1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
|
/*
* Copyright (c) 2002-2008 Sam Leffler, Errno Consulting
* Copyright (c) 2002-2008 Atheros Communications, Inc.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
* $FreeBSD$
*/
#include "opt_ah.h"
#include "ah.h"
#include "ah_internal.h"
#include "ar5416/ar5416.h"
#include "ar5416/ar5416reg.h"
/*
* Checks to see if an interrupt is pending on our NIC
*
* Returns: TRUE if an interrupt is pending
* FALSE if not
*/
HAL_BOOL
ar5416IsInterruptPending(struct ath_hal *ah)
{
uint32_t isr;
if (AR_SREV_HOWL(ah))
return AH_TRUE;
/*
* Some platforms trigger our ISR before applying power to
* the card, so make sure the INTPEND is really 1, not 0xffffffff.
*/
isr = OS_REG_READ(ah, AR_INTR_ASYNC_CAUSE);
if (isr != AR_INTR_SPURIOUS && (isr & AR_INTR_MAC_IRQ) != 0)
return AH_TRUE;
isr = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
if (isr != AR_INTR_SPURIOUS && (isr & AR_INTR_SYNC_DEFAULT))
return AH_TRUE;
return AH_FALSE;
}
/*
* Reads the Interrupt Status Register value from the NIC, thus deasserting
* the interrupt line, and returns both the masked and unmasked mapped ISR
* values. The value returned is mapped to abstract the hw-specific bit
* locations in the Interrupt Status Register.
*
* (*masked) is cleared on initial call.
*
* Returns: A hardware-abstracted bitmap of all non-masked-out
* interrupts pending, as well as an unmasked value
*/
HAL_BOOL
ar5416GetPendingInterrupts(struct ath_hal *ah, HAL_INT *masked)
{
uint32_t isr, isr0, isr1, sync_cause = 0, o_sync_cause = 0;
HAL_CAPABILITIES *pCap = &AH_PRIVATE(ah)->ah_caps;
#ifdef AH_INTERRUPT_DEBUGGING
/*
* Blank the interrupt debugging area regardless.
*/
bzero(&ah->ah_intrstate, sizeof(ah->ah_intrstate));
ah->ah_syncstate = 0;
#endif
/*
* Verify there's a mac interrupt and the RTC is on.
*/
if (AR_SREV_HOWL(ah)) {
*masked = 0;
isr = OS_REG_READ(ah, AR_ISR);
} else {
if ((OS_REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) &&
(OS_REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M) == AR_RTC_STATUS_ON)
isr = OS_REG_READ(ah, AR_ISR);
else
isr = 0;
#ifdef AH_INTERRUPT_DEBUGGING
ah->ah_syncstate =
#endif
o_sync_cause = sync_cause = OS_REG_READ(ah, AR_INTR_SYNC_CAUSE);
sync_cause &= AR_INTR_SYNC_DEFAULT;
*masked = 0;
if (isr == 0 && sync_cause == 0)
return AH_FALSE;
}
#ifdef AH_INTERRUPT_DEBUGGING
ah->ah_intrstate[0] = isr;
ah->ah_intrstate[1] = OS_REG_READ(ah, AR_ISR_S0);
ah->ah_intrstate[2] = OS_REG_READ(ah, AR_ISR_S1);
ah->ah_intrstate[3] = OS_REG_READ(ah, AR_ISR_S2);
ah->ah_intrstate[4] = OS_REG_READ(ah, AR_ISR_S3);
ah->ah_intrstate[5] = OS_REG_READ(ah, AR_ISR_S4);
ah->ah_intrstate[6] = OS_REG_READ(ah, AR_ISR_S5);
#endif
if (isr != 0) {
struct ath_hal_5212 *ahp = AH5212(ah);
uint32_t mask2;
mask2 = 0;
if (isr & AR_ISR_BCNMISC) {
uint32_t isr2 = OS_REG_READ(ah, AR_ISR_S2);
if (isr2 & AR_ISR_S2_TIM)
mask2 |= HAL_INT_TIM;
if (isr2 & AR_ISR_S2_DTIM)
mask2 |= HAL_INT_DTIM;
if (isr2 & AR_ISR_S2_DTIMSYNC)
mask2 |= HAL_INT_DTIMSYNC;
if (isr2 & (AR_ISR_S2_CABEND ))
mask2 |= HAL_INT_CABEND;
if (isr2 & AR_ISR_S2_GTT)
mask2 |= HAL_INT_GTT;
if (isr2 & AR_ISR_S2_CST)
mask2 |= HAL_INT_CST;
if (isr2 & AR_ISR_S2_TSFOOR)
mask2 |= HAL_INT_TSFOOR;
/*
* Don't mask out AR_BCNMISC; instead mask
* out what causes it.
*/
OS_REG_WRITE(ah, AR_ISR_S2, isr2);
isr &= ~AR_ISR_BCNMISC;
}
if (isr == 0xffffffff) {
*masked = 0;
return AH_FALSE;
}
*masked = isr & HAL_INT_COMMON;
if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
*masked |= HAL_INT_RX;
if (isr & (AR_ISR_TXMINTR | AR_ISR_TXINTM))
*masked |= HAL_INT_TX;
/*
* When doing RX interrupt mitigation, the RXOK bit is set
* in AR_ISR even if the relevant bit in AR_IMR is clear.
* Since this interrupt may be due to another source, don't
* just automatically set HAL_INT_RX if it's set, otherwise
* we could prematurely service the RX queue.
*
* In some cases, the driver can even handle all the RX
* frames just before the mitigation interrupt fires.
* The subsequent RX processing trip will then end up
* processing 0 frames.
*/
#ifdef AH_AR5416_INTERRUPT_MITIGATION
if (isr & AR_ISR_RXERR)
*masked |= HAL_INT_RX;
#else
if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
*masked |= HAL_INT_RX;
#endif
if (isr & (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
AR_ISR_TXEOL)) {
*masked |= HAL_INT_TX;
isr0 = OS_REG_READ(ah, AR_ISR_S0);
OS_REG_WRITE(ah, AR_ISR_S0, isr0);
isr1 = OS_REG_READ(ah, AR_ISR_S1);
OS_REG_WRITE(ah, AR_ISR_S1, isr1);
/*
* Don't clear the primary ISR TX bits, clear
* what causes them (S0/S1.)
*/
isr &= ~(AR_ISR_TXOK | AR_ISR_TXDESC |
AR_ISR_TXERR | AR_ISR_TXEOL);
ahp->ah_intrTxqs |= MS(isr0, AR_ISR_S0_QCU_TXOK);
ahp->ah_intrTxqs |= MS(isr0, AR_ISR_S0_QCU_TXDESC);
ahp->ah_intrTxqs |= MS(isr1, AR_ISR_S1_QCU_TXERR);
ahp->ah_intrTxqs |= MS(isr1, AR_ISR_S1_QCU_TXEOL);
}
if ((isr & AR_ISR_GENTMR) || (! pCap->halAutoSleepSupport)) {
uint32_t isr5;
isr5 = OS_REG_READ(ah, AR_ISR_S5);
OS_REG_WRITE(ah, AR_ISR_S5, isr5);
isr &= ~AR_ISR_GENTMR;
if (! pCap->halAutoSleepSupport)
if (isr5 & AR_ISR_S5_TIM_TIMER)
*masked |= HAL_INT_TIM_TIMER;
}
*masked |= mask2;
}
/*
* Since we're not using AR_ISR_RAC, clear the status bits
* for handled interrupts here. For bits whose interrupt
* source is a secondary register, those bits should've been
* masked out - instead of those bits being written back,
* their source (ie, the secondary status registers) should
* be cleared. That way there are no race conditions with
* new triggers coming in whilst they've been read/cleared.
*/
OS_REG_WRITE(ah, AR_ISR, isr);
/* Flush previous write */
OS_REG_READ(ah, AR_ISR);
if (AR_SREV_HOWL(ah))
return AH_TRUE;
if (sync_cause != 0) {
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: sync_cause=0x%x\n",
__func__,
o_sync_cause);
if (sync_cause & (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR)) {
*masked |= HAL_INT_FATAL;
}
if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RADM CPL timeout\n",
__func__);
OS_REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
OS_REG_WRITE(ah, AR_RC, 0);
*masked |= HAL_INT_FATAL;
}
/*
* On fatal errors collect ISR state for debugging.
*/
if (*masked & HAL_INT_FATAL) {
AH_PRIVATE(ah)->ah_fatalState[0] = isr;
AH_PRIVATE(ah)->ah_fatalState[1] = sync_cause;
HALDEBUG(ah, HAL_DEBUG_ANY,
"%s: fatal error, ISR_RAC 0x%x SYNC_CAUSE 0x%x\n",
__func__, isr, sync_cause);
}
OS_REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
/* NB: flush write */
(void) OS_REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
}
return AH_TRUE;
}
/*
* Atomically enables NIC interrupts. Interrupts are passed in
* via the enumerated bitmask in ints.
*/
HAL_INT
ar5416SetInterrupts(struct ath_hal *ah, HAL_INT ints)
{
struct ath_hal_5212 *ahp = AH5212(ah);
uint32_t omask = ahp->ah_maskReg;
uint32_t mask, mask2;
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: 0x%x => 0x%x\n",
__func__, omask, ints);
if (omask & HAL_INT_GLOBAL) {
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: disable IER\n", __func__);
OS_REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
(void) OS_REG_READ(ah, AR_IER);
if (! AR_SREV_HOWL(ah)) {
OS_REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
(void) OS_REG_READ(ah, AR_INTR_ASYNC_ENABLE);
OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
(void) OS_REG_READ(ah, AR_INTR_SYNC_ENABLE);
}
}
mask = ints & HAL_INT_COMMON;
mask2 = 0;
#ifdef AH_AR5416_INTERRUPT_MITIGATION
/*
* Overwrite default mask if Interrupt mitigation
* is specified for AR5416
*/
if (ints & HAL_INT_RX)
mask |= AR_IMR_RXERR | AR_IMR_RXMINTR | AR_IMR_RXINTM;
#else
if (ints & HAL_INT_RX)
mask |= AR_IMR_RXOK | AR_IMR_RXERR | AR_IMR_RXDESC;
#endif
if (ints & HAL_INT_TX) {
if (ahp->ah_txOkInterruptMask)
mask |= AR_IMR_TXOK;
if (ahp->ah_txErrInterruptMask)
mask |= AR_IMR_TXERR;
if (ahp->ah_txDescInterruptMask)
mask |= AR_IMR_TXDESC;
if (ahp->ah_txEolInterruptMask)
mask |= AR_IMR_TXEOL;
if (ahp->ah_txUrnInterruptMask)
mask |= AR_IMR_TXURN;
}
if (ints & (HAL_INT_BMISC)) {
mask |= AR_IMR_BCNMISC;
if (ints & HAL_INT_TIM)
mask2 |= AR_IMR_S2_TIM;
if (ints & HAL_INT_DTIM)
mask2 |= AR_IMR_S2_DTIM;
if (ints & HAL_INT_DTIMSYNC)
mask2 |= AR_IMR_S2_DTIMSYNC;
if (ints & HAL_INT_CABEND)
mask2 |= (AR_IMR_S2_CABEND );
if (ints & HAL_INT_CST)
mask2 |= AR_IMR_S2_CST;
if (ints & HAL_INT_TSFOOR)
mask2 |= AR_IMR_S2_TSFOOR;
}
if (ints & (HAL_INT_GTT | HAL_INT_CST)) {
mask |= AR_IMR_BCNMISC;
if (ints & HAL_INT_GTT)
mask2 |= AR_IMR_S2_GTT;
if (ints & HAL_INT_CST)
mask2 |= AR_IMR_S2_CST;
}
/* Write the new IMR and store off our SW copy. */
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: new IMR 0x%x\n", __func__, mask);
OS_REG_WRITE(ah, AR_IMR, mask);
mask = OS_REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
AR_IMR_S2_DTIM |
AR_IMR_S2_DTIMSYNC |
AR_IMR_S2_CABEND |
AR_IMR_S2_CABTO |
AR_IMR_S2_TSFOOR |
AR_IMR_S2_GTT |
AR_IMR_S2_CST);
OS_REG_WRITE(ah, AR_IMR_S2, mask | mask2);
ahp->ah_maskReg = ints;
/* Re-enable interrupts if they were enabled before. */
if (ints & HAL_INT_GLOBAL) {
HALDEBUG(ah, HAL_DEBUG_INTERRUPT, "%s: enable IER\n", __func__);
OS_REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
if (! AR_SREV_HOWL(ah)) {
mask = AR_INTR_MAC_IRQ;
if (ints & HAL_INT_GPIO)
mask |= SM(AH5416(ah)->ah_gpioMask,
AR_INTR_ASYNC_MASK_GPIO);
OS_REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, mask);
OS_REG_WRITE(ah, AR_INTR_ASYNC_MASK, mask);
mask = AR_INTR_SYNC_DEFAULT;
if (ints & HAL_INT_GPIO)
mask |= SM(AH5416(ah)->ah_gpioMask,
AR_INTR_SYNC_MASK_GPIO);
OS_REG_WRITE(ah, AR_INTR_SYNC_ENABLE, mask);
OS_REG_WRITE(ah, AR_INTR_SYNC_MASK, mask);
}
}
return omask;
}
|