summaryrefslogtreecommitdiffstats
path: root/sys/contrib/octeon-sdk/cvmx-nand.c
blob: dc5f7e76d91b2ed181c77c41c73fc2fc1f23ae8e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
/***********************license start***************
 * Copyright (c) 2003-2010  Cavium Inc. (support@cavium.com). All rights
 * reserved.
 *
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are
 * met:
 *
 *   * Redistributions of source code must retain the above copyright
 *     notice, this list of conditions and the following disclaimer.
 *
 *   * Redistributions in binary form must reproduce the above
 *     copyright notice, this list of conditions and the following
 *     disclaimer in the documentation and/or other materials provided
 *     with the distribution.

 *   * Neither the name of Cavium Inc. nor the names of
 *     its contributors may be used to endorse or promote products
 *     derived from this software without specific prior written
 *     permission.

 * This Software, including technical data, may be subject to U.S. export  control
 * laws, including the U.S. Export Administration Act and its  associated
 * regulations, and may be subject to export or import  regulations in other
 * countries.

 * TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
 * AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
 * WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
 * THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
 * DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
 * SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
 * MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
 * VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
 * CORRESPONDENCE TO DESCRIPTION. THE ENTIRE  RISK ARISING OUT OF USE OR
 * PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
 ***********************license end**************************************/



/**
 * @file
 *
 * Interface to the NAND flash controller.
 * See cvmx-nand.h for usage documentation and notes.
 *
 * <hr>$Revision: 35726 $<hr>
 */

#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
#include <linux/module.h>

#include <asm/octeon/cvmx.h>
#include <asm/octeon/cvmx-clock.h>
#include <asm/octeon/cvmx-nand.h>
#include <asm/octeon/cvmx-ndf-defs.h>
#include <asm/octeon/cvmx-swap.h>
#include <asm/octeon/cvmx-bootmem.h>
#else
#include "cvmx.h"
#include "cvmx-nand.h"
#include "cvmx-swap.h"
#include "cvmx-bootmem.h"
#endif
#if defined(__U_BOOT__) && defined(CONFIG_HW_WATCHDOG)
# include <watchdog.h>
#else
# define WATCHDOG_RESET()
#endif

#define NAND_COMMAND_READ_ID            0x90
#define NAND_COMMAND_READ_PARAM_PAGE    0xec
#define NAND_COMMAND_RESET              0xff
#define NAND_COMMAND_STATUS             0x70
#define NAND_COMMAND_READ               0x00
#define NAND_COMMAND_READ_FIN           0x30
#define NAND_COMMAND_ERASE              0x60
#define NAND_COMMAND_ERASE_FIN          0xd0
#define NAND_COMMAND_PROGRAM            0x80
#define NAND_COMMAND_PROGRAM_FIN        0x10
#define NAND_TIMEOUT_USECS_READ         100000
#define NAND_TIMEOUT_USECS_WRITE        1000000
#define NAND_TIMEOUT_USECS_BLOCK_ERASE  1000000

#define CVMX_NAND_ROUNDUP(_Dividend, _Divisor) (((_Dividend)+((_Divisor)-1))/(_Divisor))
#undef min
#define min(X, Y)                               \
        ({ typeof (X) __x = (X);                \
           typeof (Y) __y = (Y);                \
                (__x < __y) ? __x : __y; })

#undef max
#define max(X, Y)                               \
        ({ typeof (X) __x = (X);                \
           typeof (Y) __y = (Y);                \
                (__x > __y) ? __x : __y; })


/* Structure to store the parameters that we care about that
** describe the ONFI speed modes.  This is used to configure
** the flash timing to match what is reported in the
** parameter page of the ONFI flash chip. */
typedef struct
{
    int twp;
    int twh;
    int twc;
    int tclh;
    int tals;
} onfi_speed_mode_desc_t;
static const onfi_speed_mode_desc_t onfi_speed_modes[] =
{

    {50,30,100,20,50},  /* Mode 0 */
    {25,15, 45,10,25},  /* Mode 1 */
    {17,15, 35,10,15},  /* Mode 2 */
    {15,10, 30, 5,10},  /* Mode 3 */
    {12,10, 25, 5,10},  /* Mode 4, requires EDO timings */
    {10, 7, 20, 5,10},  /* Mode 5, requries EDO timings */
    {10,10, 25, 5,12},	/* Mode 6, requires EDO timings */
};



typedef enum
{
    CVMX_NAND_STATE_16BIT = 1<<0,
} cvmx_nand_state_flags_t;

/**
 * Structure used to store data about the NAND devices hooked
 * to the bootbus.
 */
typedef struct
{
    int page_size;
    int oob_size;
    int pages_per_block;
    int blocks;
    int tim_mult;
    int tim_par[8];
    int clen[4];
    int alen[4];
    int rdn[4];
    int wrn[2];
    int onfi_timing;
    cvmx_nand_state_flags_t flags;
} cvmx_nand_state_t;

/**
 * Array indexed by bootbus chip select with information
 * about NAND devices.
 */
#if defined(__U_BOOT__)
/* For u-boot nand boot we need to play some tricks to be able
** to use this early in boot.  We put them in a special section that is merged
** with the text segment.  (Using the text segment directly results in an assembler warning.)
*/
/*#define USE_DATA_IN_TEXT*/
#endif

#ifdef USE_DATA_IN_TEXT
static uint8_t cvmx_nand_buffer[CVMX_NAND_MAX_PAGE_AND_OOB_SIZE] __attribute__((aligned(8)))  __attribute__ ((section (".data_in_text")));
static cvmx_nand_state_t cvmx_nand_state[8] __attribute__ ((section (".data_in_text")));
static cvmx_nand_state_t cvmx_nand_default __attribute__ ((section (".data_in_text")));
static cvmx_nand_initialize_flags_t cvmx_nand_flags __attribute__ ((section (".data_in_text")));
static int debug_indent __attribute__ ((section (".data_in_text")));
#else
static CVMX_SHARED cvmx_nand_state_t cvmx_nand_state[8];
static CVMX_SHARED cvmx_nand_state_t cvmx_nand_default;
static CVMX_SHARED cvmx_nand_initialize_flags_t cvmx_nand_flags;
static CVMX_SHARED uint8_t *cvmx_nand_buffer = NULL;
static int debug_indent = 0;
#endif

static CVMX_SHARED const char *cvmx_nand_opcode_labels[] =
{
    "NOP",                      /* 0 */
    "Timing",                   /* 1 */
    "Wait",                     /* 2 */
    "Chip Enable / Disable",    /* 3 */
    "CLE",                      /* 4 */
    "ALE",                      /* 5 */
    "6 - Unknown",              /* 6 */
    "7 - Unknown",              /* 7 */
    "Write",                    /* 8 */
    "Read",                     /* 9 */
    "Read EDO",                 /* 10 */
    "Wait Status",              /* 11 */
    "12 - Unknown",             /* 12 */
    "13 - Unknown",             /* 13 */
    "14 - Unknown",             /* 14 */
    "Bus Aquire / Release"      /* 15 */
};

#define ULL unsigned long long
/* This macro logs out whenever a function is called if debugging is on */
#define CVMX_NAND_LOG_CALLED() \
    if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) \
        cvmx_dprintf("%*s%s: called\n", 2*debug_indent++, "", __FUNCTION__);

/* This macro logs out each function parameter if debugging is on */
#define CVMX_NAND_LOG_PARAM(format, param) \
    if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG)) \
        cvmx_dprintf("%*s%s: param %s = " format "\n", 2*debug_indent, "", __FUNCTION__, #param, param);

/* This macro logs out when a function returns a value */
#define CVMX_NAND_RETURN(v)                                              \
    do {                                                                \
        typeof(v) r = v;                                                \
        if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))         \
            cvmx_dprintf("%*s%s: returned %s(%d)\n", 2*--debug_indent, "", __FUNCTION__, #v, r); \
        return r;                                                       \
    } while (0);

/* This macro logs out when a function doesn't return a value */
#define CVMX_NAND_RETURN_NOTHING()                                      \
    do {                                                                \
        if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))         \
            cvmx_dprintf("%*s%s: returned\n", 2*--debug_indent, "", __FUNCTION__); \
        return;                                                         \
    } while (0);






/* Compute the CRC for the ONFI parameter page.  Adapted from sample code
** in the specification.
*/
static uint16_t __onfi_parameter_crc_compute(uint8_t *data)
{
    const int order = 16;                     // Order of the CRC-16
    unsigned long i, j, c, bit;
    unsigned long crc = 0x4F4E;              // Initialize the shift register with 0x4F4E
    unsigned long crcmask = ((((unsigned long)1<<(order-1))-1)<<1)|1;
    unsigned long crchighbit = (unsigned long)1<<(order-1);

    for (i = 0; i < 254; i++)
    {
        c = (unsigned long)data[i];
        for (j = 0x80; j; j >>= 1) {
              bit = crc & crchighbit;
              crc <<= 1;
              if (c & j)
                  bit ^= crchighbit;
              if (bit)
                   crc ^= 0x8005;
        }
        crc &= crcmask;
    }
    return(crc);
}


/**
 * Validate the ONFI parameter page and return a pointer to
 * the config values.
 *
 * @param param_page Pointer to the raw NAND data returned after a parameter page read. It will
 *                   contain at least 4 copies of the parameter structure.
 *
 * @return Pointer to a validated paramter page, or NULL if one couldn't be found.
 */
static cvmx_nand_onfi_param_page_t *__cvmx_nand_onfi_process(cvmx_nand_onfi_param_page_t param_page[4])
{
    int index;

    for (index=0; index<4; index++)
    {
        uint16_t crc = __onfi_parameter_crc_compute((void *)&param_page[index]);
        if (crc == cvmx_le16_to_cpu(param_page[index].crc))
            break;
        if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
            cvmx_dprintf("%s: Paramter page %d is corrupt. (Expected CRC: 0x%04x, computed: 0x%04x)\n",
                          __FUNCTION__, index, cvmx_le16_to_cpu(param_page[index].crc), crc);
    }

    if (index == 4)
    {
        if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
            cvmx_dprintf("%s: All parameter pages fail CRC check.  Checking to see if any look sane.\n", __FUNCTION__);

        if (!memcmp(param_page, param_page + 1, 256))
        {
            /* First and second copies match, now check some values */
            if (param_page[0].pages_per_block != 0 && param_page[0].pages_per_block != 0xFFFFFFFF
                && param_page[0].page_data_bytes != 0 && param_page[0].page_data_bytes != 0xFFFFFFFF
                && param_page[0].page_spare_bytes != 0 && param_page[0].page_spare_bytes != 0xFFFF
                && param_page[0].blocks_per_lun != 0 && param_page[0].blocks_per_lun != 0xFFFFFFFF
                && param_page[0].timing_mode != 0 && param_page[0].timing_mode != 0xFFFF)
            {
                /* Looks like we have enough values to use */
                if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
                    cvmx_dprintf("%s: Page 0 looks sane, using even though CRC fails.\n", __FUNCTION__);
                index = 0;
            }
        }
    }

    if (index == 4)
    {
        cvmx_dprintf("%s: WARNING: ONFI part but no valid ONFI parameter pages found.\n", __FUNCTION__);
        return NULL;
    }

    if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
    {
        cvmx_dprintf("%*sONFI Information (from copy %d in param page)\n", 2*debug_indent, "", index);
        debug_indent++;
        cvmx_dprintf("%*sonfi = %c%c%c%c\n", 2*debug_indent, "", param_page[index].onfi[0], param_page[index].onfi[1],
            param_page[index].onfi[2], param_page[index].onfi[3]);
        cvmx_dprintf("%*srevision_number = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].revision_number));
        cvmx_dprintf("%*sfeatures = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].features));
        cvmx_dprintf("%*soptional_commands = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].optional_commands));

        cvmx_dprintf("%*smanufacturer = %12.12s\n", 2*debug_indent, "", param_page[index].manufacturer);
        cvmx_dprintf("%*smodel = %20.20s\n", 2*debug_indent, "", param_page[index].model);
        cvmx_dprintf("%*sjedec_id = 0x%x\n", 2*debug_indent, "", param_page[index].jedec_id);
        cvmx_dprintf("%*sdate_code = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].date_code));

        cvmx_dprintf("%*spage_data_bytes = %u\n", 2*debug_indent, "", (int)cvmx_le32_to_cpu(param_page[index].page_data_bytes));
        cvmx_dprintf("%*spage_spare_bytes = %u\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].page_spare_bytes));
        cvmx_dprintf("%*spartial_page_data_bytes = %u\n", 2*debug_indent, "", (int)cvmx_le32_to_cpu(param_page[index].partial_page_data_bytes));
        cvmx_dprintf("%*spartial_page_spare_bytes = %u\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].partial_page_spare_bytes));
        cvmx_dprintf("%*spages_per_block = %u\n", 2*debug_indent, "", (int)cvmx_le32_to_cpu(param_page[index].pages_per_block));
        cvmx_dprintf("%*sblocks_per_lun = %u\n", 2*debug_indent, "", (int)cvmx_le32_to_cpu(param_page[index].blocks_per_lun));
        cvmx_dprintf("%*snumber_lun = %u\n", 2*debug_indent, "", param_page[index].number_lun);
        cvmx_dprintf("%*saddress_cycles = 0x%x\n", 2*debug_indent, "", param_page[index].address_cycles);
        cvmx_dprintf("%*sbits_per_cell = %u\n", 2*debug_indent, "", param_page[index].bits_per_cell);
        cvmx_dprintf("%*sbad_block_per_lun = %u\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].bad_block_per_lun));
        cvmx_dprintf("%*sblock_endurance = %u\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].block_endurance));
        cvmx_dprintf("%*sgood_blocks = %u\n", 2*debug_indent, "", param_page[index].good_blocks);
        cvmx_dprintf("%*sgood_block_endurance = %u\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].good_block_endurance));
        cvmx_dprintf("%*sprograms_per_page = %u\n", 2*debug_indent, "", param_page[index].programs_per_page);
        cvmx_dprintf("%*spartial_program_attrib = 0x%x\n", 2*debug_indent, "", param_page[index].partial_program_attrib);
        cvmx_dprintf("%*sbits_ecc = %u\n", 2*debug_indent, "", param_page[index].bits_ecc);
        cvmx_dprintf("%*sinterleaved_address_bits = 0x%x\n", 2*debug_indent, "", param_page[index].interleaved_address_bits);
        cvmx_dprintf("%*sinterleaved_attrib = 0x%x\n", 2*debug_indent, "", param_page[index].interleaved_attrib);

        cvmx_dprintf("%*spin_capacitance = %u\n", 2*debug_indent, "", param_page[index].pin_capacitance);
        cvmx_dprintf("%*stiming_mode = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].timing_mode));
        cvmx_dprintf("%*scache_timing_mode = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].cache_timing_mode));
        cvmx_dprintf("%*st_prog = %d us\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].t_prog));
        cvmx_dprintf("%*st_bers = %u us\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].t_bers));
        cvmx_dprintf("%*st_r = %u us\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].t_r));
        cvmx_dprintf("%*st_ccs = %u ns\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].t_ccs));
        cvmx_dprintf("%*svendor_revision = 0x%x\n", 2*debug_indent, "", cvmx_le16_to_cpu(param_page[index].vendor_revision));
        //uint8_t vendor_specific[88];    /**< Byte 166-253: Vendor specific */
        cvmx_dprintf("%*scrc = 0x%x\n", 2*debug_indent, "", param_page[index].crc);
        debug_indent--;
    }
    return param_page + index;
}

void __set_onfi_timing_mode(int *tim_par, int clocks_us, int mode)
{
    const onfi_speed_mode_desc_t *mp = &onfi_speed_modes[mode];  /* use shorter name to fill in timing array */
    int margin;
    int pulse_adjust;

    if (mode > 6)
    {
        cvmx_dprintf("%s: invalid ONFI timing mode: %d\n", __FUNCTION__, mode);
        return;
    }

    /* Adjust the read/write pulse duty cycle to make it more even.  The cycle time
    ** requirement is longer than the sum of the high low times, so we exend both the high
    ** and low times to meet the cycle time requirement.
    */
    pulse_adjust = ((mp->twc - mp->twh - mp->twp)/2 + 1) * clocks_us;

    /* Add a small margin to all timings. */
    margin = 2 * clocks_us;
    /* Update timing parameters based on supported mode */
    tim_par[1] = CVMX_NAND_ROUNDUP(mp->twp * clocks_us + margin + pulse_adjust, 1000); /* Twp, WE# pulse width */
    tim_par[2] = CVMX_NAND_ROUNDUP(max(mp->twh, mp->twc - mp->twp) * clocks_us + margin + pulse_adjust, 1000); /* Tw, WE# pulse width high */
    tim_par[3] = CVMX_NAND_ROUNDUP(mp->tclh * clocks_us + margin, 1000); /* Tclh, CLE hold time */
    tim_par[4] = CVMX_NAND_ROUNDUP(mp->tals * clocks_us + margin, 1000); /* Tals, ALE setup time */
    tim_par[5] = tim_par[3]; /* Talh, ALE hold time */
    tim_par[6] = tim_par[1]; /* Trp, RE# pulse width*/
    tim_par[7] = tim_par[2]; /* Treh, RE# high hold time */

}


/* Internal helper function to set chip configuration to use default values */
static void __set_chip_defaults(int chip, int clocks_us)
{
    if (!cvmx_nand_default.page_size)
        return;
    cvmx_nand_state[chip].page_size = cvmx_nand_default.page_size;  /* NAND page size in bytes */
    cvmx_nand_state[chip].oob_size = cvmx_nand_default.oob_size;     /* NAND OOB (spare) size in bytes (per page) */
    cvmx_nand_state[chip].pages_per_block = cvmx_nand_default.pages_per_block;
    cvmx_nand_state[chip].blocks = cvmx_nand_default.blocks;
    cvmx_nand_state[chip].onfi_timing = cvmx_nand_default.onfi_timing;
    __set_onfi_timing_mode(cvmx_nand_state[chip].tim_par, clocks_us, cvmx_nand_state[chip].onfi_timing);
    if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
    {

        cvmx_dprintf("%s: Using default NAND parameters.\n", __FUNCTION__);
        cvmx_dprintf("%s: Defaults: page size: %d, OOB size: %d, pages per block %d, blocks: %d, timing mode: %d\n",
                     __FUNCTION__, cvmx_nand_state[chip].page_size, cvmx_nand_state[chip].oob_size, cvmx_nand_state[chip].pages_per_block,
                     cvmx_nand_state[chip].blocks, cvmx_nand_state[chip].onfi_timing);
    }
}
/* Do the proper wait for the ready/busy signal.  First wait
** for busy to be valid, then wait for busy to de-assert.
*/
static int __wait_for_busy_done(int chip)
{
    cvmx_nand_cmd_t cmd;

    CVMX_NAND_LOG_CALLED();
    CVMX_NAND_LOG_PARAM("%d", chip);

    memset(&cmd,  0,  sizeof(cmd));
    cmd.wait.two = 2;
    cmd.wait.r_b=0;
    cmd.wait.n = 2;

    /* Wait for RB to be valied (tWB).
    ** Use 5 * tWC as proxy.  In some modes this is
    ** much longer than required, but does not affect performance
    ** since we will wait much longer for busy to de-assert.
    */
    if (cvmx_nand_submit(cmd))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
    if (cvmx_nand_submit(cmd))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
    if (cvmx_nand_submit(cmd))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
    if (cvmx_nand_submit(cmd))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
    cmd.wait.r_b=1; /* Now wait for busy to be de-asserted */
    if (cvmx_nand_submit(cmd))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}
/**
 * Called to initialize the NAND controller for use. Note that
 * you must be running out of L2 or memory and not NAND before
 * calling this function.
 * When probing for NAND chips, this function attempts to autoconfigure based on the NAND parts detected.
 * It currently supports autodetection for ONFI parts (with valid parameter pages), and some Samsung NAND
 * parts (decoding ID bits.)  If autoconfiguration fails, the defaults set with __set_chip_defaults()
 * prior to calling cvmx_nand_initialize() are used.
 * If defaults are set and the CVMX_NAND_INITIALIZE_FLAGS_DONT_PROBE flag is provided, the defaults are used
 * for all chips in the active_chips mask.
 *
 * @param flags  Optional initialization flags
 *               If the CVMX_NAND_INITIALIZE_FLAGS_DONT_PROBE flag is passed, chips are not probed,
 *               and the default parameters (if set with cvmx_nand_set_defaults) are used for all chips
 *               in the active_chips mask.
 * @param active_chips
 *               Each bit in this parameter represents a chip select that might
 *               contain NAND flash. Any chip select present in this bitmask may
 *               be connected to NAND. It is normally safe to pass 0xff here and
 *               let the API probe all 8 chip selects.
 *
 * @return Zero on success, a negative cvmx_nand_status error code on failure
 */
cvmx_nand_status_t cvmx_nand_initialize(cvmx_nand_initialize_flags_t flags, int active_chips)
{
    int chip;
    int start_chip;
    int stop_chip;
    uint64_t clocks_us;
    union cvmx_ndf_misc ndf_misc;
    uint8_t nand_id_buffer[16];

    if (!octeon_has_feature(OCTEON_FEATURE_NAND))
        CVMX_NAND_RETURN(CVMX_NAND_NO_DEVICE);

    cvmx_nand_flags = flags;
    CVMX_NAND_LOG_CALLED();
    CVMX_NAND_LOG_PARAM("0x%x", flags);

    memset(&cvmx_nand_state,  0,  sizeof(cvmx_nand_state));

#ifndef USE_DATA_IN_TEXT
    /* cvmx_nand_buffer is statically allocated in the TEXT_IN_DATA case */
    if (!cvmx_nand_buffer)
    {
        cvmx_nand_buffer = cvmx_bootmem_alloc_named_flags(CVMX_NAND_MAX_PAGE_AND_OOB_SIZE, 128, "__nand_buffer", CVMX_BOOTMEM_FLAG_END_ALLOC);
    }
    if (!cvmx_nand_buffer) {
        const cvmx_bootmem_named_block_desc_t *block_desc = cvmx_bootmem_find_named_block("__nand_buffer");
        if (block_desc)
            cvmx_nand_buffer = cvmx_phys_to_ptr(block_desc->base_addr);
    }

    if (!cvmx_nand_buffer)
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
#endif

    /* Disable boot mode and reset the fifo */
    ndf_misc.u64 = cvmx_read_csr(CVMX_NDF_MISC);
    ndf_misc.s.rd_cmd = 0;
    ndf_misc.s.bt_dma = 0;
    ndf_misc.s.bt_dis = 1;
    ndf_misc.s.ex_dis = 0;
    ndf_misc.s.rst_ff = 1;
    cvmx_write_csr(CVMX_NDF_MISC, ndf_misc.u64);
    cvmx_read_csr(CVMX_NDF_MISC);

    /* Bring the fifo out of reset */
    cvmx_wait_usec(1);
    ndf_misc.s.rst_ff = 0;
    cvmx_write_csr(CVMX_NDF_MISC, ndf_misc.u64);
    cvmx_read_csr(CVMX_NDF_MISC);
    cvmx_wait_usec(1);

    /* Clear the ECC counter */
    //cvmx_write_csr(CVMX_NDF_ECC_CNT, cvmx_read_csr(CVMX_NDF_ECC_CNT));

    /* Clear the interrupt state */
    cvmx_write_csr(CVMX_NDF_INT, cvmx_read_csr(CVMX_NDF_INT));
    cvmx_write_csr(CVMX_NDF_INT_EN, 0);
    cvmx_write_csr(CVMX_MIO_NDF_DMA_INT, cvmx_read_csr(CVMX_MIO_NDF_DMA_INT));
    cvmx_write_csr(CVMX_MIO_NDF_DMA_INT_EN, 0);


    /* The simulator crashes if you access non existant devices. Assume
        only chip select 1 is connected to NAND */
    if (cvmx_sysinfo_get()->board_type == CVMX_BOARD_TYPE_SIM)
    {
        start_chip = 1;
        stop_chip = 2;
    }
    else
    {
        start_chip = 0;
        stop_chip = 8;
    }

    /* Figure out how many clocks are in one microsecond, rounding up */
    clocks_us = CVMX_NAND_ROUNDUP(cvmx_clock_get_rate(CVMX_CLOCK_SCLK), 1000000);

    /* If the CVMX_NAND_INITIALIZE_FLAGS_DONT_PROBE flag is set, then
    ** use the supplied default values to configured the chips in the
    ** active_chips mask */
    if (cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DONT_PROBE)
    {
        if (cvmx_nand_default.page_size)
        {
            for (chip=start_chip; chip<stop_chip; chip++)
            {
                /* Skip chip selects that the caller didn't supply in the active chip bits */
                if (((1<<chip) & active_chips) == 0)
                    continue;
                __set_chip_defaults(chip, clocks_us);
            }
        }
        CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
    }

    /* Probe and see what NAND flash we can find */
    for (chip=start_chip; chip<stop_chip; chip++)
    {
        union cvmx_mio_boot_reg_cfgx mio_boot_reg_cfg;
        cvmx_nand_onfi_param_page_t *onfi_param_page;
        int probe_failed;
        int width_16;

        /* Skip chip selects that the caller didn't supply in the active chip bits */
        if (((1<<chip) & active_chips) == 0)
            continue;

        mio_boot_reg_cfg.u64 = cvmx_read_csr(CVMX_MIO_BOOT_REG_CFGX(chip));
        /* Enabled regions can't be connected to NAND flash */
        if (mio_boot_reg_cfg.s.en)
            continue;

        /* Start out with some sane, but slow, defaults */
        cvmx_nand_state[chip].page_size = 0;
        cvmx_nand_state[chip].oob_size = 64;
        cvmx_nand_state[chip].pages_per_block = 64;
        cvmx_nand_state[chip].blocks = 100;


        /* Set timing mode to ONFI mode 0 for initial accesses */
        __set_onfi_timing_mode(cvmx_nand_state[chip].tim_par, clocks_us, 0);

        /* Put the index of which timing parameter to use.  The indexes are into the tim_par
        ** which match the indexes of the 8 timing parameters that the hardware supports.
        ** Index 0 is not software controlled, and is fixed by hardware. */
        cvmx_nand_state[chip].clen[0] = 0; /* Command doesn't need to be held before WE */
        cvmx_nand_state[chip].clen[1] = 1; /* Twp, WE# pulse width */
        cvmx_nand_state[chip].clen[2] = 3; /* Tclh, CLE hold time */
        cvmx_nand_state[chip].clen[3] = 1;

        cvmx_nand_state[chip].alen[0] = 4; /* Tals, ALE setup time */
        cvmx_nand_state[chip].alen[1] = 1; /* Twp, WE# pulse width */
        cvmx_nand_state[chip].alen[2] = 2; /* Twh, WE# pulse width high */
        cvmx_nand_state[chip].alen[3] = 5; /* Talh, ALE hold time */

        cvmx_nand_state[chip].rdn[0] = 0;
        cvmx_nand_state[chip].rdn[1] = 6; /* Trp, RE# pulse width*/
        cvmx_nand_state[chip].rdn[2] = 7; /* Treh, RE# high hold time */
        cvmx_nand_state[chip].rdn[3] = 0;

        cvmx_nand_state[chip].wrn[0] = 1; /* Twp, WE# pulse width */
        cvmx_nand_state[chip].wrn[1] = 2; /* Twh, WE# pulse width high */

        /* Probe and see if we get an answer.  Read more than required, as in
        ** 16 bit mode only every other byte is valid.
        ** Here we probe twice, once in 8 bit mode, and once in 16 bit mode to autodetect
        ** the width.
        */
        probe_failed = 1;
        for (width_16 = 0; width_16 <= 1 && probe_failed; width_16++)
        {
            probe_failed = 0;

            if (width_16)
                cvmx_nand_state[chip].flags |= CVMX_NAND_STATE_16BIT;
            memset(cvmx_nand_buffer, 0xff, 16);
            if (cvmx_nand_read_id(chip, 0x0, cvmx_ptr_to_phys(cvmx_nand_buffer), 16) < 16)
            {
                if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
                    cvmx_dprintf("%s: Failed to probe chip %d\n", __FUNCTION__, chip);
                probe_failed = 1;

            }
            if (*(uint32_t*)cvmx_nand_buffer == 0xffffffff || *(uint32_t*)cvmx_nand_buffer == 0x0)
            {
                if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
                    cvmx_dprintf("%s: Probe returned nothing for chip %d\n", __FUNCTION__, chip);
                probe_failed = 1;
            }
        }
        /* Neither 8 or 16 bit mode worked, so go on to next chip select */
        if (probe_failed)
            continue;

        /* Save copy of ID for later use */
        memcpy(nand_id_buffer, cvmx_nand_buffer, sizeof(nand_id_buffer));

        if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
            cvmx_dprintf("%s: NAND chip %d has ID 0x%08llx\n", __FUNCTION__, chip, (unsigned long long int)*(uint64_t*)cvmx_nand_buffer);
        /* Read more than required, as in 16 bit mode only every other byte is valid. */
        if (cvmx_nand_read_id(chip, 0x20, cvmx_ptr_to_phys(cvmx_nand_buffer), 8) < 8)
        {
            if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
                cvmx_dprintf("%s: Failed to probe chip %d\n", __FUNCTION__, chip);
            continue;
        }

        if (((cvmx_nand_buffer[0] == 'O') && (cvmx_nand_buffer[1] == 'N') &&
            (cvmx_nand_buffer[2] == 'F') && (cvmx_nand_buffer[3] == 'I')))
        {
            /* We have an ONFI part, so read the parameter page */

            cvmx_nand_read_param_page(chip, cvmx_ptr_to_phys(cvmx_nand_buffer), 2048);
            onfi_param_page = __cvmx_nand_onfi_process((cvmx_nand_onfi_param_page_t *)cvmx_nand_buffer);
            if (onfi_param_page)
            {
                /* ONFI NAND parts are described by a parameter page.  Here we extract the configuration values
                ** from the parameter page that we need to access the chip. */
                cvmx_nand_state[chip].page_size = cvmx_le32_to_cpu(onfi_param_page->page_data_bytes);
                cvmx_nand_state[chip].oob_size = cvmx_le16_to_cpu(onfi_param_page->page_spare_bytes);
                cvmx_nand_state[chip].pages_per_block = cvmx_le32_to_cpu(onfi_param_page->pages_per_block);
                cvmx_nand_state[chip].blocks = cvmx_le32_to_cpu(onfi_param_page->blocks_per_lun) * onfi_param_page->number_lun;

                if (cvmx_le16_to_cpu(onfi_param_page->timing_mode) <= 0x3f)
                {
                    int mode_mask = cvmx_le16_to_cpu(onfi_param_page->timing_mode);
                    int mode = 0;
                    int i;
                    for (i = 0; i < 6;i++)
                    {
                        if (mode_mask & (1 << i))
                            mode = i;
                    }
                    cvmx_nand_state[chip].onfi_timing = mode;
                }
                else
                {
                    cvmx_dprintf("%s: Invalid timing mode (%d) in ONFI parameter page, ignoring\n", __FUNCTION__, cvmx_nand_state[chip].onfi_timing);
                    cvmx_nand_state[chip].onfi_timing = 0;

                }
                if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
                    cvmx_dprintf("%s: Using ONFI timing mode: %d\n", __FUNCTION__, cvmx_nand_state[chip].onfi_timing);
                __set_onfi_timing_mode(cvmx_nand_state[chip].tim_par, clocks_us, cvmx_nand_state[chip].onfi_timing);
                if (cvmx_nand_state[chip].page_size + cvmx_nand_state[chip].oob_size > CVMX_NAND_MAX_PAGE_AND_OOB_SIZE)
                {
                    cvmx_dprintf("%s: ERROR: Page size (%d) + OOB size (%d) is greater than max size (%d)\n",
                                 __FUNCTION__, cvmx_nand_state[chip].page_size, cvmx_nand_state[chip].oob_size, CVMX_NAND_MAX_PAGE_AND_OOB_SIZE);
                    return(CVMX_NAND_ERROR);
                }
                /* We have completed setup for this ONFI chip, so go on to next chip. */
                continue;
            }
            else
            {
                /* Parameter page is not valid */
                if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
                    cvmx_dprintf("%s: ONFI paramater page missing or invalid.\n", __FUNCTION__);

            }


        }
        else
        {
            /* We have a non-ONFI part. */
            if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
                cvmx_dprintf("%s: Chip %d doesn't support ONFI.\n", __FUNCTION__, chip);


            if (nand_id_buffer[0] == 0xEC)
            {
                /* We have a Samsung part, so decode part info from ID bytes */
                uint64_t nand_size_bits = (64*1024*1024ULL) << ((nand_id_buffer[4] & 0x70) >> 4); /* Plane size */
                cvmx_nand_state[chip].page_size = 1024 << (nand_id_buffer[3] & 0x3);  /* NAND page size in bytes */
		/* NAND OOB (spare) size in bytes (per page) */
		cvmx_nand_state[chip].oob_size = (cvmx_nand_state[chip].page_size / 512) * ((nand_id_buffer[3] & 4) ? 16 : 8);
                cvmx_nand_state[chip].pages_per_block = (0x10000 << ((nand_id_buffer[3] & 0x30) >> 4))/cvmx_nand_state[chip].page_size;

                nand_size_bits *= 1 << ((nand_id_buffer[4] & 0xc) >> 2);

                cvmx_nand_state[chip].oob_size = cvmx_nand_state[chip].page_size/64;
                if (nand_id_buffer[3] & 0x4)
                    cvmx_nand_state[chip].oob_size *= 2;

                cvmx_nand_state[chip].blocks = nand_size_bits/(8ULL*cvmx_nand_state[chip].page_size*cvmx_nand_state[chip].pages_per_block);
                switch (nand_id_buffer[1]) {
                case 0xD3:      /* K9F8G08U0M */
                case 0xDC:      /* K9F4G08U0B */
                    cvmx_nand_state[chip].onfi_timing = 6;
                    break;
                default:
                    cvmx_nand_state[chip].onfi_timing = 2;
                    break;
                }

                if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
                {
                    cvmx_dprintf("%s: Samsung NAND chip detected, using parameters decoded from ID bytes.\n", __FUNCTION__);
                    cvmx_dprintf("%s: Defaults: page size: %d, OOB size: %d, pages per block %d, part size: %d MBytes, timing mode: %d\n",
                                 __FUNCTION__, cvmx_nand_state[chip].page_size, cvmx_nand_state[chip].oob_size, cvmx_nand_state[chip].pages_per_block,
                                 (int)(nand_size_bits/(8*1024*1024)), cvmx_nand_state[chip].onfi_timing);
                }

                __set_onfi_timing_mode(cvmx_nand_state[chip].tim_par, clocks_us, cvmx_nand_state[chip].onfi_timing);
                if (cvmx_nand_state[chip].page_size + cvmx_nand_state[chip].oob_size > CVMX_NAND_MAX_PAGE_AND_OOB_SIZE)
                {
                    cvmx_dprintf("%s: ERROR: Page size (%d) + OOB size (%d) is greater than max size (%d)\n",
                                 __FUNCTION__, cvmx_nand_state[chip].page_size, cvmx_nand_state[chip].oob_size, CVMX_NAND_MAX_PAGE_AND_OOB_SIZE);
                    return(CVMX_NAND_ERROR);
                }

                /* We have completed setup for this Samsung chip, so go on to next chip. */
                continue;


            }

        }



        /*  We were not able to automatically identify the NAND chip parameters.  If default values were configured,
        ** use them. */
        if (cvmx_nand_default.page_size)
        {
            __set_chip_defaults(chip, clocks_us);
        }
        else
        {

            if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
                cvmx_dprintf("%s: Unable to determine NAND parameters, and no defaults supplied.\n", __FUNCTION__);
        }
    }
    CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
EXPORT_SYMBOL(cvmx_nand_initialize);
#endif


/**
 * Call to shutdown the NAND controller after all transactions
 * are done. In most setups this will never be called.
 *
 * @return Zero on success, a negative cvmx_nand_status_t error code on failure
 */
cvmx_nand_status_t cvmx_nand_shutdown(void)
{
    CVMX_NAND_LOG_CALLED();
    memset(&cvmx_nand_state,  0,  sizeof(cvmx_nand_state));
    CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}


/**
 * Returns a bitmask representing the chip selects that are
 * connected to NAND chips. This can be called after the
 * initialize to determine the actual number of NAND chips
 * found. Each bit in the response coresponds to a chip select.
 *
 * @return Zero if no NAND chips were found. Otherwise a bit is set for
 *         each chip select (1<<chip).
 */
int cvmx_nand_get_active_chips(void)
{
    int chip;
    int result = 0;
    for (chip=0; chip<8; chip++)
    {
        if (cvmx_nand_state[chip].page_size)
            result |= 1<<chip;
    }
    return result;
}
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
EXPORT_SYMBOL(cvmx_nand_get_active_chips);
#endif


/**
 * Override the timing parameters for a NAND chip
 *
 * @param chip     Chip select to override
 * @param tim_mult
 * @param tim_par
 * @param clen
 * @param alen
 * @param rdn
 * @param wrn
 *
 * @return Zero on success, a negative cvmx_nand_status_t error code on failure
 */
cvmx_nand_status_t cvmx_nand_set_timing(int chip, int tim_mult, int tim_par[8], int clen[4], int alen[4], int rdn[4], int wrn[2])
{
    int i;
    CVMX_NAND_LOG_CALLED();

    if ((chip < 0) || (chip > 7))
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (!cvmx_nand_state[chip].page_size)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);

    cvmx_nand_state[chip].tim_mult = tim_mult;
    for (i=0;i<8;i++)
        cvmx_nand_state[chip].tim_par[i] = tim_par[i];
    for (i=0;i<4;i++)
        cvmx_nand_state[chip].clen[i] = clen[i];
    for (i=0;i<4;i++)
        cvmx_nand_state[chip].alen[i] = alen[i];
    for (i=0;i<4;i++)
        cvmx_nand_state[chip].rdn[i] = rdn[i];
    for (i=0;i<2;i++)
        cvmx_nand_state[chip].wrn[i] = wrn[i];

    CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}


/**
 * @INTERNAL
 * Get the number of free bytes in the NAND command queue
 *
 * @return Number of bytes in queue
 */
static inline int __cvmx_nand_get_free_cmd_bytes(void)
{
    union cvmx_ndf_misc ndf_misc;
    CVMX_NAND_LOG_CALLED();
    ndf_misc.u64 = cvmx_read_csr(CVMX_NDF_MISC);
    CVMX_NAND_RETURN((int)ndf_misc.s.fr_byt);
}


/**
 * Submit a command to the NAND command queue. Generally this
 * will not be used directly. Instead most programs will use the other
 * higher level NAND functions.
 *
 * @param cmd    Command to submit
 *
 * @return Zero on success, a negative cvmx_nand_status_t error code on failure
 */
cvmx_nand_status_t cvmx_nand_submit(cvmx_nand_cmd_t cmd)
{
    CVMX_NAND_LOG_CALLED();
    CVMX_NAND_LOG_PARAM("0x%llx", (ULL)cmd.u64[0]);
    CVMX_NAND_LOG_PARAM("0x%llx", (ULL)cmd.u64[1]);
    CVMX_NAND_LOG_PARAM("%s", cvmx_nand_opcode_labels[cmd.s.op_code]);
    switch (cmd.s.op_code)
    {
        /* All these commands fit in one 64bit word */
        case 0: /* NOP */
        case 1: /* Timing */
        case 2: /* WAIT */
        case 3: /* Chip Enable/Disable */
        case 4: /* CLE */
        case 8: /* Write */
        case 9: /* Read */
        case 10: /* Read EDO */
        case 15: /* Bus Aquire/Release */
            if (__cvmx_nand_get_free_cmd_bytes() < 8)
                CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
            cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[1]);
            CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);

        case 5: /* ALE commands take either one or two 64bit words */
            if (cmd.ale.adr_byte_num < 5)
            {
                if (__cvmx_nand_get_free_cmd_bytes() < 8)
                    CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
                cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[1]);
                CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
            }
            else
            {
                if (__cvmx_nand_get_free_cmd_bytes() < 16)
                    CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
                cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[1]);
                cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[0]);
                CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
            }

        case 11: /* Wait status commands take two 64bit words */
            if (__cvmx_nand_get_free_cmd_bytes() < 16)
                CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
            cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[1]);
            cvmx_write_csr(CVMX_NDF_CMD, cmd.u64[0]);
            CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);

        default:
            CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    }
}


/**
 * @INTERNAL
 * Get the number of bits required to encode the column bits. This
 * does not include padding to align on a byte boundary.
 *
 * @param chip   NAND chip to get data for
 *
 * @return Number of column bits
 */
static inline int __cvmx_nand_get_column_bits(int chip)
{
    return cvmx_pop(cvmx_nand_state[chip].page_size - 1);
}


/**
 * @INTERNAL
 * Get the number of bits required to encode the row bits. This
 * does not include padding to align on a byte boundary.
 *
 * @param chip   NAND chip to get data for
 *
 * @return Number of row bits
 */
static inline int __cvmx_nand_get_row_bits(int chip)
{
    return cvmx_pop(cvmx_nand_state[chip].blocks-1) + cvmx_pop(cvmx_nand_state[chip].pages_per_block-1);
}


/**
 * @INTERNAL
 * Get the number of address cycles required for this NAND part.
 * This include column bits, padding, page bits, and block bits.
 *
 * @param chip   NAND chip to get data for
 *
 * @return Number of address cycles on the bus
 */
static inline int __cvmx_nand_get_address_cycles(int chip)
{
    int address_bits = ((__cvmx_nand_get_column_bits(chip) + 7) >> 3) << 3;
    address_bits += ((__cvmx_nand_get_row_bits(chip) + 7) >> 3) << 3;
    return (address_bits + 7) >> 3;
}


/**
 * @INTERNAL
 * Build the set of command common to most transactions
 * @param chip      NAND chip to program
 * @param cmd_data  NAND command for CLE cycle 1
 * @param num_address_cycles
 *                  Number of address cycles to put on the bus
 * @param nand_address
 *                  Data to be put on the bus. It is translated according to
 *                  the rules in the file information section.
 *
 * @param cmd_data2 If non zero, adds a second CLE cycle used by a number of NAND
 *                  transactions.
 *
 * @return Zero on success, a negative cvmx_nand_status_t error code on failure
 */
static inline cvmx_nand_status_t __cvmx_nand_build_pre_cmd(int chip, int cmd_data, int num_address_cycles, uint64_t nand_address, int cmd_data2)
{
    cvmx_nand_status_t result;
    cvmx_nand_cmd_t cmd;

    CVMX_NAND_LOG_CALLED();

    /* Send timing parameters */
    memset(&cmd,  0,  sizeof(cmd));
    cmd.set_tm_par.one = 1;
    cmd.set_tm_par.tim_mult = cvmx_nand_state[chip].tim_mult;
    /* tim_par[0] unused */
    cmd.set_tm_par.tim_par1 = cvmx_nand_state[chip].tim_par[1];
    cmd.set_tm_par.tim_par2 = cvmx_nand_state[chip].tim_par[2];
    cmd.set_tm_par.tim_par3 = cvmx_nand_state[chip].tim_par[3];
    cmd.set_tm_par.tim_par4 = cvmx_nand_state[chip].tim_par[4];
    cmd.set_tm_par.tim_par5 = cvmx_nand_state[chip].tim_par[5];
    cmd.set_tm_par.tim_par6 = cvmx_nand_state[chip].tim_par[6];
    cmd.set_tm_par.tim_par7 = cvmx_nand_state[chip].tim_par[7];
    result = cvmx_nand_submit(cmd);
    if (result)
        CVMX_NAND_RETURN(result);

    /* Send bus select */
    memset(&cmd,  0,  sizeof(cmd));
    cmd.bus_acq.fifteen = 15;
    cmd.bus_acq.one = 1;
    result = cvmx_nand_submit(cmd);
    if (result)
        CVMX_NAND_RETURN(result);

    /* Send chip select */
    memset(&cmd,  0,  sizeof(cmd));
    cmd.chip_en.chip = chip;
    cmd.chip_en.one = 1;
    cmd.chip_en.three = 3;
    cmd.chip_en.width = (cvmx_nand_state[chip].flags & CVMX_NAND_STATE_16BIT) ? 2 : 1;
    result = cvmx_nand_submit(cmd);
    if (result)
        CVMX_NAND_RETURN(result);

    /* Send wait, fixed time
    ** This meets chip enable to command latch enable timing.
    ** This is tCS - tCLS from the ONFI spec.
    ** Use tWP as a proxy, as this is adequate for
    ** all ONFI 1.0 timing modes. */
    memset(&cmd,  0,  sizeof(cmd));
    cmd.wait.two = 2;
    cmd.wait.n = 1;
    if (cvmx_nand_submit(cmd))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    /* Send CLE */
    memset(&cmd,  0,  sizeof(cmd));
    cmd.cle.cmd_data = cmd_data;
    cmd.cle.clen1 = cvmx_nand_state[chip].clen[0];
    cmd.cle.clen2 = cvmx_nand_state[chip].clen[1];
    cmd.cle.clen3 = cvmx_nand_state[chip].clen[2];
    cmd.cle.four = 4;
    result = cvmx_nand_submit(cmd);
    if (result)
        CVMX_NAND_RETURN(result);

    /* Send ALE */
    if (num_address_cycles)
    {
        memset(&cmd,  0,  sizeof(cmd));
        cmd.ale.adr_byte_num = num_address_cycles;
        if (num_address_cycles < __cvmx_nand_get_address_cycles(chip))
        {
            cmd.ale.adr_bytes_l = nand_address;
            cmd.ale.adr_bytes_h = nand_address >> 32;
        }
        else
        {
            int column_bits = __cvmx_nand_get_column_bits(chip);
            int column_shift = ((column_bits + 7) >> 3) << 3;
            int column = nand_address & (cvmx_nand_state[chip].page_size-1);
            int row = nand_address >> column_bits;
            cmd.ale.adr_bytes_l = column + (row << column_shift);
            cmd.ale.adr_bytes_h = row >> (32 - column_shift);
        }
        cmd.ale.alen1 = cvmx_nand_state[chip].alen[0];
        cmd.ale.alen2 = cvmx_nand_state[chip].alen[1];
        cmd.ale.alen3 = cvmx_nand_state[chip].alen[2];
        cmd.ale.alen4 = cvmx_nand_state[chip].alen[3];
        cmd.ale.five = 5;
        result = cvmx_nand_submit(cmd);
        if (result)
            CVMX_NAND_RETURN(result);
    }

    /* Send CLE 2 */
    if (cmd_data2)
    {
        memset(&cmd,  0,  sizeof(cmd));
        cmd.cle.cmd_data = cmd_data2;
        cmd.cle.clen1 = cvmx_nand_state[chip].clen[0];
        cmd.cle.clen2 = cvmx_nand_state[chip].clen[1];
        cmd.cle.clen3 = cvmx_nand_state[chip].clen[2];
        cmd.cle.four = 4;
        result = cvmx_nand_submit(cmd);
        if (result)
            CVMX_NAND_RETURN(result);
    }

    CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}


/**
 * @INTERNAL
 * Build the set of command common to most transactions
 * @return Zero on success, a negative cvmx_nand_status_t error code on failure
 */
static inline cvmx_nand_status_t __cvmx_nand_build_post_cmd(void)
{
    cvmx_nand_status_t result;
    cvmx_nand_cmd_t cmd;

    CVMX_NAND_LOG_CALLED();

    /* Send chip deselect */
    memset(&cmd,  0,  sizeof(cmd));
    cmd.chip_dis.three = 3;
    result = cvmx_nand_submit(cmd);
    if (result)
        CVMX_NAND_RETURN(result);

    /* Send bus release */
    memset(&cmd,  0,  sizeof(cmd));
    cmd.bus_rel.fifteen = 15;
    result = cvmx_nand_submit(cmd);
    if (result)
        CVMX_NAND_RETURN(result);

    /* Ring the doorbell */
    cvmx_write_csr(CVMX_NDF_DRBELL, 1);
    CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}


/**
 * @INTERNAL
 * Setup the NAND DMA engine for a transfer
 *
 * @param chip     Chip select for NAND flash
 * @param is_write Non zero if this is a write
 * @param buffer_address
 *                 Physical memory address to DMA to/from
 * @param buffer_length
 *                 Length of the DMA in bytes
 */
static inline void __cvmx_nand_setup_dma(int chip, int is_write, uint64_t buffer_address, int buffer_length)
{
    union cvmx_mio_ndf_dma_cfg ndf_dma_cfg;
    CVMX_NAND_LOG_CALLED();
    CVMX_NAND_LOG_PARAM("%d", chip);
    CVMX_NAND_LOG_PARAM("%d", is_write);
    CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address);
    CVMX_NAND_LOG_PARAM("%d", buffer_length);
    ndf_dma_cfg.u64 = 0;
    ndf_dma_cfg.s.en = 1;
    ndf_dma_cfg.s.rw = is_write; /* One means DMA reads from memory and writes to flash */
    ndf_dma_cfg.s.clr = 0;
    ndf_dma_cfg.s.size = ((buffer_length + 7) >> 3) - 1;
    ndf_dma_cfg.s.adr = buffer_address;
    CVMX_SYNCWS;
    cvmx_write_csr(CVMX_MIO_NDF_DMA_CFG, ndf_dma_cfg.u64);
    CVMX_NAND_RETURN_NOTHING();
}


/**
 * Dump a buffer out in hex for debug
 *
 * @param buffer_address
 *               Starting physical address
 * @param buffer_length
 *               Number of bytes to display
 */
static void __cvmx_nand_hex_dump(uint64_t buffer_address, int buffer_length)
{
    uint8_t *buffer = cvmx_phys_to_ptr(buffer_address);
    int offset = 0;
    while (offset < buffer_length)
    {
        int i;
        cvmx_dprintf("%*s%04x:",  2*debug_indent, "", offset);
        for (i=0; i<32; i++)
        {
            if ((i&3) == 0)
                cvmx_dprintf(" ");
            if (offset+i < buffer_length)
                cvmx_dprintf("%02x", 0xff & buffer[offset+i]);
            else
                cvmx_dprintf("  ");
        }
        cvmx_dprintf("\n");
        offset += 32;
    }
}

/**
 * @INTERNAL
 * Perform a low level NAND read command
 *
 * @param chip   Chip to read from
 * @param nand_command1
 *               First command cycle value
 * @param address_cycles
 *               Number of address cycles after comand 1
 * @param nand_address
 *               NAND address to use for address cycles
 * @param nand_command2
 *               NAND command cycle 2 if not zero
 * @param buffer_address
 *               Physical address to DMA into
 * @param buffer_length
 *               Length of the transfer in bytes
 *
 * @return Number of bytes transfered or a negative error code
 */
static inline int __cvmx_nand_low_level_read(int chip, int nand_command1, int address_cycles, uint64_t nand_address, int nand_command2, uint64_t buffer_address, int buffer_length)
{
    cvmx_nand_cmd_t cmd;
    union cvmx_mio_ndf_dma_cfg ndf_dma_cfg;
    int bytes;

    CVMX_NAND_LOG_CALLED();
    CVMX_NAND_LOG_PARAM("%d", chip);
    CVMX_NAND_LOG_PARAM("0x%x", nand_command1);
    CVMX_NAND_LOG_PARAM("%d", address_cycles);
    CVMX_NAND_LOG_PARAM("0x%llx", (ULL)nand_address);
    CVMX_NAND_LOG_PARAM("0x%x", nand_command2);
    CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address);
    CVMX_NAND_LOG_PARAM("%d", buffer_length);

    if ((chip < 0) || (chip > 7))
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (!buffer_address)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (buffer_address & 7)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (buffer_length & 7)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (!buffer_length)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);

    /* Build the command and address cycles */
    if (__cvmx_nand_build_pre_cmd(chip, nand_command1, address_cycles, nand_address, nand_command2))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    /* Send WAIT.  This waits for some time, then
    ** waits for busy to be de-asserted. */
    if (__wait_for_busy_done(chip))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    /* Wait for tRR after busy de-asserts.
    ** Use 2* tALS as proxy.  This is overkill in
    ** the slow modes, but not bad in the faster ones. */
    memset(&cmd,  0,  sizeof(cmd));
    cmd.wait.two = 2;
    cmd.wait.n=4;
    if (cvmx_nand_submit(cmd))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
    if (cvmx_nand_submit(cmd))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    /* Send READ */
    memset(&cmd,  0,  sizeof(cmd));
    cmd.rd.data_bytes = buffer_length;
    if (cvmx_nand_state[chip].onfi_timing >= 4)
        cmd.rd.nine = 10;  /* READ_EDO command is required for ONFI timing modes 4 and 5 */
    else
        cmd.rd.nine = 9;
    cmd.rd.rdn1 = cvmx_nand_state[chip].rdn[0];
    cmd.rd.rdn2 = cvmx_nand_state[chip].rdn[1];
    cmd.rd.rdn3 = cvmx_nand_state[chip].rdn[2];
    cmd.rd.rdn4 = cvmx_nand_state[chip].rdn[3];
    if (cvmx_nand_submit(cmd))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    __cvmx_nand_setup_dma(chip, 0, buffer_address, buffer_length);

    if (__cvmx_nand_build_post_cmd())
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);
    WATCHDOG_RESET();
    /* Wait for the DMA to complete */
    if (CVMX_WAIT_FOR_FIELD64(CVMX_MIO_NDF_DMA_CFG, cvmx_mio_ndf_dma_cfg_t, en, ==, 0, NAND_TIMEOUT_USECS_READ))
    {
        WATCHDOG_RESET();
        CVMX_NAND_RETURN(CVMX_NAND_TIMEOUT);
    }
    /* Return the number of bytes transfered */
    ndf_dma_cfg.u64 = cvmx_read_csr(CVMX_MIO_NDF_DMA_CFG);
    bytes = ndf_dma_cfg.s.adr - buffer_address;

    if (cvmx_unlikely(cvmx_nand_flags & CVMX_NAND_INITIALIZE_FLAGS_DEBUG))
        __cvmx_nand_hex_dump(buffer_address, bytes);

    CVMX_NAND_RETURN(bytes);
}


/**
 * Read a page from NAND. If the buffer has room, the out of band
 * data will be included.
 *
 * @param chip   Chip select for NAND flash
 * @param nand_address
 *               Location in NAND to read. See description in file comment
 * @param buffer_address
 *               Physical address to store the result at
 * @param buffer_length
 *               Number of bytes to read
 *
 * @return Bytes read on success, a negative cvmx_nand_status_t error code on failure
 */
int cvmx_nand_page_read(int chip, uint64_t nand_address, uint64_t buffer_address, int buffer_length)
{
    int bytes;

    CVMX_NAND_LOG_CALLED();
    CVMX_NAND_LOG_PARAM("%d", chip);
    CVMX_NAND_LOG_PARAM("0x%llx", (ULL)nand_address);
    CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address);
    CVMX_NAND_LOG_PARAM("%d", buffer_length);

    if ((chip < 0) || (chip > 7))
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (!cvmx_nand_state[chip].page_size)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (!buffer_address)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (buffer_address & 7)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (buffer_length & 7)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (!buffer_length)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);

    /* For 16 bit mode, addresses within a page are word address, rather than byte addresses */
    if (cvmx_nand_state[chip].flags & CVMX_NAND_STATE_16BIT)
            nand_address = (nand_address & ~(cvmx_nand_state[chip].page_size - 1)) |  ((nand_address & (cvmx_nand_state[chip].page_size - 1)) >> 1);

    bytes = __cvmx_nand_low_level_read(chip, NAND_COMMAND_READ, __cvmx_nand_get_address_cycles(chip), nand_address, NAND_COMMAND_READ_FIN, buffer_address, buffer_length);
    CVMX_NAND_RETURN(bytes);
}
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
EXPORT_SYMBOL(cvmx_nand_page_read);
#endif


/**
 * Write a page to NAND. The buffer must contain the entire page
 * including the out of band data.
 *
 * @param chip   Chip select for NAND flash
 * @param nand_address
 *               Location in NAND to write. See description in file comment
 * @param buffer_address
 *               Physical address to read the data from
 *
 * @return Zero on success, a negative cvmx_nand_status_t error code on failure
 */
cvmx_nand_status_t cvmx_nand_page_write(int chip, uint64_t nand_address, uint64_t buffer_address)
{
    cvmx_nand_cmd_t cmd;
    int buffer_length;

    CVMX_NAND_LOG_CALLED();
    CVMX_NAND_LOG_PARAM("%d", chip);
    CVMX_NAND_LOG_PARAM("0x%llx", (ULL)nand_address);
    CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address);

    if ((chip < 0) || (chip > 7))
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (!cvmx_nand_state[chip].page_size)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (!buffer_address)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (buffer_address & 7)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);

    /* For 16 bit mode, addresses within a page are word address, rather than byte addresses */
    if (cvmx_nand_state[chip].flags & CVMX_NAND_STATE_16BIT)
            nand_address = (nand_address & ~(cvmx_nand_state[chip].page_size - 1)) |  ((nand_address & (cvmx_nand_state[chip].page_size - 1)) >> 1);

    buffer_length = cvmx_nand_state[chip].page_size + cvmx_nand_state[chip].oob_size;

    /* The NAND DMA engine always does transfers in 8 byte blocks, so round the buffer size down
    ** to a multiple of 8, otherwise we will transfer too much data to the NAND chip.
    ** Note this prevents the last few bytes of the OOB being written.  If these bytes
    ** need to be written, then this check needs to be removed, but this will result in
    ** extra write cycles beyond the end of the OOB. */
    buffer_length &= ~0x7;

    /* Build the command and address cycles */
    if (__cvmx_nand_build_pre_cmd(chip, NAND_COMMAND_PROGRAM, __cvmx_nand_get_address_cycles(chip), nand_address, 0))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    /* Send WRITE */
    memset(&cmd,  0,  sizeof(cmd));
    cmd.wr.data_bytes = buffer_length;
    cmd.wr.eight = 8;
    cmd.wr.wrn1 = cvmx_nand_state[chip].wrn[0];
    cmd.wr.wrn2 = cvmx_nand_state[chip].wrn[1];
    if (cvmx_nand_submit(cmd))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    /* Send WRITE command */
    memset(&cmd,  0,  sizeof(cmd));
    cmd.cle.cmd_data = NAND_COMMAND_PROGRAM_FIN;
    cmd.cle.clen1 = cvmx_nand_state[chip].clen[0];
    cmd.cle.clen2 = cvmx_nand_state[chip].clen[1];
    cmd.cle.clen3 = cvmx_nand_state[chip].clen[2];
    cmd.cle.four = 4;
    if (cvmx_nand_submit(cmd))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    __cvmx_nand_setup_dma(chip, 1, buffer_address, buffer_length);

    /* WAIT for R_B to signal program is complete  */
    if (__wait_for_busy_done(chip))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    if (__cvmx_nand_build_post_cmd())
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    /* Wait for the DMA to complete */
    WATCHDOG_RESET();
    if (CVMX_WAIT_FOR_FIELD64(CVMX_MIO_NDF_DMA_CFG, cvmx_mio_ndf_dma_cfg_t, en, ==, 0, NAND_TIMEOUT_USECS_WRITE))
    {
        WATCHDOG_RESET();
        CVMX_NAND_RETURN(CVMX_NAND_TIMEOUT);
    }
    CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
EXPORT_SYMBOL(cvmx_nand_page_write);
#endif


/**
 * Erase a NAND block. A single block contains multiple pages.
 *
 * @param chip   Chip select for NAND flash
 * @param nand_address
 *               Location in NAND to erase. See description in file comment
 *
 * @return Zero on success, a negative cvmx_nand_status_t error code on failure
 */
cvmx_nand_status_t cvmx_nand_block_erase(int chip, uint64_t nand_address)
{
    CVMX_NAND_LOG_CALLED();
    CVMX_NAND_LOG_PARAM("%d", chip);
    CVMX_NAND_LOG_PARAM("0x%llx", (ULL)nand_address);

    if ((chip < 0) || (chip > 7))
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (!cvmx_nand_state[chip].page_size)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);

    /* Build the command and address cycles */
    if (__cvmx_nand_build_pre_cmd(chip, NAND_COMMAND_ERASE,
                                  (__cvmx_nand_get_row_bits(chip)+7) >> 3,
                                  nand_address >> __cvmx_nand_get_column_bits(chip),
                                  NAND_COMMAND_ERASE_FIN))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    /* WAIT for R_B to signal erase is complete  */
    if (__wait_for_busy_done(chip))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    if (__cvmx_nand_build_post_cmd())
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    /* Wait for the command queue to be idle, which means the wait is done */
    WATCHDOG_RESET();
    if (CVMX_WAIT_FOR_FIELD64(CVMX_NDF_ST_REG, cvmx_ndf_st_reg_t, exe_idle, ==, 1, NAND_TIMEOUT_USECS_BLOCK_ERASE))
    {
        WATCHDOG_RESET();
        CVMX_NAND_RETURN(CVMX_NAND_TIMEOUT);
    }

    CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
EXPORT_SYMBOL(cvmx_nand_block_erase);
#endif


/* Some reads (read ID, read parameter page) only use the low 8 bits of the bus
** in 16 bit mode.  We remove the unused bytes so that the data we present to the
** caller is as expected (same as 8 bit mode.)
*/
static void __cvmx_nand_fixup_16bit_id_reads(uint8_t *buf, int buffer_length)
{
    /* Decimate data, taking only every other byte. */
    int i;
    for (i = 0; i < buffer_length/2; i++)
        buf[i] = buf[2*i + 1];
}

/**
 * Read the NAND ID information
 *
 * @param chip   Chip select for NAND flash
 * @param nand_address
 *               NAND address to read ID from. Usually this is either 0x0 or 0x20.
 * @param buffer_address
 *               Physical address to store data in
 * @param buffer_length
 *               Length of the buffer. Usually this is 4-8 bytes.  For 16 bit mode, this must be twice
 *               as large as the actual expected data.
 *
 * @return Bytes read on success, a negative cvmx_nand_status_t error code on failure
 */
int cvmx_nand_read_id(int chip, uint64_t nand_address, uint64_t buffer_address, int buffer_length)
{
    int bytes;

    CVMX_NAND_LOG_CALLED();
    CVMX_NAND_LOG_PARAM("%d", chip);
    CVMX_NAND_LOG_PARAM("0x%llx", (ULL)nand_address);
    CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address);
    CVMX_NAND_LOG_PARAM("%d", buffer_length);

    if ((chip < 0) || (chip > 7))
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (!buffer_address)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (buffer_address & 7)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (!buffer_length)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);

    bytes = __cvmx_nand_low_level_read(chip, NAND_COMMAND_READ_ID, 1, nand_address, 0, buffer_address, buffer_length);
    if (cvmx_nand_state[chip].flags & CVMX_NAND_STATE_16BIT)
        __cvmx_nand_fixup_16bit_id_reads(cvmx_phys_to_ptr(buffer_address), buffer_length);

    CVMX_NAND_RETURN(bytes);
}
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
EXPORT_SYMBOL(cvmx_nand_read_id);
#endif


/**
 * Read the NAND parameter page
 *
 * @param chip   Chip select for NAND flash
 * @param buffer_address
 *               Physical address to store data in
 * @param buffer_length
 *               Length of the buffer.  Usually 1024 bytes for 8 bit, 2048 for 16 bit mode.
 *
 * @return Bytes read on success, a negative cvmx_nand_status_t error code on failure
 */
int cvmx_nand_read_param_page(int chip, uint64_t buffer_address, int buffer_length)
{
    int bytes;

    CVMX_NAND_LOG_CALLED();
    CVMX_NAND_LOG_PARAM("%d", chip);
    CVMX_NAND_LOG_PARAM("0x%llx", (ULL)buffer_address);
    CVMX_NAND_LOG_PARAM("%d", buffer_length);

    if ((chip < 0) || (chip > 7))
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (!buffer_address)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (buffer_address & 7)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (buffer_length & 7)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (!buffer_length)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);

    bytes = __cvmx_nand_low_level_read(chip, NAND_COMMAND_READ_PARAM_PAGE, 1, 0x0, 0, buffer_address, buffer_length);
    if (cvmx_nand_state[chip].flags & CVMX_NAND_STATE_16BIT)
        __cvmx_nand_fixup_16bit_id_reads(cvmx_phys_to_ptr(buffer_address), buffer_length);
    CVMX_NAND_RETURN(bytes);
}


/**
 * Get the status of the NAND flash
 *
 * @param chip   Chip select for NAND flash
 *
 * @return NAND status or a negative cvmx_nand_status_t error code on failure
 */
int cvmx_nand_get_status(int chip)
{
    int status;
    int offset = !!(cvmx_nand_state[chip].flags & CVMX_NAND_STATE_16BIT);  /* Normalize flag to 0/1 */

    CVMX_NAND_LOG_CALLED();
    CVMX_NAND_LOG_PARAM("%d", chip);

    if ((chip < 0) || (chip > 7))
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);

    *((uint8_t*)cvmx_nand_buffer + offset)  = 0xff;
    status = __cvmx_nand_low_level_read(chip, NAND_COMMAND_STATUS, 0, 0, 0, cvmx_ptr_to_phys(cvmx_nand_buffer), 8);
    if (status > 0)
        status = *((uint8_t*)cvmx_nand_buffer + offset);

    CVMX_NAND_RETURN(status);
}
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
EXPORT_SYMBOL(cvmx_nand_get_status);
#endif


/**
 * Get the page size, excluding out of band data. This  function
 * will return zero for chip selects not connected to NAND.
 *
 * @param chip   Chip select for NAND flash
 *
 * @return Page size in bytes or a negative cvmx_nand_status_t error code on failure
 */
int cvmx_nand_get_page_size(int chip)
{
    CVMX_NAND_LOG_CALLED();
    CVMX_NAND_LOG_PARAM("%d", chip);

    if ((chip < 0) || (chip > 7))
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);

    CVMX_NAND_RETURN(cvmx_nand_state[chip].page_size);
}


/**
 * Get the OOB size.
 *
 * @param chip   Chip select for NAND flash
 *
 * @return OOB in bytes or a negative cvmx_nand_status_t error code on failure
 */
int cvmx_nand_get_oob_size(int chip)
{
    CVMX_NAND_LOG_CALLED();
    CVMX_NAND_LOG_PARAM("%d", chip);

    if ((chip < 0) || (chip > 7))
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);

    CVMX_NAND_RETURN(cvmx_nand_state[chip].oob_size);
}


/**
 * Get the number of pages per NAND block
 *
 * @param chip   Chip select for NAND flash
 *
 * @return Number of pages in each block or a negative cvmx_nand_status_t error
 *         code on failure
 */
int cvmx_nand_get_pages_per_block(int chip)
{
    CVMX_NAND_LOG_CALLED();
    CVMX_NAND_LOG_PARAM("%d", chip);

    if ((chip < 0) || (chip > 7))
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);

    CVMX_NAND_RETURN(cvmx_nand_state[chip].pages_per_block);
}


/**
 * Get the number of blocks in the NAND flash
 *
 * @param chip   Chip select for NAND flash
 *
 * @return Number of blocks or a negative cvmx_nand_status_t error code on failure
 */
int cvmx_nand_get_blocks(int chip)
{
    CVMX_NAND_LOG_CALLED();
    CVMX_NAND_LOG_PARAM("%d", chip);

    if ((chip < 0) || (chip > 7))
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);

    CVMX_NAND_RETURN(cvmx_nand_state[chip].blocks);
}


/**
 * Reset the NAND flash
 *
 * @param chip   Chip select for NAND flash
 *
 * @return Zero on success, a negative cvmx_nand_status_t error code on failure
 */
cvmx_nand_status_t cvmx_nand_reset(int chip)
{
    CVMX_NAND_LOG_CALLED();
    CVMX_NAND_LOG_PARAM("%d", chip);

    if ((chip < 0) || (chip > 7))
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);
    if (!cvmx_nand_state[chip].page_size)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);

    if (__cvmx_nand_build_pre_cmd(chip, NAND_COMMAND_RESET, 0, 0, 0))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    /* WAIT for R_B to signal reset is complete  */
    if (__wait_for_busy_done(chip))
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    if (__cvmx_nand_build_post_cmd())
        CVMX_NAND_RETURN(CVMX_NAND_NO_MEMORY);

    CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}
#ifdef CVMX_BUILD_FOR_LINUX_KERNEL
EXPORT_SYMBOL(cvmx_nand_reset);
#endif




/**
 * This function computes the Octeon specific ECC data used by the NAND boot
 * feature.
 *
 * @param block  pointer to 256 bytes of data
 * @param eccp   pointer to where 8 bytes of ECC data will be stored
 */
void cvmx_nand_compute_boot_ecc(unsigned char *block, unsigned char *eccp)
{
	unsigned char pd0, pd1, pd2;
	int i, j;

	pd0 = pd1 = pd2 = 0;

	for (i = 0; i < 256; i++)	/* PD0<0> */
		pd0 ^= (block[i] ^ (block[i] >> 2) ^ (block[i] >> 4) ^ (block[i] >> 6)) & 1;
	for (i = 0; i < 256; i++)	/* PD0<1> */
		pd0 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 4) ^ (block[i] >> 5)) & 1) << 1;
	for (i = 0; i < 256; i++)	/* PD0<2> */
		pd0 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^ (block[i] >> 3)) & 1) << 2;
	for (i = 0; i < 128; i++)	/* PD0<3> */
		pd0 ^= ((block[2*i] ^ (block[2*i] >> 1) ^ (block[2*i] >> 2) ^
			(block[2*i] >> 3) ^ (block[2*i] >> 4) ^ (block[2*i] >> 5) ^
			(block[2*i] >> 6) ^ (block[2*i] >> 7)) & 1) << 3;
	for (i = 0; i < 64; i++)	/* PD0<4> */
		for (j = 0; j < 2; j++)
			pd0 ^= ((block[4*i+j] ^ (block[4*i+j] >> 1) ^ (block[4*i+j] >> 2) ^
				(block[4*i+j] >> 3) ^ (block[4*i+j] >> 4) ^ (block[4*i+j] >> 5) ^
				(block[4*i+j] >> 6) ^ (block[4*i+j] >> 7)) & 1) << 4;
	for (i = 0; i < 32; i++)	/* PD0<5> */
		for (j = 0; j < 4; j++)
			pd0 ^= ((block[8*i+j] ^ (block[8*i+j] >> 1) ^ (block[8*i+j] >> 2) ^
				(block[8*i+j] >> 3) ^ (block[8*i+j] >> 4) ^ (block[8*i+j] >> 5) ^
				(block[8*i+j] >> 6) ^ (block[8*i+j] >> 7)) & 1) << 5;
	for (i = 0; i < 16; i++)	/* PD0<6> */
		for (j = 0; j < 8; j++)
			pd0 ^= ((block[16*i+j] ^ (block[16*i+j] >> 1) ^ (block[16*i+j] >> 2) ^
				(block[16*i+j] >> 3) ^ (block[16*i+j] >> 4) ^ (block[16*i+j] >> 5) ^
				(block[16*i+j] >> 6) ^ (block[16*i+j] >> 7)) & 1) << 6;
	for (i = 0; i < 8; i++)		/* PD0<7> */
		for (j = 0; j < 16; j++)
			pd0 ^= ((block[32*i+j] ^ (block[32*i+j] >> 1) ^ (block[32*i+j] >> 2) ^
				(block[32*i+j] >> 3) ^ (block[32*i+j] >> 4) ^ (block[32*i+j] >> 5) ^
				(block[32*i+j] >> 6) ^ (block[32*i+j] >> 7)) & 1) << 7;
	for (i = 0; i < 4; i++)		/* PD1<0> */
		for (j = 0; j < 32; j++)
			pd1 ^= ((block[64*i+j] ^ (block[64*i+j] >> 1) ^ (block[64*i+j] >> 2) ^
				(block[64*i+j] >> 3) ^ (block[64*i+j] >> 4) ^ (block[64*i+j] >> 5) ^
				(block[64*i+j] >> 6) ^ (block[64*i+j] >> 7)) & 1) << 0;
	for (i = 0; i < 2; i++)		/* PD1<1> */
		for (j = 0; j < 64; j++)
			pd1 ^= ((block[128*i+j] ^ (block[128*i+j] >> 1) ^ (block[128*i+j] >> 2) ^
				(block[128*i+j] >> 3) ^ (block[128*i+j] >> 4) ^ (block[128*i+j] >> 5) ^
				(block[128*i+j] >> 6) ^ (block[128*i+j] >> 7)) & 1) << 1;
	for (i = 0; i < 128; i++)	/* PD1<2> */
		pd1 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^
			(block[i] >> 3) ^ (block[i] >> 4) ^ (block[i] >> 5) ^
			(block[i] >> 6) ^ (block[i] >> 7)) & 1) << 2;
	/* PD1<3> */
	/* PD1<4> */
	for (i = 0; i < 256; i++)	/* PD1<5> */
		pd1 ^= (((block[i] >> 1) ^ (block[i] >> 3) ^ (block[i] >> 5) ^ (block[i] >> 7)) & 1) << 5;
	for (i = 0; i < 256; i++)	/* PD1<6> */
		pd1 ^= (((block[i] >> 2) ^ (block[i] >> 3) ^ (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 6;
	for (i = 0; i < 256; i++)	/* PD1<7> */
		pd1 ^= (((block[i] >> 4) ^ (block[i] >> 5) ^ (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 7;
	for (i = 0; i < 128; i++)	/* PD2<0> */
		pd2 ^= ((block[2*i+1] ^ (block[2*i+1] >> 1) ^ (block[2*i+1] >> 2) ^
			(block[2*i+1] >> 3) ^ (block[2*i+1] >> 4) ^ (block[2*i+1] >> 5) ^
			(block[2*i+1] >> 6) ^ (block[2*i+1] >> 7)) & 1) << 0;
	for (i = 0; i < 64; i++)	/* PD2<1> */
		for (j = 2; j < 4; j++)
			pd2 ^= ((block[4*i+j] ^ (block[4*i+j] >> 1) ^ (block[4*i+j] >> 2) ^
				(block[4*i+j] >> 3) ^ (block[4*i+j] >> 4) ^ (block[4*i+j] >> 5) ^
				(block[4*i+j] >> 6) ^ (block[4*i+j] >> 7)) & 1) << 1;
	for (i = 0; i < 32; i++)	/* PD2<2> */
		for (j = 4; j < 8; j++)
			pd2 ^= ((block[8*i+j] ^ (block[8*i+j] >> 1) ^ (block[8*i+j] >> 2) ^
				(block[8*i+j] >> 3) ^ (block[8*i+j] >> 4) ^ (block[8*i+j] >> 5) ^
				(block[8*i+j] >> 6) ^ (block[8*i+j] >> 7)) & 1) << 2;
	for (i = 0; i < 16; i++)	/* PD2<3> */
		for (j = 8; j < 16; j++)
			pd2 ^= ((block[16*i+j] ^ (block[16*i+j] >> 1) ^ (block[16*i+j] >> 2) ^
				(block[16*i+j] >> 3) ^ (block[16*i+j] >> 4) ^ (block[16*i+j] >> 5) ^
				(block[16*i+j] >> 6) ^ (block[16*i+j] >> 7)) & 1) << 3;
	for (i = 0; i < 8; i++)		/* PD2<4> */
		for (j = 16; j < 32; j++)
			pd2 ^= ((block[32*i+j] ^ (block[32*i+j] >> 1) ^ (block[32*i+j] >> 2) ^
				(block[32*i+j] >> 3) ^ (block[32*i+j] >> 4) ^ (block[32*i+j] >> 5) ^
				(block[32*i+j] >> 6) ^ (block[32*i+j] >> 7)) & 1) << 4;
	for (i = 0; i < 4; i++)		/* PD2<5> */
		for (j = 32; j < 64; j++)
			pd2 ^= ((block[64*i+j] ^ (block[64*i+j] >> 1) ^ (block[64*i+j] >> 2) ^
				(block[64*i+j] >> 3) ^ (block[64*i+j] >> 4) ^ (block[64*i+j] >> 5) ^
				(block[64*i+j] >> 6) ^ (block[64*i+j] >> 7)) & 1) << 5;
	for (i = 0; i < 2; i++)		/* PD2<6> */
		for (j = 64; j < 128; j++)
			pd2 ^= ((block[128*i+j] ^ (block[128*i+j] >> 1) ^ (block[128*i+j] >> 2) ^
				(block[128*i+j] >> 3) ^ (block[128*i+j] >> 4) ^ (block[128*i+j] >> 5) ^
				(block[128*i+j] >> 6) ^ (block[128*i+j] >> 7)) & 1) << 6;
	for (i = 128; i < 256; i++)	/* PD2<7> */
		pd2 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^
			(block[i] >> 3) ^ (block[i] >> 4) ^ (block[i] >> 5) ^
			(block[i] >> 6) ^ (block[i] >> 7)) & 1) << 7;

	eccp[0] = pd0;
	eccp[1] = pd1;
	eccp[2] = pd2;
}

/**
 * Check an Octeon ECC block, fixing errors if possible
 *
 * @param block  Pointer to block to check
 *
 * @return Zero if block has no errors, one if errors were corrected, two
 *         if the errors could not be corrected.
 */
int cvmx_nand_correct_boot_ecc(uint8_t *block)
{
    unsigned char pd0, pd1, pd2;
    int i, j;
    unsigned char xorpd0, xorpd1, xorpd2;
    int xor_num;
    unsigned int check;

    asm volatile ("pref 0,0(%0);pref 0,128(%0);pref 0,256(%0)\n" :: "r" (block));

    pd0 = pd1 = pd2 = 0;

    for (i = 0; i < 256; i++)   /* PD0<0> */
        pd0 ^= (block[i] ^ (block[i] >> 2) ^ (block[i] >> 4) ^ (block[i] >> 6)) & 1;
    for (i = 0; i < 256; i++)   /* PD0<1> */
        pd0 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 4) ^ (block[i] >> 5)) & 1) << 1;
    for (i = 0; i < 256; i++)   /* PD0<2> */
        pd0 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^ (block[i] >> 3)) & 1) << 2;
    for (i = 0; i < 128; i++)   /* PD0<3> */
        pd0 ^= ((block[2*i] ^ (block[2*i] >> 1) ^ (block[2*i] >> 2) ^
                 (block[2*i] >> 3) ^ (block[2*i] >> 4) ^ (block[2*i] >> 5) ^
                 (block[2*i] >> 6) ^ (block[2*i] >> 7)) & 1) << 3;
    for (i = 0; i < 64; i++)    /* PD0<4> */
        for (j = 0; j < 2; j++)
            pd0 ^= ((block[4*i+j] ^ (block[4*i+j] >> 1) ^ (block[4*i+j] >> 2) ^
                     (block[4*i+j] >> 3) ^ (block[4*i+j] >> 4) ^ (block[4*i+j] >> 5) ^
                     (block[4*i+j] >> 6) ^ (block[4*i+j] >> 7)) & 1) << 4;
    for (i = 0; i < 32; i++)    /* PD0<5> */
        for (j = 0; j < 4; j++)
            pd0 ^= ((block[8*i+j] ^ (block[8*i+j] >> 1) ^ (block[8*i+j] >> 2) ^
                     (block[8*i+j] >> 3) ^ (block[8*i+j] >> 4) ^ (block[8*i+j] >> 5) ^
                     (block[8*i+j] >> 6) ^ (block[8*i+j] >> 7)) & 1) << 5;
    for (i = 0; i < 16; i++)    /* PD0<6> */
        for (j = 0; j < 8; j++)
            pd0 ^= ((block[16*i+j] ^ (block[16*i+j] >> 1) ^ (block[16*i+j] >> 2) ^
                     (block[16*i+j] >> 3) ^ (block[16*i+j] >> 4) ^ (block[16*i+j] >> 5) ^
                     (block[16*i+j] >> 6) ^ (block[16*i+j] >> 7)) & 1) << 6;
    for (i = 0; i < 8; i++)     /* PD0<7> */
        for (j = 0; j < 16; j++)
            pd0 ^= ((block[32*i+j] ^ (block[32*i+j] >> 1) ^ (block[32*i+j] >> 2) ^
                     (block[32*i+j] >> 3) ^ (block[32*i+j] >> 4) ^ (block[32*i+j] >> 5) ^
                     (block[32*i+j] >> 6) ^ (block[32*i+j] >> 7)) & 1) << 7;
    for (i = 0; i < 4; i++)     /* PD1<0> */
        for (j = 0; j < 32; j++)
            pd1 ^= ((block[64*i+j] ^ (block[64*i+j] >> 1) ^ (block[64*i+j] >> 2) ^
                     (block[64*i+j] >> 3) ^ (block[64*i+j] >> 4) ^ (block[64*i+j] >> 5) ^
                     (block[64*i+j] >> 6) ^ (block[64*i+j] >> 7)) & 1) << 0;
    for (i = 0; i < 2; i++)     /* PD1<1> */
        for (j = 0; j < 64; j++)
            pd1 ^= ((block[128*i+j] ^ (block[128*i+j] >> 1) ^ (block[128*i+j] >> 2) ^
                     (block[128*i+j] >> 3) ^ (block[128*i+j] >> 4) ^ (block[128*i+j] >> 5) ^
                     (block[128*i+j] >> 6) ^ (block[128*i+j] >> 7)) & 1) << 1;
    for (i = 0; i < 128; i++)   /* PD1<2> */
        pd1 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^
                 (block[i] >> 3) ^ (block[i] >> 4) ^ (block[i] >> 5) ^
                 (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 2;
    /* PD1<3> */
    /* PD1<4> */
    for (i = 0; i < 256; i++)   /* PD1<5> */
        pd1 ^= (((block[i] >> 1) ^ (block[i] >> 3) ^ (block[i] >> 5) ^ (block[i] >> 7)) & 1) << 5;
    for (i = 0; i < 256; i++)   /* PD1<6> */
        pd1 ^= (((block[i] >> 2) ^ (block[i] >> 3) ^ (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 6;
    for (i = 0; i < 256; i++)   /* PD1<7> */
        pd1 ^= (((block[i] >> 4) ^ (block[i] >> 5) ^ (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 7;
    for (i = 0; i < 128; i++)   /* PD2<0> */
        pd2 ^= ((block[2*i+1] ^ (block[2*i+1] >> 1) ^ (block[2*i+1] >> 2) ^
                 (block[2*i+1] >> 3) ^ (block[2*i+1] >> 4) ^ (block[2*i+1] >> 5) ^
                 (block[2*i+1] >> 6) ^ (block[2*i+1] >> 7)) & 1) << 0;
    for (i = 0; i < 64; i++)    /* PD2<1> */
        for (j = 2; j < 4; j++)
            pd2 ^= ((block[4*i+j] ^ (block[4*i+j] >> 1) ^ (block[4*i+j] >> 2) ^
                     (block[4*i+j] >> 3) ^ (block[4*i+j] >> 4) ^ (block[4*i+j] >> 5) ^
                     (block[4*i+j] >> 6) ^ (block[4*i+j] >> 7)) & 1) << 1;
    for (i = 0; i < 32; i++)    /* PD2<2> */
        for (j = 4; j < 8; j++)
            pd2 ^= ((block[8*i+j] ^ (block[8*i+j] >> 1) ^ (block[8*i+j] >> 2) ^
                     (block[8*i+j] >> 3) ^ (block[8*i+j] >> 4) ^ (block[8*i+j] >> 5) ^
                     (block[8*i+j] >> 6) ^ (block[8*i+j] >> 7)) & 1) << 2;
    for (i = 0; i < 16; i++)    /* PD2<3> */
        for (j = 8; j < 16; j++)
            pd2 ^= ((block[16*i+j] ^ (block[16*i+j] >> 1) ^ (block[16*i+j] >> 2) ^
                     (block[16*i+j] >> 3) ^ (block[16*i+j] >> 4) ^ (block[16*i+j] >> 5) ^
                     (block[16*i+j] >> 6) ^ (block[16*i+j] >> 7)) & 1) << 3;
    for (i = 0; i < 8; i++)     /* PD2<4> */
        for (j = 16; j < 32; j++)
            pd2 ^= ((block[32*i+j] ^ (block[32*i+j] >> 1) ^ (block[32*i+j] >> 2) ^
                     (block[32*i+j] >> 3) ^ (block[32*i+j] >> 4) ^ (block[32*i+j] >> 5) ^
                     (block[32*i+j] >> 6) ^ (block[32*i+j] >> 7)) & 1) << 4;
    for (i = 0; i < 4; i++)     /* PD2<5> */
        for (j = 32; j < 64; j++)
            pd2 ^= ((block[64*i+j] ^ (block[64*i+j] >> 1) ^ (block[64*i+j] >> 2) ^
                     (block[64*i+j] >> 3) ^ (block[64*i+j] >> 4) ^ (block[64*i+j] >> 5) ^
                     (block[64*i+j] >> 6) ^ (block[64*i+j] >> 7)) & 1) << 5;
    for (i = 0; i < 2; i++)     /* PD2<6> */
        for (j = 64; j < 128; j++)
            pd2 ^= ((block[128*i+j] ^ (block[128*i+j] >> 1) ^ (block[128*i+j] >> 2) ^
                     (block[128*i+j] >> 3) ^ (block[128*i+j] >> 4) ^ (block[128*i+j] >> 5) ^
                     (block[128*i+j] >> 6) ^ (block[128*i+j] >> 7)) & 1) << 6;
    for (i = 128; i < 256; i++) /* PD2<7> */
        pd2 ^= ((block[i] ^ (block[i] >> 1) ^ (block[i] >> 2) ^
                 (block[i] >> 3) ^ (block[i] >> 4) ^ (block[i] >> 5) ^
                 (block[i] >> 6) ^ (block[i] >> 7)) & 1) << 7;

    xorpd0 = pd0 ^ block[256];
    xorpd1 = pd1 ^ block[257];
    xorpd2 = pd2 ^ block[258];

    xor_num = __builtin_popcount((xorpd0 << 16) | (xorpd1 << 8) | xorpd2);
    check = (((xorpd1 & 7) << 8) | xorpd0) ^ ((xorpd2 << 3) | (xorpd1 >> 5));

    if (xor_num == 0)
        return 0;
    else if ((xor_num > 1) && (check != 0x7FF))
        return 2;

    if (check == 0x7FF)
    {
        /* Correct the error */
        block[xorpd2] ^= 1 << (xorpd1 >> 5);
    }

    return 1;
}

cvmx_nand_status_t cvmx_nand_set_defaults(int page_size, int oob_size, int pages_per_block, int blocks, int onfi_timing_mode)
{
    if (!page_size || !oob_size || !pages_per_block || !blocks || onfi_timing_mode > 5)
        CVMX_NAND_RETURN(CVMX_NAND_INVALID_PARAM);

    cvmx_nand_default.page_size = page_size;
    cvmx_nand_default.oob_size = oob_size;
    cvmx_nand_default.pages_per_block = pages_per_block;
    cvmx_nand_default.blocks = blocks;
    cvmx_nand_default.onfi_timing = onfi_timing_mode;

    CVMX_NAND_RETURN(CVMX_NAND_SUCCESS);
}
OpenPOWER on IntegriCloud