clustentries) {
void *base = p->lut[i * p->clustentries].vaddr;
ssize_t relofs = (ssize_t) vaddr - (ssize_t) base;
/* Given address, is out of the scope of the current cluster.*/
if (vaddr < base || relofs > p->_clustsize)
continue;
j = j + relofs / p->_objsize;
KASSERT(j != 0, ("Cannot free object 0"));
netmap_obj_free(p, j);
return;
}
ND("address %p is not contained inside any cluster (%s)",
vaddr, p->name);
}
#define netmap_if_malloc(len) netmap_obj_malloc(nm_mem->nm_if_pool, len)
#define netmap_if_free(v) netmap_obj_free_va(nm_mem->nm_if_pool, (v))
#define netmap_ring_malloc(len) netmap_obj_malloc(nm_mem->nm_ring_pool, len)
#define netmap_buf_malloc() \
netmap_obj_malloc(nm_mem->nm_buf_pool, NETMAP_BUF_SIZE)
/* Return the index associated to the given packet buffer */
#define netmap_buf_index(v) \
(netmap_obj_offset(nm_mem->nm_buf_pool, (v)) / nm_mem->nm_buf_pool->_objsize)
static void
netmap_new_bufs(struct netmap_if *nifp __unused,
struct netmap_slot *slot, u_int n)
{
struct netmap_obj_pool *p = nm_mem->nm_buf_pool;
uint32_t i = 0; /* slot counter */
for (i = 0; i < n; i++) {
void *vaddr = netmap_buf_malloc();
if (vaddr == NULL) {
D("unable to locate empty packet buffer");
goto cleanup;
}
slot[i].buf_idx = netmap_buf_index(vaddr);
KASSERT(slot[i].buf_idx != 0,
("Assigning buf_idx=0 to just created slot"));
slot[i].len = p->_objsize;
slot[i].flags = NS_BUF_CHANGED; // XXX GAETANO hack
}
ND("allocated %d buffers, %d available", n, p->objfree);
return;
cleanup:
for (i--; i >= 0; i--) {
netmap_obj_free(nm_mem->nm_buf_pool, slot[i].buf_idx);
}
}
static void
netmap_free_buf(struct netmap_if *nifp, uint32_t i)
{
struct netmap_obj_pool *p = nm_mem->nm_buf_pool;
if (i < 2 || i >= p->objtotal) {
D("Cannot free buf#%d: should be in [2, %d[", i, p->objtotal);
return;
}
netmap_obj_free(nm_mem->nm_buf_pool, i);
}
/*
* Free all resources related to an allocator.
*/
static void
netmap_destroy_obj_allocator(struct netmap_obj_pool *p)
{
if (p == NULL)
return;
if (p->bitmap)
free(p->bitmap, M_NETMAP);
if (p->lut) {
int i;
for (i = 0; i < p->objtotal; i += p->clustentries) {
if (p->lut[i].vaddr)
contigfree(p->lut[i].vaddr, p->_clustsize, M_NETMAP);
}
bzero(p->lut, sizeof(struct lut_entry) * p->objtotal);
free(p->lut, M_NETMAP);
}
bzero(p, sizeof(*p));
free(p, M_NETMAP);
}
/*
* We receive a request for objtotal objects, of size objsize each.
* Internally we may round up both numbers, as we allocate objects
* in small clusters multiple of the page size.
* In the allocator we don't need to store the objsize,
* but we do need to keep track of objtotal' and clustentries,
* as they are needed when freeing memory.
*
* XXX note -- userspace needs the buffers to be contiguous,
* so we cannot afford gaps at the end of a cluster.
*/
static struct netmap_obj_pool *
netmap_new_obj_allocator(const char *name, u_int objtotal, u_int objsize)
{
struct netmap_obj_pool *p;
int i, n;
u_int clustsize; /* the cluster size, multiple of page size */
u_int clustentries; /* how many objects per entry */
#define MAX_CLUSTSIZE (1<<17)
#define LINE_ROUND 64
if (objsize >= MAX_CLUSTSIZE) {
/* we could do it but there is no point */
D("unsupported allocation for %d bytes", objsize);
return NULL;
}
/* make sure objsize is a multiple of LINE_ROUND */
i = (objsize & (LINE_ROUND - 1));
if (i) {
D("XXX aligning object by %d bytes", LINE_ROUND - i);
objsize += LINE_ROUND - i;
}
/*
* Compute number of objects using a brute-force approach:
* given a max cluster size,
* we try to fill it with objects keeping track of the
* wasted space to the next page boundary.
*/
for (clustentries = 0, i = 1;; i++) {
u_int delta, used = i * objsize;
if (used > MAX_CLUSTSIZE)
break;
delta = used % PAGE_SIZE;
if (delta == 0) { // exact solution
clustentries = i;
break;
}
if (delta > ( (clustentries*objsize) % PAGE_SIZE) )
clustentries = i;
}
// D("XXX --- ouch, delta %d (bad for buffers)", delta);
/* compute clustsize and round to the next page */
clustsize = clustentries * objsize;
i = (clustsize & (PAGE_SIZE - 1));
if (i)
clustsize += PAGE_SIZE - i;
D("objsize %d clustsize %d objects %d",
objsize, clustsize, clustentries);
p = malloc(sizeof(struct netmap_obj_pool), M_NETMAP,
M_WAITOK | M_ZERO);
if (p == NULL) {
D("Unable to create '%s' allocator", name);
return NULL;
}
/*
* Allocate and initialize the lookup table.
*
* The number of clusters is n = ceil(objtotal/clustentries)
* objtotal' = n * clustentries
*/
strncpy(p->name, name, sizeof(p->name));
p->clustentries = clustentries;
p->_clustsize = clustsize;
n = (objtotal + clustentries - 1) / clustentries;
p->_numclusters = n;
p->objtotal = n * clustentries;
p->objfree = p->objtotal - 2; /* obj 0 and 1 are reserved */
p->_objsize = objsize;
p->_memtotal = p->_numclusters * p->_clustsize;
p->lut = malloc(sizeof(struct lut_entry) * p->objtotal,
M_NETMAP, M_WAITOK | M_ZERO);
if (p->lut == NULL) {
D("Unable to create lookup table for '%s' allocator", name);
goto clean;
}
/* Allocate the bitmap */
n = (p->objtotal + 31) / 32;
p->bitmap = malloc(sizeof(uint32_t) * n, M_NETMAP, M_WAITOK | M_ZERO);
if (p->bitmap == NULL) {
D("Unable to create bitmap (%d entries) for allocator '%s'", n,
name);
goto clean;
}
/*
* Allocate clusters, init pointers and bitmap
*/
for (i = 0; i < p->objtotal;) {
int lim = i + clustentries;
char *clust;
clust = contigmalloc(clustsize, M_NETMAP, M_WAITOK | M_ZERO,
0, -1UL, PAGE_SIZE, 0);
if (clust == NULL) {
/*
* If we get here, there is a severe memory shortage,
* so halve the allocated memory to reclaim some.
*/
D("Unable to create cluster at %d for '%s' allocator",
i, name);
lim = i / 2;
for (; i >= lim; i--) {
p->bitmap[ (i>>5) ] &= ~( 1 << (i & 31) );
if (i % clustentries == 0 && p->lut[i].vaddr)
contigfree(p->lut[i].vaddr,
p->_clustsize, M_NETMAP);
}
p->objtotal = i;
p->objfree = p->objtotal - 2;
p->_numclusters = i / clustentries;
p->_memtotal = p->_numclusters * p->_clustsize;
break;
}
for (; i < lim; i++, clust += objsize) {
p->bitmap[ (i>>5) ] |= ( 1 << (i & 31) );
p->lut[i].vaddr = clust;
p->lut[i].paddr = vtophys(clust);
}
}
p->bitmap[0] = ~3; /* objs 0 and 1 is always busy */
D("Pre-allocated %d clusters (%d/%dKB) for '%s'",
p->_numclusters, p->_clustsize >> 10,
p->_memtotal >> 10, name);
return p;
clean:
netmap_destroy_obj_allocator(p);
return NULL;
}
static int
netmap_memory_init(void)
{
struct netmap_obj_pool *p;
nm_mem = malloc(sizeof(struct netmap_mem_d), M_NETMAP,
M_WAITOK | M_ZERO);
if (nm_mem == NULL)
goto clean;
p = netmap_new_obj_allocator("netmap_if",
NETMAP_IF_MAX_NUM, NETMAP_IF_MAX_SIZE);
if (p == NULL)
goto clean;
nm_mem->nm_if_pool = p;
p = netmap_new_obj_allocator("netmap_ring",
NETMAP_RING_MAX_NUM, NETMAP_RING_MAX_SIZE);
if (p == NULL)
goto clean;
nm_mem->nm_ring_pool = p;
p = netmap_new_obj_allocator("netmap_buf",
NETMAP_BUF_MAX_NUM, NETMAP_BUF_SIZE);
if (p == NULL)
goto clean;
netmap_total_buffers = p->objtotal;
netmap_buffer_lut = p->lut;
nm_mem->nm_buf_pool = p;
netmap_buffer_base = p->lut[0].vaddr;
mtx_init(&nm_mem->nm_mtx, "netmap memory allocator lock", NULL,
MTX_DEF);
nm_mem->nm_totalsize =
nm_mem->nm_if_pool->_memtotal +
nm_mem->nm_ring_pool->_memtotal +
nm_mem->nm_buf_pool->_memtotal;
D("Have %d KB for interfaces, %d KB for rings and %d MB for buffers",
nm_mem->nm_if_pool->_memtotal >> 10,
nm_mem->nm_ring_pool->_memtotal >> 10,
nm_mem->nm_buf_pool->_memtotal >> 20);
return 0;
clean:
if (nm_mem) {
netmap_destroy_obj_allocator(nm_mem->nm_ring_pool);
netmap_destroy_obj_allocator(nm_mem->nm_if_pool);
free(nm_mem, M_NETMAP);
}
return ENOMEM;
}
static void
netmap_memory_fini(void)
{
if (!nm_mem)
return;
netmap_destroy_obj_allocator(nm_mem->nm_if_pool);
netmap_destroy_obj_allocator(nm_mem->nm_ring_pool);
netmap_destroy_obj_allocator(nm_mem->nm_buf_pool);
mtx_destroy(&nm_mem->nm_mtx);
free(nm_mem, M_NETMAP);
}
static void *
netmap_if_new(const char *ifname, struct netmap_adapter *na)
{
struct netmap_if *nifp;
struct netmap_ring *ring;
ssize_t base; /* handy for relative offsets between rings and nifp */
u_int i, len, ndesc;
u_int ntx = na->num_tx_rings + 1; /* shorthand, include stack ring */
u_int nrx = na->num_rx_rings + 1; /* shorthand, include stack ring */
struct netmap_kring *kring;
NMA_LOCK();
/*
* the descriptor is followed inline by an array of offsets
* to the tx and rx rings in the shared memory region.
*/
len = sizeof(struct netmap_if) + (nrx + ntx) * sizeof(ssize_t);
nifp = netmap_if_malloc(len);
if (nifp == NULL) {
NMA_UNLOCK();
return NULL;
}
/* initialize base fields -- override const */
*(int *)(uintptr_t)&nifp->ni_tx_rings = na->num_tx_rings;
*(int *)(uintptr_t)&nifp->ni_rx_rings = na->num_rx_rings;
strncpy(nifp->ni_name, ifname, IFNAMSIZ);
(na->refcount)++; /* XXX atomic ? we are under lock */
if (na->refcount > 1) { /* already setup, we are done */
NMA_UNLOCK();
goto final;
}
/*
* First instance, allocate netmap rings and buffers for this card
* The rings are contiguous, but have variable size.
*/
for (i = 0; i < ntx; i++) { /* Transmit rings */
kring = &na->tx_rings[i];
ndesc = na->num_tx_desc;
bzero(kring, sizeof(*kring));
len = sizeof(struct netmap_ring) +
ndesc * sizeof(struct netmap_slot);
ring = netmap_ring_malloc(len);
if (ring == NULL) {
D("Cannot allocate tx_ring[%d] for %s", i, ifname);
goto cleanup;
}
ND("txring[%d] at %p ofs %d", i, ring);
kring->na = na;
kring->ring = ring;
*(int *)(uintptr_t)&ring->num_slots = kring->nkr_num_slots = ndesc;
*(ssize_t *)(uintptr_t)&ring->buf_ofs =
(nm_mem->nm_if_pool->_memtotal +
nm_mem->nm_ring_pool->_memtotal) -
netmap_ring_offset(ring);
/*
* IMPORTANT:
* Always keep one slot empty, so we can detect new
* transmissions comparing cur and nr_hwcur (they are
* the same only if there are no new transmissions).
*/
ring->avail = kring->nr_hwavail = ndesc - 1;
ring->cur = kring->nr_hwcur = 0;
*(int *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
ND("initializing slots for txring[%d]", i);
netmap_new_bufs(nifp, ring->slot, ndesc);
}
for (i = 0; i < nrx; i++) { /* Receive rings */
kring = &na->rx_rings[i];
ndesc = na->num_rx_desc;
bzero(kring, sizeof(*kring));
len = sizeof(struct netmap_ring) +
ndesc * sizeof(struct netmap_slot);
ring = netmap_ring_malloc(len);
if (ring == NULL) {
D("Cannot allocate rx_ring[%d] for %s", i, ifname);
goto cleanup;
}
ND("rxring[%d] at %p ofs %d", i, ring);
kring->na = na;
kring->ring = ring;
*(int *)(uintptr_t)&ring->num_slots = kring->nkr_num_slots = ndesc;
*(ssize_t *)(uintptr_t)&ring->buf_ofs =
(nm_mem->nm_if_pool->_memtotal +
nm_mem->nm_ring_pool->_memtotal) -
netmap_ring_offset(ring);
ring->cur = kring->nr_hwcur = 0;
ring->avail = kring->nr_hwavail = 0; /* empty */
*(int *)(uintptr_t)&ring->nr_buf_size = NETMAP_BUF_SIZE;
ND("initializing slots for rxring[%d]", i);
netmap_new_bufs(nifp, ring->slot, ndesc);
}
NMA_UNLOCK();
#ifdef linux
// XXX initialize the selrecord structs.
for (i = 0; i < ntx; i++)
init_waitqueue_head(&na->rx_rings[i].si);
for (i = 0; i < nrx; i++)
init_waitqueue_head(&na->tx_rings[i].si);
init_waitqueue_head(&na->rx_si);
init_waitqueue_head(&na->tx_si);
#endif
final:
/*
* fill the slots for the rx and tx rings. They contain the offset
* between the ring and nifp, so the information is usable in
* userspace to reach the ring from the nifp.
*/
base = netmap_if_offset(nifp);
for (i = 0; i < ntx; i++) {
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i] =
netmap_ring_offset(na->tx_rings[i].ring) - base;
}
for (i = 0; i < nrx; i++) {
*(ssize_t *)(uintptr_t)&nifp->ring_ofs[i+ntx] =
netmap_ring_offset(na->rx_rings[i].ring) - base;
}
return (nifp);
cleanup:
// XXX missing
NMA_UNLOCK();
return NULL;
}
static void
netmap_free_rings(struct netmap_adapter *na)
{
int i;
for (i = 0; i < na->num_tx_rings + 1; i++)
netmap_obj_free_va(nm_mem->nm_ring_pool,
na->tx_rings[i].ring);
for (i = 0; i < na->num_rx_rings + 1; i++)
netmap_obj_free_va(nm_mem->nm_ring_pool,
na->rx_rings[i].ring);
}
|