1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632
7633
7634
7635
7636
7637
7638
7639
7640
7641
7642
7643
7644
7645
7646
7647
7648
7649
7650
7651
7652
7653
7654
7655
7656
7657
7658
7659
7660
7661
7662
7663
7664
7665
7666
7667
7668
7669
7670
7671
7672
7673
7674
7675
7676
7677
7678
7679
7680
7681
7682
7683
7684
7685
7686
7687
7688
7689
7690
7691
7692
7693
7694
7695
7696
7697
7698
7699
7700
7701
7702
7703
7704
7705
7706
7707
7708
7709
7710
7711
7712
7713
7714
7715
7716
7717
7718
7719
7720
7721
7722
7723
7724
7725
7726
7727
7728
7729
7730
7731
7732
7733
7734
7735
7736
7737
7738
7739
7740
7741
7742
7743
7744
7745
7746
7747
7748
7749
7750
7751
7752
7753
7754
7755
7756
7757
7758
7759
7760
7761
7762
7763
7764
7765
7766
7767
7768
7769
7770
7771
7772
7773
7774
7775
7776
7777
7778
7779
7780
7781
7782
7783
7784
7785
7786
7787
7788
7789
7790
7791
7792
7793
7794
7795
7796
7797
7798
7799
7800
7801
7802
7803
7804
7805
7806
7807
7808
7809
7810
7811
7812
7813
7814
7815
7816
7817
7818
7819
7820
7821
7822
7823
7824
7825
7826
7827
7828
7829
7830
7831
7832
7833
7834
7835
7836
7837
7838
7839
7840
7841
7842
7843
7844
7845
7846
7847
7848
7849
7850
7851
7852
7853
7854
7855
7856
7857
7858
7859
7860
7861
7862
7863
7864
7865
7866
7867
7868
7869
7870
7871
7872
7873
7874
7875
7876
7877
7878
7879
7880
7881
7882
7883
7884
7885
7886
7887
7888
7889
7890
7891
7892
7893
7894
7895
7896
7897
7898
7899
7900
7901
7902
7903
7904
7905
7906
7907
7908
7909
7910
7911
7912
7913
7914
7915
7916
7917
7918
7919
7920
7921
7922
7923
7924
7925
7926
7927
7928
7929
7930
7931
7932
7933
7934
7935
7936
7937
7938
7939
7940
7941
7942
7943
7944
7945
7946
7947
7948
7949
7950
7951
7952
7953
7954
7955
7956
7957
7958
7959
7960
7961
7962
7963
7964
7965
7966
7967
7968
7969
7970
7971
7972
7973
7974
7975
7976
7977
7978
7979
7980
7981
7982
7983
7984
7985
7986
7987
7988
7989
7990
7991
7992
7993
7994
7995
7996
7997
7998
7999
8000
8001
8002
8003
8004
8005
8006
8007
8008
8009
8010
8011
8012
8013
8014
8015
8016
8017
8018
8019
8020
8021
8022
8023
8024
8025
8026
8027
8028
8029
8030
8031
8032
8033
8034
8035
8036
8037
8038
8039
8040
8041
8042
8043
8044
8045
8046
8047
8048
8049
8050
8051
8052
8053
8054
8055
8056
8057
8058
8059
8060
8061
8062
8063
8064
8065
8066
8067
8068
8069
8070
8071
8072
8073
8074
8075
8076
8077
8078
8079
8080
8081
8082
8083
8084
8085
8086
8087
8088
8089
8090
8091
8092
8093
8094
8095
8096
8097
8098
8099
8100
8101
8102
8103
8104
8105
8106
8107
8108
8109
8110
8111
8112
8113
8114
8115
8116
8117
8118
8119
8120
8121
8122
8123
8124
8125
8126
8127
8128
8129
8130
8131
8132
8133
8134
8135
8136
8137
8138
8139
8140
8141
8142
8143
8144
8145
8146
8147
8148
8149
8150
8151
8152
8153
8154
8155
8156
8157
8158
8159
8160
8161
8162
8163
8164
8165
8166
8167
8168
8169
8170
8171
8172
8173
8174
8175
8176
8177
8178
8179
8180
8181
8182
8183
8184
8185
8186
8187
8188
8189
8190
8191
8192
8193
8194
8195
8196
8197
8198
8199
8200
8201
8202
8203
8204
8205
8206
8207
8208
8209
8210
8211
8212
8213
8214
8215
8216
8217
8218
8219
8220
8221
8222
8223
8224
8225
8226
8227
8228
8229
8230
8231
8232
8233
8234
8235
8236
8237
8238
8239
8240
8241
8242
8243
8244
8245
8246
8247
8248
8249
8250
8251
8252
8253
8254
8255
8256
8257
8258
8259
8260
8261
8262
8263
8264
8265
8266
8267
8268
8269
8270
8271
8272
8273
8274
8275
8276
8277
8278
8279
8280
8281
8282
8283
8284
8285
8286
8287
8288
8289
8290
8291
8292
8293
8294
8295
8296
8297
8298
8299
8300
8301
8302
8303
8304
8305
8306
8307
8308
8309
8310
8311
8312
8313
8314
8315
8316
8317
8318
8319
8320
8321
8322
8323
8324
8325
8326
8327
8328
8329
8330
8331
8332
8333
8334
8335
8336
8337
8338
8339
8340
8341
8342
8343
8344
8345
8346
8347
8348
8349
8350
8351
8352
8353
8354
8355
8356
8357
8358
8359
8360
8361
8362
8363
8364
8365
8366
8367
8368
8369
8370
8371
8372
8373
8374
8375
8376
8377
8378
8379
8380
8381
8382
8383
8384
8385
8386
8387
8388
8389
8390
8391
8392
8393
8394
8395
8396
8397
8398
8399
8400
8401
8402
8403
8404
8405
8406
8407
8408
8409
8410
8411
8412
8413
8414
8415
8416
8417
8418
8419
8420
8421
8422
8423
8424
8425
8426
8427
8428
8429
8430
8431
8432
8433
8434
8435
8436
8437
8438
8439
8440
8441
8442
8443
8444
8445
8446
8447
8448
8449
8450
8451
8452
8453
8454
8455
8456
8457
8458
8459
8460
8461
8462
8463
8464
8465
8466
8467
8468
8469
8470
8471
8472
8473
8474
8475
8476
8477
8478
8479
8480
8481
8482
8483
8484
8485
8486
8487
8488
8489
8490
8491
8492
8493
8494
8495
8496
8497
8498
8499
8500
8501
8502
8503
8504
8505
8506
8507
8508
8509
8510
8511
8512
8513
8514
8515
8516
8517
8518
8519
8520
8521
8522
8523
8524
8525
8526
8527
8528
8529
8530
8531
8532
8533
8534
8535
8536
8537
8538
8539
8540
8541
8542
8543
8544
8545
8546
8547
8548
8549
8550
8551
8552
8553
8554
8555
8556
8557
8558
8559
8560
8561
8562
8563
8564
8565
8566
8567
8568
8569
8570
8571
8572
8573
8574
8575
8576
8577
8578
8579
8580
8581
8582
8583
8584
8585
8586
8587
8588
8589
8590
8591
8592
8593
8594
8595
8596
8597
8598
8599
8600
8601
8602
8603
8604
8605
8606
8607
8608
8609
8610
8611
8612
8613
8614
8615
8616
8617
8618
8619
8620
8621
8622
8623
8624
8625
8626
8627
8628
8629
8630
8631
8632
8633
8634
8635
8636
8637
8638
8639
8640
8641
8642
8643
8644
8645
8646
8647
8648
8649
8650
8651
8652
8653
8654
8655
8656
8657
8658
8659
8660
8661
8662
8663
8664
8665
8666
8667
8668
8669
8670
8671
8672
8673
8674
8675
8676
8677
8678
8679
8680
8681
8682
8683
8684
8685
8686
8687
8688
8689
8690
8691
8692
8693
8694
8695
8696
8697
8698
8699
8700
8701
8702
8703
8704
8705
8706
8707
8708
8709
8710
8711
8712
8713
8714
8715
8716
8717
8718
8719
8720
8721
8722
8723
8724
8725
8726
8727
8728
8729
8730
8731
8732
8733
8734
8735
8736
8737
8738
8739
8740
8741
8742
8743
8744
8745
8746
8747
8748
8749
8750
8751
8752
8753
8754
8755
8756
8757
8758
8759
8760
8761
8762
8763
8764
8765
8766
8767
8768
8769
8770
8771
8772
8773
8774
8775
8776
8777
8778
8779
8780
8781
8782
8783
8784
8785
8786
8787
8788
8789
8790
8791
8792
8793
8794
8795
8796
8797
8798
8799
8800
8801
8802
8803
8804
8805
8806
8807
8808
8809
8810
8811
8812
8813
8814
8815
8816
8817
8818
8819
8820
8821
8822
8823
8824
8825
8826
8827
8828
8829
8830
8831
8832
8833
8834
8835
8836
8837
8838
8839
8840
8841
8842
8843
8844
8845
8846
8847
8848
8849
8850
8851
8852
8853
8854
8855
8856
8857
8858
8859
8860
8861
8862
8863
8864
8865
8866
8867
8868
8869
8870
8871
8872
8873
8874
8875
8876
8877
8878
8879
8880
8881
8882
8883
8884
8885
8886
8887
8888
8889
8890
8891
8892
8893
8894
8895
8896
8897
8898
8899
8900
8901
8902
8903
8904
8905
8906
8907
8908
8909
8910
8911
8912
8913
8914
8915
8916
8917
8918
8919
8920
8921
8922
8923
8924
8925
8926
8927
8928
8929
8930
8931
8932
8933
8934
8935
8936
8937
8938
8939
8940
8941
8942
8943
8944
8945
8946
8947
8948
8949
8950
8951
8952
8953
8954
8955
8956
8957
8958
8959
8960
8961
8962
8963
8964
8965
8966
8967
8968
8969
8970
8971
8972
8973
8974
8975
8976
8977
8978
8979
8980
8981
8982
8983
8984
8985
8986
8987
8988
8989
8990
8991
8992
8993
8994
8995
8996
8997
8998
8999
9000
9001
9002
9003
9004
9005
9006
9007
9008
9009
9010
9011
9012
9013
9014
9015
9016
9017
9018
9019
9020
9021
9022
9023
9024
9025
9026
9027
9028
9029
9030
9031
9032
9033
9034
9035
9036
9037
9038
9039
9040
9041
9042
9043
9044
9045
9046
9047
9048
9049
9050
9051
9052
9053
9054
9055
9056
9057
9058
9059
9060
9061
9062
9063
9064
9065
9066
9067
9068
9069
9070
9071
9072
9073
9074
9075
9076
9077
9078
9079
9080
9081
9082
9083
9084
9085
9086
9087
9088
9089
9090
9091
9092
9093
9094
9095
9096
9097
9098
9099
9100
9101
9102
9103
9104
9105
9106
9107
9108
9109
9110
9111
9112
9113
9114
9115
9116
9117
9118
9119
9120
9121
9122
9123
9124
9125
9126
9127
9128
9129
9130
9131
9132
9133
9134
9135
9136
9137
9138
9139
9140
9141
9142
9143
9144
9145
9146
9147
9148
9149
9150
9151
9152
9153
9154
9155
9156
9157
9158
9159
9160
9161
9162
9163
9164
9165
9166
9167
9168
9169
9170
9171
9172
9173
9174
9175
9176
9177
9178
9179
9180
9181
9182
9183
9184
9185
9186
9187
9188
9189
9190
9191
9192
9193
9194
9195
9196
9197
9198
9199
9200
9201
9202
9203
9204
9205
9206
9207
9208
9209
9210
9211
9212
9213
9214
9215
9216
9217
9218
9219
9220
9221
9222
9223
9224
9225
9226
9227
9228
9229
9230
9231
9232
9233
9234
9235
9236
9237
9238
9239
9240
9241
9242
9243
9244
9245
9246
9247
9248
9249
9250
9251
9252
9253
9254
9255
9256
9257
9258
9259
9260
9261
9262
9263
9264
9265
9266
9267
9268
9269
9270
9271
9272
9273
9274
9275
9276
9277
9278
9279
9280
9281
9282
9283
9284
9285
9286
9287
9288
9289
9290
9291
9292
9293
9294
9295
9296
9297
9298
9299
9300
9301
9302
9303
9304
9305
9306
9307
9308
9309
9310
9311
9312
9313
9314
9315
9316
9317
9318
9319
9320
9321
9322
9323
9324
9325
9326
9327
9328
9329
9330
9331
9332
9333
9334
9335
9336
9337
9338
9339
9340
9341
9342
9343
9344
9345
9346
9347
9348
9349
9350
9351
9352
9353
9354
9355
9356
9357
9358
9359
9360
9361
9362
9363
9364
9365
9366
9367
9368
9369
9370
9371
9372
9373
9374
9375
9376
9377
9378
9379
9380
9381
9382
9383
9384
9385
9386
9387
9388
9389
9390
9391
9392
9393
9394
9395
9396
9397
9398
9399
9400
9401
9402
9403
9404
9405
9406
9407
9408
9409
9410
9411
9412
9413
9414
9415
9416
9417
9418
9419
9420
9421
9422
9423
9424
9425
9426
9427
9428
9429
9430
9431
9432
9433
9434
9435
9436
9437
9438
9439
9440
9441
9442
9443
9444
9445
9446
9447
9448
9449
9450
9451
9452
9453
9454
9455
9456
9457
9458
9459
9460
9461
9462
9463
9464
9465
9466
9467
9468
9469
9470
9471
9472
9473
9474
9475
9476
9477
9478
9479
9480
9481
9482
9483
9484
9485
9486
9487
9488
9489
9490
9491
9492
9493
9494
9495
9496
9497
9498
9499
9500
9501
9502
9503
9504
9505
9506
9507
9508
9509
9510
9511
9512
9513
9514
9515
9516
9517
9518
9519
9520
9521
9522
9523
9524
9525
|
/***********************license start***************
* Copyright (c) 2003-2012 Cavium Inc. (support@cavium.com). All rights
* reserved.
*
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are
* met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Cavium Inc. nor the names of
* its contributors may be used to endorse or promote products
* derived from this software without specific prior written
* permission.
* This Software, including technical data, may be subject to U.S. export control
* laws, including the U.S. Export Administration Act and its associated
* regulations, and may be subject to export or import regulations in other
* countries.
* TO THE MAXIMUM EXTENT PERMITTED BY LAW, THE SOFTWARE IS PROVIDED "AS IS"
* AND WITH ALL FAULTS AND CAVIUM INC. MAKES NO PROMISES, REPRESENTATIONS OR
* WARRANTIES, EITHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, WITH RESPECT TO
* THE SOFTWARE, INCLUDING ITS CONDITION, ITS CONFORMITY TO ANY REPRESENTATION OR
* DESCRIPTION, OR THE EXISTENCE OF ANY LATENT OR PATENT DEFECTS, AND CAVIUM
* SPECIFICALLY DISCLAIMS ALL IMPLIED (IF ANY) WARRANTIES OF TITLE,
* MERCHANTABILITY, NONINFRINGEMENT, FITNESS FOR A PARTICULAR PURPOSE, LACK OF
* VIRUSES, ACCURACY OR COMPLETENESS, QUIET ENJOYMENT, QUIET POSSESSION OR
* CORRESPONDENCE TO DESCRIPTION. THE ENTIRE RISK ARISING OUT OF USE OR
* PERFORMANCE OF THE SOFTWARE LIES WITH YOU.
***********************license end**************************************/
/**
* cvmx-mio-defs.h
*
* Configuration and status register (CSR) type definitions for
* Octeon mio.
*
* This file is auto generated. Do not edit.
*
* <hr>$Revision$<hr>
*
*/
#ifndef __CVMX_MIO_DEFS_H__
#define __CVMX_MIO_DEFS_H__
#define CVMX_MIO_BOOT_BIST_STAT (CVMX_ADD_IO_SEG(0x00011800000000F8ull))
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_BOOT_COMP CVMX_MIO_BOOT_COMP_FUNC()
static inline uint64_t CVMX_MIO_BOOT_COMP_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN50XX) || OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_BOOT_COMP not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00011800000000B8ull);
}
#else
#define CVMX_MIO_BOOT_COMP (CVMX_ADD_IO_SEG(0x00011800000000B8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_BOOT_DMA_CFGX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 2))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_BOOT_DMA_CFGX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000100ull) + ((offset) & 3) * 8;
}
#else
#define CVMX_MIO_BOOT_DMA_CFGX(offset) (CVMX_ADD_IO_SEG(0x0001180000000100ull) + ((offset) & 3) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_BOOT_DMA_INTX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 2))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_BOOT_DMA_INTX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000138ull) + ((offset) & 3) * 8;
}
#else
#define CVMX_MIO_BOOT_DMA_INTX(offset) (CVMX_ADD_IO_SEG(0x0001180000000138ull) + ((offset) & 3) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_BOOT_DMA_INT_ENX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 2))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_BOOT_DMA_INT_ENX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000150ull) + ((offset) & 3) * 8;
}
#else
#define CVMX_MIO_BOOT_DMA_INT_ENX(offset) (CVMX_ADD_IO_SEG(0x0001180000000150ull) + ((offset) & 3) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_BOOT_DMA_TIMX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 2))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_BOOT_DMA_TIMX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000120ull) + ((offset) & 3) * 8;
}
#else
#define CVMX_MIO_BOOT_DMA_TIMX(offset) (CVMX_ADD_IO_SEG(0x0001180000000120ull) + ((offset) & 3) * 8)
#endif
#define CVMX_MIO_BOOT_ERR (CVMX_ADD_IO_SEG(0x00011800000000A0ull))
#define CVMX_MIO_BOOT_INT (CVMX_ADD_IO_SEG(0x00011800000000A8ull))
#define CVMX_MIO_BOOT_LOC_ADR (CVMX_ADD_IO_SEG(0x0001180000000090ull))
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_BOOT_LOC_CFGX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_BOOT_LOC_CFGX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000080ull) + ((offset) & 1) * 8;
}
#else
#define CVMX_MIO_BOOT_LOC_CFGX(offset) (CVMX_ADD_IO_SEG(0x0001180000000080ull) + ((offset) & 1) * 8)
#endif
#define CVMX_MIO_BOOT_LOC_DAT (CVMX_ADD_IO_SEG(0x0001180000000098ull))
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_BOOT_PIN_DEFS CVMX_MIO_BOOT_PIN_DEFS_FUNC()
static inline uint64_t CVMX_MIO_BOOT_PIN_DEFS_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN56XX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_BOOT_PIN_DEFS not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00011800000000C0ull);
}
#else
#define CVMX_MIO_BOOT_PIN_DEFS (CVMX_ADD_IO_SEG(0x00011800000000C0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_BOOT_REG_CFGX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 7)))))
cvmx_warn("CVMX_MIO_BOOT_REG_CFGX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000000ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_MIO_BOOT_REG_CFGX(offset) (CVMX_ADD_IO_SEG(0x0001180000000000ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_BOOT_REG_TIMX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 7))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 7)))))
cvmx_warn("CVMX_MIO_BOOT_REG_TIMX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000040ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_MIO_BOOT_REG_TIMX(offset) (CVMX_ADD_IO_SEG(0x0001180000000040ull) + ((offset) & 7) * 8)
#endif
#define CVMX_MIO_BOOT_THR (CVMX_ADD_IO_SEG(0x00011800000000B0ull))
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_EMM_BUF_DAT CVMX_MIO_EMM_BUF_DAT_FUNC()
static inline uint64_t CVMX_MIO_EMM_BUF_DAT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_EMM_BUF_DAT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00011800000020E8ull);
}
#else
#define CVMX_MIO_EMM_BUF_DAT (CVMX_ADD_IO_SEG(0x00011800000020E8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_EMM_BUF_IDX CVMX_MIO_EMM_BUF_IDX_FUNC()
static inline uint64_t CVMX_MIO_EMM_BUF_IDX_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_EMM_BUF_IDX not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00011800000020E0ull);
}
#else
#define CVMX_MIO_EMM_BUF_IDX (CVMX_ADD_IO_SEG(0x00011800000020E0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_EMM_CFG CVMX_MIO_EMM_CFG_FUNC()
static inline uint64_t CVMX_MIO_EMM_CFG_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_EMM_CFG not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000002000ull);
}
#else
#define CVMX_MIO_EMM_CFG (CVMX_ADD_IO_SEG(0x0001180000002000ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_EMM_CMD CVMX_MIO_EMM_CMD_FUNC()
static inline uint64_t CVMX_MIO_EMM_CMD_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_EMM_CMD not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000002058ull);
}
#else
#define CVMX_MIO_EMM_CMD (CVMX_ADD_IO_SEG(0x0001180000002058ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_EMM_DMA CVMX_MIO_EMM_DMA_FUNC()
static inline uint64_t CVMX_MIO_EMM_DMA_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_EMM_DMA not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000002050ull);
}
#else
#define CVMX_MIO_EMM_DMA (CVMX_ADD_IO_SEG(0x0001180000002050ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_EMM_INT CVMX_MIO_EMM_INT_FUNC()
static inline uint64_t CVMX_MIO_EMM_INT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_EMM_INT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000002078ull);
}
#else
#define CVMX_MIO_EMM_INT (CVMX_ADD_IO_SEG(0x0001180000002078ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_EMM_INT_EN CVMX_MIO_EMM_INT_EN_FUNC()
static inline uint64_t CVMX_MIO_EMM_INT_EN_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_EMM_INT_EN not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000002080ull);
}
#else
#define CVMX_MIO_EMM_INT_EN (CVMX_ADD_IO_SEG(0x0001180000002080ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_EMM_MODEX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 3))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 3)))))
cvmx_warn("CVMX_MIO_EMM_MODEX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000002008ull) + ((offset) & 3) * 8;
}
#else
#define CVMX_MIO_EMM_MODEX(offset) (CVMX_ADD_IO_SEG(0x0001180000002008ull) + ((offset) & 3) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_EMM_RCA CVMX_MIO_EMM_RCA_FUNC()
static inline uint64_t CVMX_MIO_EMM_RCA_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_EMM_RCA not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00011800000020A0ull);
}
#else
#define CVMX_MIO_EMM_RCA (CVMX_ADD_IO_SEG(0x00011800000020A0ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_EMM_RSP_HI CVMX_MIO_EMM_RSP_HI_FUNC()
static inline uint64_t CVMX_MIO_EMM_RSP_HI_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_EMM_RSP_HI not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000002070ull);
}
#else
#define CVMX_MIO_EMM_RSP_HI (CVMX_ADD_IO_SEG(0x0001180000002070ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_EMM_RSP_LO CVMX_MIO_EMM_RSP_LO_FUNC()
static inline uint64_t CVMX_MIO_EMM_RSP_LO_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_EMM_RSP_LO not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000002068ull);
}
#else
#define CVMX_MIO_EMM_RSP_LO (CVMX_ADD_IO_SEG(0x0001180000002068ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_EMM_RSP_STS CVMX_MIO_EMM_RSP_STS_FUNC()
static inline uint64_t CVMX_MIO_EMM_RSP_STS_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_EMM_RSP_STS not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000002060ull);
}
#else
#define CVMX_MIO_EMM_RSP_STS (CVMX_ADD_IO_SEG(0x0001180000002060ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_EMM_SAMPLE CVMX_MIO_EMM_SAMPLE_FUNC()
static inline uint64_t CVMX_MIO_EMM_SAMPLE_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_EMM_SAMPLE not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000002090ull);
}
#else
#define CVMX_MIO_EMM_SAMPLE (CVMX_ADD_IO_SEG(0x0001180000002090ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_EMM_STS_MASK CVMX_MIO_EMM_STS_MASK_FUNC()
static inline uint64_t CVMX_MIO_EMM_STS_MASK_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_EMM_STS_MASK not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000002098ull);
}
#else
#define CVMX_MIO_EMM_STS_MASK (CVMX_ADD_IO_SEG(0x0001180000002098ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_EMM_SWITCH CVMX_MIO_EMM_SWITCH_FUNC()
static inline uint64_t CVMX_MIO_EMM_SWITCH_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_EMM_SWITCH not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000002048ull);
}
#else
#define CVMX_MIO_EMM_SWITCH (CVMX_ADD_IO_SEG(0x0001180000002048ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_EMM_WDOG CVMX_MIO_EMM_WDOG_FUNC()
static inline uint64_t CVMX_MIO_EMM_WDOG_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_EMM_WDOG not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000002088ull);
}
#else
#define CVMX_MIO_EMM_WDOG (CVMX_ADD_IO_SEG(0x0001180000002088ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_FUS_BNK_DATX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 3))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 3))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 3))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 3))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_FUS_BNK_DATX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000001520ull) + ((offset) & 3) * 8;
}
#else
#define CVMX_MIO_FUS_BNK_DATX(offset) (CVMX_ADD_IO_SEG(0x0001180000001520ull) + ((offset) & 3) * 8)
#endif
#define CVMX_MIO_FUS_DAT0 (CVMX_ADD_IO_SEG(0x0001180000001400ull))
#define CVMX_MIO_FUS_DAT1 (CVMX_ADD_IO_SEG(0x0001180000001408ull))
#define CVMX_MIO_FUS_DAT2 (CVMX_ADD_IO_SEG(0x0001180000001410ull))
#define CVMX_MIO_FUS_DAT3 (CVMX_ADD_IO_SEG(0x0001180000001418ull))
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_FUS_EMA CVMX_MIO_FUS_EMA_FUNC()
static inline uint64_t CVMX_MIO_FUS_EMA_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_FUS_EMA not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001550ull);
}
#else
#define CVMX_MIO_FUS_EMA (CVMX_ADD_IO_SEG(0x0001180000001550ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_FUS_PDF CVMX_MIO_FUS_PDF_FUNC()
static inline uint64_t CVMX_MIO_FUS_PDF_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_FUS_PDF not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001420ull);
}
#else
#define CVMX_MIO_FUS_PDF (CVMX_ADD_IO_SEG(0x0001180000001420ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_FUS_PLL CVMX_MIO_FUS_PLL_FUNC()
static inline uint64_t CVMX_MIO_FUS_PLL_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_FUS_PLL not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001580ull);
}
#else
#define CVMX_MIO_FUS_PLL (CVMX_ADD_IO_SEG(0x0001180000001580ull))
#endif
#define CVMX_MIO_FUS_PROG (CVMX_ADD_IO_SEG(0x0001180000001510ull))
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_FUS_PROG_TIMES CVMX_MIO_FUS_PROG_TIMES_FUNC()
static inline uint64_t CVMX_MIO_FUS_PROG_TIMES_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN5XXX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_FUS_PROG_TIMES not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001518ull);
}
#else
#define CVMX_MIO_FUS_PROG_TIMES (CVMX_ADD_IO_SEG(0x0001180000001518ull))
#endif
#define CVMX_MIO_FUS_RCMD (CVMX_ADD_IO_SEG(0x0001180000001500ull))
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_FUS_READ_TIMES CVMX_MIO_FUS_READ_TIMES_FUNC()
static inline uint64_t CVMX_MIO_FUS_READ_TIMES_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_FUS_READ_TIMES not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001570ull);
}
#else
#define CVMX_MIO_FUS_READ_TIMES (CVMX_ADD_IO_SEG(0x0001180000001570ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_FUS_REPAIR_RES0 CVMX_MIO_FUS_REPAIR_RES0_FUNC()
static inline uint64_t CVMX_MIO_FUS_REPAIR_RES0_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_FUS_REPAIR_RES0 not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001558ull);
}
#else
#define CVMX_MIO_FUS_REPAIR_RES0 (CVMX_ADD_IO_SEG(0x0001180000001558ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_FUS_REPAIR_RES1 CVMX_MIO_FUS_REPAIR_RES1_FUNC()
static inline uint64_t CVMX_MIO_FUS_REPAIR_RES1_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_FUS_REPAIR_RES1 not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001560ull);
}
#else
#define CVMX_MIO_FUS_REPAIR_RES1 (CVMX_ADD_IO_SEG(0x0001180000001560ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_FUS_REPAIR_RES2 CVMX_MIO_FUS_REPAIR_RES2_FUNC()
static inline uint64_t CVMX_MIO_FUS_REPAIR_RES2_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_FUS_REPAIR_RES2 not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001568ull);
}
#else
#define CVMX_MIO_FUS_REPAIR_RES2 (CVMX_ADD_IO_SEG(0x0001180000001568ull))
#endif
#define CVMX_MIO_FUS_SPR_REPAIR_RES (CVMX_ADD_IO_SEG(0x0001180000001548ull))
#define CVMX_MIO_FUS_SPR_REPAIR_SUM (CVMX_ADD_IO_SEG(0x0001180000001540ull))
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_FUS_TGG CVMX_MIO_FUS_TGG_FUNC()
static inline uint64_t CVMX_MIO_FUS_TGG_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_FUS_TGG not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001428ull);
}
#else
#define CVMX_MIO_FUS_TGG (CVMX_ADD_IO_SEG(0x0001180000001428ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_FUS_UNLOCK CVMX_MIO_FUS_UNLOCK_FUNC()
static inline uint64_t CVMX_MIO_FUS_UNLOCK_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN30XX) || OCTEON_IS_MODEL(OCTEON_CN31XX)))
cvmx_warn("CVMX_MIO_FUS_UNLOCK not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001578ull);
}
#else
#define CVMX_MIO_FUS_UNLOCK (CVMX_ADD_IO_SEG(0x0001180000001578ull))
#endif
#define CVMX_MIO_FUS_WADR (CVMX_ADD_IO_SEG(0x0001180000001508ull))
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_GPIO_COMP CVMX_MIO_GPIO_COMP_FUNC()
static inline uint64_t CVMX_MIO_GPIO_COMP_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_GPIO_COMP not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x00011800000000C8ull);
}
#else
#define CVMX_MIO_GPIO_COMP (CVMX_ADD_IO_SEG(0x00011800000000C8ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_NDF_DMA_CFG CVMX_MIO_NDF_DMA_CFG_FUNC()
static inline uint64_t CVMX_MIO_NDF_DMA_CFG_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_NDF_DMA_CFG not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000168ull);
}
#else
#define CVMX_MIO_NDF_DMA_CFG (CVMX_ADD_IO_SEG(0x0001180000000168ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_NDF_DMA_INT CVMX_MIO_NDF_DMA_INT_FUNC()
static inline uint64_t CVMX_MIO_NDF_DMA_INT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_NDF_DMA_INT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000170ull);
}
#else
#define CVMX_MIO_NDF_DMA_INT (CVMX_ADD_IO_SEG(0x0001180000000170ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_NDF_DMA_INT_EN CVMX_MIO_NDF_DMA_INT_EN_FUNC()
static inline uint64_t CVMX_MIO_NDF_DMA_INT_EN_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX) || OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_NDF_DMA_INT_EN not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000178ull);
}
#else
#define CVMX_MIO_NDF_DMA_INT_EN (CVMX_ADD_IO_SEG(0x0001180000000178ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PLL_CTL CVMX_MIO_PLL_CTL_FUNC()
static inline uint64_t CVMX_MIO_PLL_CTL_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN30XX) || OCTEON_IS_MODEL(OCTEON_CN31XX)))
cvmx_warn("CVMX_MIO_PLL_CTL not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001448ull);
}
#else
#define CVMX_MIO_PLL_CTL (CVMX_ADD_IO_SEG(0x0001180000001448ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PLL_SETTING CVMX_MIO_PLL_SETTING_FUNC()
static inline uint64_t CVMX_MIO_PLL_SETTING_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN30XX) || OCTEON_IS_MODEL(OCTEON_CN31XX)))
cvmx_warn("CVMX_MIO_PLL_SETTING not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001440ull);
}
#else
#define CVMX_MIO_PLL_SETTING (CVMX_ADD_IO_SEG(0x0001180000001440ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PTP_CKOUT_HI_INCR CVMX_MIO_PTP_CKOUT_HI_INCR_FUNC()
static inline uint64_t CVMX_MIO_PTP_CKOUT_HI_INCR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_PTP_CKOUT_HI_INCR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000000F40ull);
}
#else
#define CVMX_MIO_PTP_CKOUT_HI_INCR (CVMX_ADD_IO_SEG(0x0001070000000F40ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PTP_CKOUT_LO_INCR CVMX_MIO_PTP_CKOUT_LO_INCR_FUNC()
static inline uint64_t CVMX_MIO_PTP_CKOUT_LO_INCR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_PTP_CKOUT_LO_INCR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000000F48ull);
}
#else
#define CVMX_MIO_PTP_CKOUT_LO_INCR (CVMX_ADD_IO_SEG(0x0001070000000F48ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PTP_CKOUT_THRESH_HI CVMX_MIO_PTP_CKOUT_THRESH_HI_FUNC()
static inline uint64_t CVMX_MIO_PTP_CKOUT_THRESH_HI_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_PTP_CKOUT_THRESH_HI not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000000F38ull);
}
#else
#define CVMX_MIO_PTP_CKOUT_THRESH_HI (CVMX_ADD_IO_SEG(0x0001070000000F38ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PTP_CKOUT_THRESH_LO CVMX_MIO_PTP_CKOUT_THRESH_LO_FUNC()
static inline uint64_t CVMX_MIO_PTP_CKOUT_THRESH_LO_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_PTP_CKOUT_THRESH_LO not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000000F30ull);
}
#else
#define CVMX_MIO_PTP_CKOUT_THRESH_LO (CVMX_ADD_IO_SEG(0x0001070000000F30ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PTP_CLOCK_CFG CVMX_MIO_PTP_CLOCK_CFG_FUNC()
static inline uint64_t CVMX_MIO_PTP_CLOCK_CFG_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_PTP_CLOCK_CFG not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000000F00ull);
}
#else
#define CVMX_MIO_PTP_CLOCK_CFG (CVMX_ADD_IO_SEG(0x0001070000000F00ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PTP_CLOCK_COMP CVMX_MIO_PTP_CLOCK_COMP_FUNC()
static inline uint64_t CVMX_MIO_PTP_CLOCK_COMP_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_PTP_CLOCK_COMP not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000000F18ull);
}
#else
#define CVMX_MIO_PTP_CLOCK_COMP (CVMX_ADD_IO_SEG(0x0001070000000F18ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PTP_CLOCK_HI CVMX_MIO_PTP_CLOCK_HI_FUNC()
static inline uint64_t CVMX_MIO_PTP_CLOCK_HI_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_PTP_CLOCK_HI not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000000F10ull);
}
#else
#define CVMX_MIO_PTP_CLOCK_HI (CVMX_ADD_IO_SEG(0x0001070000000F10ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PTP_CLOCK_LO CVMX_MIO_PTP_CLOCK_LO_FUNC()
static inline uint64_t CVMX_MIO_PTP_CLOCK_LO_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_PTP_CLOCK_LO not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000000F08ull);
}
#else
#define CVMX_MIO_PTP_CLOCK_LO (CVMX_ADD_IO_SEG(0x0001070000000F08ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PTP_EVT_CNT CVMX_MIO_PTP_EVT_CNT_FUNC()
static inline uint64_t CVMX_MIO_PTP_EVT_CNT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_PTP_EVT_CNT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000000F28ull);
}
#else
#define CVMX_MIO_PTP_EVT_CNT (CVMX_ADD_IO_SEG(0x0001070000000F28ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PTP_PHY_1PPS_IN CVMX_MIO_PTP_PHY_1PPS_IN_FUNC()
static inline uint64_t CVMX_MIO_PTP_PHY_1PPS_IN_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_PTP_PHY_1PPS_IN not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000000F70ull);
}
#else
#define CVMX_MIO_PTP_PHY_1PPS_IN (CVMX_ADD_IO_SEG(0x0001070000000F70ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PTP_PPS_HI_INCR CVMX_MIO_PTP_PPS_HI_INCR_FUNC()
static inline uint64_t CVMX_MIO_PTP_PPS_HI_INCR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_PTP_PPS_HI_INCR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000000F60ull);
}
#else
#define CVMX_MIO_PTP_PPS_HI_INCR (CVMX_ADD_IO_SEG(0x0001070000000F60ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PTP_PPS_LO_INCR CVMX_MIO_PTP_PPS_LO_INCR_FUNC()
static inline uint64_t CVMX_MIO_PTP_PPS_LO_INCR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_PTP_PPS_LO_INCR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000000F68ull);
}
#else
#define CVMX_MIO_PTP_PPS_LO_INCR (CVMX_ADD_IO_SEG(0x0001070000000F68ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PTP_PPS_THRESH_HI CVMX_MIO_PTP_PPS_THRESH_HI_FUNC()
static inline uint64_t CVMX_MIO_PTP_PPS_THRESH_HI_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_PTP_PPS_THRESH_HI not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000000F58ull);
}
#else
#define CVMX_MIO_PTP_PPS_THRESH_HI (CVMX_ADD_IO_SEG(0x0001070000000F58ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PTP_PPS_THRESH_LO CVMX_MIO_PTP_PPS_THRESH_LO_FUNC()
static inline uint64_t CVMX_MIO_PTP_PPS_THRESH_LO_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_PTP_PPS_THRESH_LO not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000000F50ull);
}
#else
#define CVMX_MIO_PTP_PPS_THRESH_LO (CVMX_ADD_IO_SEG(0x0001070000000F50ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_PTP_TIMESTAMP CVMX_MIO_PTP_TIMESTAMP_FUNC()
static inline uint64_t CVMX_MIO_PTP_TIMESTAMP_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_PTP_TIMESTAMP not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001070000000F20ull);
}
#else
#define CVMX_MIO_PTP_TIMESTAMP (CVMX_ADD_IO_SEG(0x0001070000000F20ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_QLMX_CFG(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 2))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 2))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 4))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_QLMX_CFG(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000001590ull) + ((offset) & 7) * 8;
}
#else
#define CVMX_MIO_QLMX_CFG(offset) (CVMX_ADD_IO_SEG(0x0001180000001590ull) + ((offset) & 7) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_RST_BOOT CVMX_MIO_RST_BOOT_FUNC()
static inline uint64_t CVMX_MIO_RST_BOOT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_RST_BOOT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001600ull);
}
#else
#define CVMX_MIO_RST_BOOT (CVMX_ADD_IO_SEG(0x0001180000001600ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_RST_CFG CVMX_MIO_RST_CFG_FUNC()
static inline uint64_t CVMX_MIO_RST_CFG_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_RST_CFG not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001610ull);
}
#else
#define CVMX_MIO_RST_CFG (CVMX_ADD_IO_SEG(0x0001180000001610ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_RST_CKILL CVMX_MIO_RST_CKILL_FUNC()
static inline uint64_t CVMX_MIO_RST_CKILL_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_RST_CKILL not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001638ull);
}
#else
#define CVMX_MIO_RST_CKILL (CVMX_ADD_IO_SEG(0x0001180000001638ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_RST_CNTLX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 3))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_RST_CNTLX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000001648ull) + ((offset) & 3) * 8;
}
#else
#define CVMX_MIO_RST_CNTLX(offset) (CVMX_ADD_IO_SEG(0x0001180000001648ull) + ((offset) & 3) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_RST_CTLX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_RST_CTLX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000001618ull) + ((offset) & 1) * 8;
}
#else
#define CVMX_MIO_RST_CTLX(offset) (CVMX_ADD_IO_SEG(0x0001180000001618ull) + ((offset) & 1) * 8)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_RST_DELAY CVMX_MIO_RST_DELAY_FUNC()
static inline uint64_t CVMX_MIO_RST_DELAY_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_RST_DELAY not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001608ull);
}
#else
#define CVMX_MIO_RST_DELAY (CVMX_ADD_IO_SEG(0x0001180000001608ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_RST_INT CVMX_MIO_RST_INT_FUNC()
static inline uint64_t CVMX_MIO_RST_INT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_RST_INT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001628ull);
}
#else
#define CVMX_MIO_RST_INT (CVMX_ADD_IO_SEG(0x0001180000001628ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_RST_INT_EN CVMX_MIO_RST_INT_EN_FUNC()
static inline uint64_t CVMX_MIO_RST_INT_EN_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN61XX) || OCTEON_IS_MODEL(OCTEON_CN63XX) || OCTEON_IS_MODEL(OCTEON_CN66XX) || OCTEON_IS_MODEL(OCTEON_CN68XX) || OCTEON_IS_MODEL(OCTEON_CNF71XX)))
cvmx_warn("CVMX_MIO_RST_INT_EN not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000001630ull);
}
#else
#define CVMX_MIO_RST_INT_EN (CVMX_ADD_IO_SEG(0x0001180000001630ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_TWSX_INT(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_TWSX_INT(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000001010ull) + ((offset) & 1) * 512;
}
#else
#define CVMX_MIO_TWSX_INT(offset) (CVMX_ADD_IO_SEG(0x0001180000001010ull) + ((offset) & 1) * 512)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_TWSX_SW_TWSI(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_TWSX_SW_TWSI(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000001000ull) + ((offset) & 1) * 512;
}
#else
#define CVMX_MIO_TWSX_SW_TWSI(offset) (CVMX_ADD_IO_SEG(0x0001180000001000ull) + ((offset) & 1) * 512)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_TWSX_SW_TWSI_EXT(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_TWSX_SW_TWSI_EXT(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000001018ull) + ((offset) & 1) * 512;
}
#else
#define CVMX_MIO_TWSX_SW_TWSI_EXT(offset) (CVMX_ADD_IO_SEG(0x0001180000001018ull) + ((offset) & 1) * 512)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_TWSX_TWSI_SW(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset == 0))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_TWSX_TWSI_SW(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000001008ull) + ((offset) & 1) * 512;
}
#else
#define CVMX_MIO_TWSX_TWSI_SW(offset) (CVMX_ADD_IO_SEG(0x0001180000001008ull) + ((offset) & 1) * 512)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_DLH CVMX_MIO_UART2_DLH_FUNC()
static inline uint64_t CVMX_MIO_UART2_DLH_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_DLH not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000488ull);
}
#else
#define CVMX_MIO_UART2_DLH (CVMX_ADD_IO_SEG(0x0001180000000488ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_DLL CVMX_MIO_UART2_DLL_FUNC()
static inline uint64_t CVMX_MIO_UART2_DLL_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_DLL not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000480ull);
}
#else
#define CVMX_MIO_UART2_DLL (CVMX_ADD_IO_SEG(0x0001180000000480ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_FAR CVMX_MIO_UART2_FAR_FUNC()
static inline uint64_t CVMX_MIO_UART2_FAR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_FAR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000520ull);
}
#else
#define CVMX_MIO_UART2_FAR (CVMX_ADD_IO_SEG(0x0001180000000520ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_FCR CVMX_MIO_UART2_FCR_FUNC()
static inline uint64_t CVMX_MIO_UART2_FCR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_FCR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000450ull);
}
#else
#define CVMX_MIO_UART2_FCR (CVMX_ADD_IO_SEG(0x0001180000000450ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_HTX CVMX_MIO_UART2_HTX_FUNC()
static inline uint64_t CVMX_MIO_UART2_HTX_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_HTX not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000708ull);
}
#else
#define CVMX_MIO_UART2_HTX (CVMX_ADD_IO_SEG(0x0001180000000708ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_IER CVMX_MIO_UART2_IER_FUNC()
static inline uint64_t CVMX_MIO_UART2_IER_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_IER not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000408ull);
}
#else
#define CVMX_MIO_UART2_IER (CVMX_ADD_IO_SEG(0x0001180000000408ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_IIR CVMX_MIO_UART2_IIR_FUNC()
static inline uint64_t CVMX_MIO_UART2_IIR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_IIR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000410ull);
}
#else
#define CVMX_MIO_UART2_IIR (CVMX_ADD_IO_SEG(0x0001180000000410ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_LCR CVMX_MIO_UART2_LCR_FUNC()
static inline uint64_t CVMX_MIO_UART2_LCR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_LCR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000418ull);
}
#else
#define CVMX_MIO_UART2_LCR (CVMX_ADD_IO_SEG(0x0001180000000418ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_LSR CVMX_MIO_UART2_LSR_FUNC()
static inline uint64_t CVMX_MIO_UART2_LSR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_LSR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000428ull);
}
#else
#define CVMX_MIO_UART2_LSR (CVMX_ADD_IO_SEG(0x0001180000000428ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_MCR CVMX_MIO_UART2_MCR_FUNC()
static inline uint64_t CVMX_MIO_UART2_MCR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_MCR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000420ull);
}
#else
#define CVMX_MIO_UART2_MCR (CVMX_ADD_IO_SEG(0x0001180000000420ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_MSR CVMX_MIO_UART2_MSR_FUNC()
static inline uint64_t CVMX_MIO_UART2_MSR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_MSR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000430ull);
}
#else
#define CVMX_MIO_UART2_MSR (CVMX_ADD_IO_SEG(0x0001180000000430ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_RBR CVMX_MIO_UART2_RBR_FUNC()
static inline uint64_t CVMX_MIO_UART2_RBR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_RBR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000400ull);
}
#else
#define CVMX_MIO_UART2_RBR (CVMX_ADD_IO_SEG(0x0001180000000400ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_RFL CVMX_MIO_UART2_RFL_FUNC()
static inline uint64_t CVMX_MIO_UART2_RFL_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_RFL not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000608ull);
}
#else
#define CVMX_MIO_UART2_RFL (CVMX_ADD_IO_SEG(0x0001180000000608ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_RFW CVMX_MIO_UART2_RFW_FUNC()
static inline uint64_t CVMX_MIO_UART2_RFW_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_RFW not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000530ull);
}
#else
#define CVMX_MIO_UART2_RFW (CVMX_ADD_IO_SEG(0x0001180000000530ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_SBCR CVMX_MIO_UART2_SBCR_FUNC()
static inline uint64_t CVMX_MIO_UART2_SBCR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_SBCR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000620ull);
}
#else
#define CVMX_MIO_UART2_SBCR (CVMX_ADD_IO_SEG(0x0001180000000620ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_SCR CVMX_MIO_UART2_SCR_FUNC()
static inline uint64_t CVMX_MIO_UART2_SCR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_SCR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000438ull);
}
#else
#define CVMX_MIO_UART2_SCR (CVMX_ADD_IO_SEG(0x0001180000000438ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_SFE CVMX_MIO_UART2_SFE_FUNC()
static inline uint64_t CVMX_MIO_UART2_SFE_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_SFE not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000630ull);
}
#else
#define CVMX_MIO_UART2_SFE (CVMX_ADD_IO_SEG(0x0001180000000630ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_SRR CVMX_MIO_UART2_SRR_FUNC()
static inline uint64_t CVMX_MIO_UART2_SRR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_SRR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000610ull);
}
#else
#define CVMX_MIO_UART2_SRR (CVMX_ADD_IO_SEG(0x0001180000000610ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_SRT CVMX_MIO_UART2_SRT_FUNC()
static inline uint64_t CVMX_MIO_UART2_SRT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_SRT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000638ull);
}
#else
#define CVMX_MIO_UART2_SRT (CVMX_ADD_IO_SEG(0x0001180000000638ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_SRTS CVMX_MIO_UART2_SRTS_FUNC()
static inline uint64_t CVMX_MIO_UART2_SRTS_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_SRTS not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000618ull);
}
#else
#define CVMX_MIO_UART2_SRTS (CVMX_ADD_IO_SEG(0x0001180000000618ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_STT CVMX_MIO_UART2_STT_FUNC()
static inline uint64_t CVMX_MIO_UART2_STT_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_STT not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000700ull);
}
#else
#define CVMX_MIO_UART2_STT (CVMX_ADD_IO_SEG(0x0001180000000700ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_TFL CVMX_MIO_UART2_TFL_FUNC()
static inline uint64_t CVMX_MIO_UART2_TFL_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_TFL not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000600ull);
}
#else
#define CVMX_MIO_UART2_TFL (CVMX_ADD_IO_SEG(0x0001180000000600ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_TFR CVMX_MIO_UART2_TFR_FUNC()
static inline uint64_t CVMX_MIO_UART2_TFR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_TFR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000528ull);
}
#else
#define CVMX_MIO_UART2_TFR (CVMX_ADD_IO_SEG(0x0001180000000528ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_THR CVMX_MIO_UART2_THR_FUNC()
static inline uint64_t CVMX_MIO_UART2_THR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_THR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000440ull);
}
#else
#define CVMX_MIO_UART2_THR (CVMX_ADD_IO_SEG(0x0001180000000440ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
#define CVMX_MIO_UART2_USR CVMX_MIO_UART2_USR_FUNC()
static inline uint64_t CVMX_MIO_UART2_USR_FUNC(void)
{
if (!(OCTEON_IS_MODEL(OCTEON_CN52XX)))
cvmx_warn("CVMX_MIO_UART2_USR not supported on this chip\n");
return CVMX_ADD_IO_SEG(0x0001180000000538ull);
}
#else
#define CVMX_MIO_UART2_USR (CVMX_ADD_IO_SEG(0x0001180000000538ull))
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_DLH(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_DLH(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000888ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_DLH(offset) (CVMX_ADD_IO_SEG(0x0001180000000888ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_DLL(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_DLL(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000880ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_DLL(offset) (CVMX_ADD_IO_SEG(0x0001180000000880ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_FAR(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_FAR(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000920ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_FAR(offset) (CVMX_ADD_IO_SEG(0x0001180000000920ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_FCR(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_FCR(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000850ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_FCR(offset) (CVMX_ADD_IO_SEG(0x0001180000000850ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_HTX(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_HTX(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000B08ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_HTX(offset) (CVMX_ADD_IO_SEG(0x0001180000000B08ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_IER(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_IER(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000808ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_IER(offset) (CVMX_ADD_IO_SEG(0x0001180000000808ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_IIR(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_IIR(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000810ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_IIR(offset) (CVMX_ADD_IO_SEG(0x0001180000000810ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_LCR(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_LCR(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000818ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_LCR(offset) (CVMX_ADD_IO_SEG(0x0001180000000818ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_LSR(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_LSR(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000828ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_LSR(offset) (CVMX_ADD_IO_SEG(0x0001180000000828ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_MCR(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_MCR(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000820ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_MCR(offset) (CVMX_ADD_IO_SEG(0x0001180000000820ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_MSR(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_MSR(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000830ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_MSR(offset) (CVMX_ADD_IO_SEG(0x0001180000000830ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_RBR(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_RBR(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000800ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_RBR(offset) (CVMX_ADD_IO_SEG(0x0001180000000800ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_RFL(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_RFL(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000A08ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_RFL(offset) (CVMX_ADD_IO_SEG(0x0001180000000A08ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_RFW(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_RFW(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000930ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_RFW(offset) (CVMX_ADD_IO_SEG(0x0001180000000930ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_SBCR(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_SBCR(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000A20ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_SBCR(offset) (CVMX_ADD_IO_SEG(0x0001180000000A20ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_SCR(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_SCR(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000838ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_SCR(offset) (CVMX_ADD_IO_SEG(0x0001180000000838ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_SFE(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_SFE(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000A30ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_SFE(offset) (CVMX_ADD_IO_SEG(0x0001180000000A30ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_SRR(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_SRR(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000A10ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_SRR(offset) (CVMX_ADD_IO_SEG(0x0001180000000A10ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_SRT(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_SRT(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000A38ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_SRT(offset) (CVMX_ADD_IO_SEG(0x0001180000000A38ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_SRTS(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_SRTS(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000A18ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_SRTS(offset) (CVMX_ADD_IO_SEG(0x0001180000000A18ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_STT(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_STT(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000B00ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_STT(offset) (CVMX_ADD_IO_SEG(0x0001180000000B00ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_TFL(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_TFL(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000A00ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_TFL(offset) (CVMX_ADD_IO_SEG(0x0001180000000A00ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_TFR(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_TFR(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000928ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_TFR(offset) (CVMX_ADD_IO_SEG(0x0001180000000928ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_THR(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_THR(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000840ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_THR(offset) (CVMX_ADD_IO_SEG(0x0001180000000840ull) + ((offset) & 1) * 1024)
#endif
#if CVMX_ENABLE_CSR_ADDRESS_CHECKING
static inline uint64_t CVMX_MIO_UARTX_USR(unsigned long offset)
{
if (!(
(OCTEON_IS_MODEL(OCTEON_CN30XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN31XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN38XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN50XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN52XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN56XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN58XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN61XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN63XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN66XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CN68XX) && ((offset <= 1))) ||
(OCTEON_IS_MODEL(OCTEON_CNF71XX) && ((offset <= 1)))))
cvmx_warn("CVMX_MIO_UARTX_USR(%lu) is invalid on this chip\n", offset);
return CVMX_ADD_IO_SEG(0x0001180000000938ull) + ((offset) & 1) * 1024;
}
#else
#define CVMX_MIO_UARTX_USR(offset) (CVMX_ADD_IO_SEG(0x0001180000000938ull) + ((offset) & 1) * 1024)
#endif
/**
* cvmx_mio_boot_bist_stat
*
* MIO_BOOT_BIST_STAT = MIO Boot BIST Status Register
*
* Contains the BIST status for the MIO boot memories. '0' = pass, '1' = fail.
*/
union cvmx_mio_boot_bist_stat {
uint64_t u64;
struct cvmx_mio_boot_bist_stat_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_0_63 : 64;
#else
uint64_t reserved_0_63 : 64;
#endif
} s;
struct cvmx_mio_boot_bist_stat_cn30xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_4_63 : 60;
uint64_t ncbo_1 : 1; /**< NCB output FIFO 1 BIST status */
uint64_t ncbo_0 : 1; /**< NCB output FIFO 0 BIST status */
uint64_t loc : 1; /**< Local memory BIST status */
uint64_t ncbi : 1; /**< NCB input FIFO BIST status */
#else
uint64_t ncbi : 1;
uint64_t loc : 1;
uint64_t ncbo_0 : 1;
uint64_t ncbo_1 : 1;
uint64_t reserved_4_63 : 60;
#endif
} cn30xx;
struct cvmx_mio_boot_bist_stat_cn30xx cn31xx;
struct cvmx_mio_boot_bist_stat_cn38xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_3_63 : 61;
uint64_t ncbo_0 : 1; /**< NCB output FIFO BIST status */
uint64_t loc : 1; /**< Local memory BIST status */
uint64_t ncbi : 1; /**< NCB input FIFO BIST status */
#else
uint64_t ncbi : 1;
uint64_t loc : 1;
uint64_t ncbo_0 : 1;
uint64_t reserved_3_63 : 61;
#endif
} cn38xx;
struct cvmx_mio_boot_bist_stat_cn38xx cn38xxp2;
struct cvmx_mio_boot_bist_stat_cn50xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_6_63 : 58;
uint64_t pcm_1 : 1; /**< PCM memory 1 BIST status */
uint64_t pcm_0 : 1; /**< PCM memory 0 BIST status */
uint64_t ncbo_1 : 1; /**< NCB output FIFO 1 BIST status */
uint64_t ncbo_0 : 1; /**< NCB output FIFO 0 BIST status */
uint64_t loc : 1; /**< Local memory region BIST status */
uint64_t ncbi : 1; /**< NCB input FIFO BIST status */
#else
uint64_t ncbi : 1;
uint64_t loc : 1;
uint64_t ncbo_0 : 1;
uint64_t ncbo_1 : 1;
uint64_t pcm_0 : 1;
uint64_t pcm_1 : 1;
uint64_t reserved_6_63 : 58;
#endif
} cn50xx;
struct cvmx_mio_boot_bist_stat_cn52xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_6_63 : 58;
uint64_t ndf : 2; /**< NAND flash BIST status */
uint64_t ncbo_0 : 1; /**< NCB output FIFO BIST status */
uint64_t dma : 1; /**< DMA memory BIST status */
uint64_t loc : 1; /**< Local memory BIST status */
uint64_t ncbi : 1; /**< NCB input FIFO BIST status */
#else
uint64_t ncbi : 1;
uint64_t loc : 1;
uint64_t dma : 1;
uint64_t ncbo_0 : 1;
uint64_t ndf : 2;
uint64_t reserved_6_63 : 58;
#endif
} cn52xx;
struct cvmx_mio_boot_bist_stat_cn52xxp1 {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_4_63 : 60;
uint64_t ncbo_0 : 1; /**< NCB output FIFO BIST status */
uint64_t dma : 1; /**< DMA memory BIST status */
uint64_t loc : 1; /**< Local memory region BIST status */
uint64_t ncbi : 1; /**< NCB input FIFO BIST status */
#else
uint64_t ncbi : 1;
uint64_t loc : 1;
uint64_t dma : 1;
uint64_t ncbo_0 : 1;
uint64_t reserved_4_63 : 60;
#endif
} cn52xxp1;
struct cvmx_mio_boot_bist_stat_cn52xxp1 cn56xx;
struct cvmx_mio_boot_bist_stat_cn52xxp1 cn56xxp1;
struct cvmx_mio_boot_bist_stat_cn38xx cn58xx;
struct cvmx_mio_boot_bist_stat_cn38xx cn58xxp1;
struct cvmx_mio_boot_bist_stat_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_12_63 : 52;
uint64_t stat : 12; /**< BIST status */
#else
uint64_t stat : 12;
uint64_t reserved_12_63 : 52;
#endif
} cn61xx;
struct cvmx_mio_boot_bist_stat_cn63xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_9_63 : 55;
uint64_t stat : 9; /**< BIST status */
#else
uint64_t stat : 9;
uint64_t reserved_9_63 : 55;
#endif
} cn63xx;
struct cvmx_mio_boot_bist_stat_cn63xx cn63xxp1;
struct cvmx_mio_boot_bist_stat_cn66xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_10_63 : 54;
uint64_t stat : 10; /**< BIST status */
#else
uint64_t stat : 10;
uint64_t reserved_10_63 : 54;
#endif
} cn66xx;
struct cvmx_mio_boot_bist_stat_cn66xx cn68xx;
struct cvmx_mio_boot_bist_stat_cn66xx cn68xxp1;
struct cvmx_mio_boot_bist_stat_cn61xx cnf71xx;
};
typedef union cvmx_mio_boot_bist_stat cvmx_mio_boot_bist_stat_t;
/**
* cvmx_mio_boot_comp
*
* MIO_BOOT_COMP = MIO Boot Compensation Register
*
* Reset value is as follows:
*
* no pullups, PCTL=38, NCTL=30 (25 ohm termination)
* pullup on boot_ad[9], PCTL=19, NCTL=15 (50 ohm termination)
* pullup on boot_ad[10], PCTL=15, NCTL=12 (65 ohm termination)
* pullups on boot_ad[10:9], PCTL=15, NCTL=12 (65 ohm termination)
*/
union cvmx_mio_boot_comp {
uint64_t u64;
struct cvmx_mio_boot_comp_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_0_63 : 64;
#else
uint64_t reserved_0_63 : 64;
#endif
} s;
struct cvmx_mio_boot_comp_cn50xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_10_63 : 54;
uint64_t pctl : 5; /**< Boot bus PCTL */
uint64_t nctl : 5; /**< Boot bus NCTL */
#else
uint64_t nctl : 5;
uint64_t pctl : 5;
uint64_t reserved_10_63 : 54;
#endif
} cn50xx;
struct cvmx_mio_boot_comp_cn50xx cn52xx;
struct cvmx_mio_boot_comp_cn50xx cn52xxp1;
struct cvmx_mio_boot_comp_cn50xx cn56xx;
struct cvmx_mio_boot_comp_cn50xx cn56xxp1;
struct cvmx_mio_boot_comp_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_12_63 : 52;
uint64_t pctl : 6; /**< Boot bus PCTL */
uint64_t nctl : 6; /**< Boot bus NCTL */
#else
uint64_t nctl : 6;
uint64_t pctl : 6;
uint64_t reserved_12_63 : 52;
#endif
} cn61xx;
struct cvmx_mio_boot_comp_cn61xx cn63xx;
struct cvmx_mio_boot_comp_cn61xx cn63xxp1;
struct cvmx_mio_boot_comp_cn61xx cn66xx;
struct cvmx_mio_boot_comp_cn61xx cn68xx;
struct cvmx_mio_boot_comp_cn61xx cn68xxp1;
struct cvmx_mio_boot_comp_cn61xx cnf71xx;
};
typedef union cvmx_mio_boot_comp cvmx_mio_boot_comp_t;
/**
* cvmx_mio_boot_dma_cfg#
*
* MIO_BOOT_DMA_CFG = MIO Boot DMA Config Register (1 per engine * 2 engines)
*
* SIZE is specified in number of bus transfers, where one transfer is equal to the following number
* of bytes dependent on MIO_BOOT_DMA_TIMn[WIDTH] and MIO_BOOT_DMA_TIMn[DDR]:
*
* WIDTH DDR Transfer Size (bytes)
* ----------------------------------------
* 0 0 2
* 0 1 4
* 1 0 4
* 1 1 8
*
* Note: ADR must be aligned to the bus width (i.e. 16 bit aligned if WIDTH=0, 32 bit aligned if WIDTH=1).
*/
union cvmx_mio_boot_dma_cfgx {
uint64_t u64;
struct cvmx_mio_boot_dma_cfgx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t en : 1; /**< DMA Engine X enable */
uint64_t rw : 1; /**< DMA Engine X R/W bit (0 = read, 1 = write) */
uint64_t clr : 1; /**< DMA Engine X clear EN on device terminated burst */
uint64_t reserved_60_60 : 1;
uint64_t swap32 : 1; /**< DMA Engine X 32 bit swap */
uint64_t swap16 : 1; /**< DMA Engine X 16 bit swap */
uint64_t swap8 : 1; /**< DMA Engine X 8 bit swap */
uint64_t endian : 1; /**< DMA Engine X NCB endian mode (0 = big, 1 = little) */
uint64_t size : 20; /**< DMA Engine X size */
uint64_t adr : 36; /**< DMA Engine X address */
#else
uint64_t adr : 36;
uint64_t size : 20;
uint64_t endian : 1;
uint64_t swap8 : 1;
uint64_t swap16 : 1;
uint64_t swap32 : 1;
uint64_t reserved_60_60 : 1;
uint64_t clr : 1;
uint64_t rw : 1;
uint64_t en : 1;
#endif
} s;
struct cvmx_mio_boot_dma_cfgx_s cn52xx;
struct cvmx_mio_boot_dma_cfgx_s cn52xxp1;
struct cvmx_mio_boot_dma_cfgx_s cn56xx;
struct cvmx_mio_boot_dma_cfgx_s cn56xxp1;
struct cvmx_mio_boot_dma_cfgx_s cn61xx;
struct cvmx_mio_boot_dma_cfgx_s cn63xx;
struct cvmx_mio_boot_dma_cfgx_s cn63xxp1;
struct cvmx_mio_boot_dma_cfgx_s cn66xx;
struct cvmx_mio_boot_dma_cfgx_s cn68xx;
struct cvmx_mio_boot_dma_cfgx_s cn68xxp1;
struct cvmx_mio_boot_dma_cfgx_s cnf71xx;
};
typedef union cvmx_mio_boot_dma_cfgx cvmx_mio_boot_dma_cfgx_t;
/**
* cvmx_mio_boot_dma_int#
*
* MIO_BOOT_DMA_INT = MIO Boot DMA Interrupt Register (1 per engine * 2 engines)
*
*/
union cvmx_mio_boot_dma_intx {
uint64_t u64;
struct cvmx_mio_boot_dma_intx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_2_63 : 62;
uint64_t dmarq : 1; /**< DMA Engine X DMARQ asserted interrupt */
uint64_t done : 1; /**< DMA Engine X request completion interrupt */
#else
uint64_t done : 1;
uint64_t dmarq : 1;
uint64_t reserved_2_63 : 62;
#endif
} s;
struct cvmx_mio_boot_dma_intx_s cn52xx;
struct cvmx_mio_boot_dma_intx_s cn52xxp1;
struct cvmx_mio_boot_dma_intx_s cn56xx;
struct cvmx_mio_boot_dma_intx_s cn56xxp1;
struct cvmx_mio_boot_dma_intx_s cn61xx;
struct cvmx_mio_boot_dma_intx_s cn63xx;
struct cvmx_mio_boot_dma_intx_s cn63xxp1;
struct cvmx_mio_boot_dma_intx_s cn66xx;
struct cvmx_mio_boot_dma_intx_s cn68xx;
struct cvmx_mio_boot_dma_intx_s cn68xxp1;
struct cvmx_mio_boot_dma_intx_s cnf71xx;
};
typedef union cvmx_mio_boot_dma_intx cvmx_mio_boot_dma_intx_t;
/**
* cvmx_mio_boot_dma_int_en#
*
* MIO_BOOT_DMA_INT_EN = MIO Boot DMA Interrupt Enable Register (1 per engine * 2 engines)
*
*/
union cvmx_mio_boot_dma_int_enx {
uint64_t u64;
struct cvmx_mio_boot_dma_int_enx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_2_63 : 62;
uint64_t dmarq : 1; /**< DMA Engine X DMARQ asserted interrupt enable */
uint64_t done : 1; /**< DMA Engine X request completion interrupt enable */
#else
uint64_t done : 1;
uint64_t dmarq : 1;
uint64_t reserved_2_63 : 62;
#endif
} s;
struct cvmx_mio_boot_dma_int_enx_s cn52xx;
struct cvmx_mio_boot_dma_int_enx_s cn52xxp1;
struct cvmx_mio_boot_dma_int_enx_s cn56xx;
struct cvmx_mio_boot_dma_int_enx_s cn56xxp1;
struct cvmx_mio_boot_dma_int_enx_s cn61xx;
struct cvmx_mio_boot_dma_int_enx_s cn63xx;
struct cvmx_mio_boot_dma_int_enx_s cn63xxp1;
struct cvmx_mio_boot_dma_int_enx_s cn66xx;
struct cvmx_mio_boot_dma_int_enx_s cn68xx;
struct cvmx_mio_boot_dma_int_enx_s cn68xxp1;
struct cvmx_mio_boot_dma_int_enx_s cnf71xx;
};
typedef union cvmx_mio_boot_dma_int_enx cvmx_mio_boot_dma_int_enx_t;
/**
* cvmx_mio_boot_dma_tim#
*
* MIO_BOOT_DMA_TIM = MIO Boot DMA Timing Register (1 per engine * 2 engines)
*
* DMACK_PI inverts the assertion level of boot_dmack[n]. The default polarity of boot_dmack[1:0] is
* selected on the first de-assertion of reset by the values on boot_ad[12:11], where 0 is active high
* and 1 is active low (see MIO_BOOT_PIN_DEFS for a read-only copy of the default polarity).
* boot_ad[12:11] have internal pulldowns, so place a pullup on boot_ad[n+11] for active low default
* polarity on engine n. To interface with CF cards in True IDE Mode, either a pullup should be placed
* on boot_ad[n+11] OR the corresponding DMACK_PI[n] should be set.
*
* DMARQ_PI inverts the assertion level of boot_dmarq[n]. The default polarity of boot_dmarq[1:0] is
* active high, thus setting the polarity inversion bits changes the polarity to active low. To
* interface with CF cards in True IDE Mode, the corresponding DMARQ_PI[n] should be clear.
*
* TIM_MULT specifies the timing multiplier for an engine. The timing multiplier applies to all timing
* parameters, except for DMARQ and RD_DLY, which simply count eclks. TIM_MULT is encoded as follows:
* 0 = 4x, 1 = 1x, 2 = 2x, 3 = 8x.
*
* RD_DLY specifies the read sample delay in eclk cycles for an engine. For reads, the data bus is
* normally sampled on the same eclk edge that drives boot_oe_n high (and also low in DDR mode).
* This parameter can delay that sampling edge by up to 7 eclks. Note: the number of eclk cycles
* counted by the OE_A and DMACK_H + PAUSE timing parameters must be greater than RD_DLY.
*
* If DDR is set, then WE_N must be less than WE_A.
*/
union cvmx_mio_boot_dma_timx {
uint64_t u64;
struct cvmx_mio_boot_dma_timx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t dmack_pi : 1; /**< DMA Engine X DMA ack polarity inversion */
uint64_t dmarq_pi : 1; /**< DMA Engine X DMA request polarity inversion */
uint64_t tim_mult : 2; /**< DMA Engine X timing multiplier */
uint64_t rd_dly : 3; /**< DMA Engine X read sample delay */
uint64_t ddr : 1; /**< DMA Engine X DDR mode */
uint64_t width : 1; /**< DMA Engine X bus width (0 = 16 bits, 1 = 32 bits) */
uint64_t reserved_48_54 : 7;
uint64_t pause : 6; /**< DMA Engine X pause count */
uint64_t dmack_h : 6; /**< DMA Engine X DMA ack hold count */
uint64_t we_n : 6; /**< DMA Engine X write enable negated count */
uint64_t we_a : 6; /**< DMA Engine X write enable asserted count */
uint64_t oe_n : 6; /**< DMA Engine X output enable negated count */
uint64_t oe_a : 6; /**< DMA Engine X output enable asserted count */
uint64_t dmack_s : 6; /**< DMA Engine X DMA ack setup count */
uint64_t dmarq : 6; /**< DMA Engine X DMA request count (must be non-zero) */
#else
uint64_t dmarq : 6;
uint64_t dmack_s : 6;
uint64_t oe_a : 6;
uint64_t oe_n : 6;
uint64_t we_a : 6;
uint64_t we_n : 6;
uint64_t dmack_h : 6;
uint64_t pause : 6;
uint64_t reserved_48_54 : 7;
uint64_t width : 1;
uint64_t ddr : 1;
uint64_t rd_dly : 3;
uint64_t tim_mult : 2;
uint64_t dmarq_pi : 1;
uint64_t dmack_pi : 1;
#endif
} s;
struct cvmx_mio_boot_dma_timx_s cn52xx;
struct cvmx_mio_boot_dma_timx_s cn52xxp1;
struct cvmx_mio_boot_dma_timx_s cn56xx;
struct cvmx_mio_boot_dma_timx_s cn56xxp1;
struct cvmx_mio_boot_dma_timx_s cn61xx;
struct cvmx_mio_boot_dma_timx_s cn63xx;
struct cvmx_mio_boot_dma_timx_s cn63xxp1;
struct cvmx_mio_boot_dma_timx_s cn66xx;
struct cvmx_mio_boot_dma_timx_s cn68xx;
struct cvmx_mio_boot_dma_timx_s cn68xxp1;
struct cvmx_mio_boot_dma_timx_s cnf71xx;
};
typedef union cvmx_mio_boot_dma_timx cvmx_mio_boot_dma_timx_t;
/**
* cvmx_mio_boot_err
*
* MIO_BOOT_ERR = MIO Boot Error Register
*
* Contains the address decode error and wait mode error bits. Address decode error is set when a
* boot bus access does not hit in any of the 8 remote regions or 2 local memory regions. Wait mode error is
* set when wait mode is enabled and the external wait signal is not de-asserted after 32k eclk cycles.
*/
union cvmx_mio_boot_err {
uint64_t u64;
struct cvmx_mio_boot_err_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_2_63 : 62;
uint64_t wait_err : 1; /**< Wait mode error */
uint64_t adr_err : 1; /**< Address decode error */
#else
uint64_t adr_err : 1;
uint64_t wait_err : 1;
uint64_t reserved_2_63 : 62;
#endif
} s;
struct cvmx_mio_boot_err_s cn30xx;
struct cvmx_mio_boot_err_s cn31xx;
struct cvmx_mio_boot_err_s cn38xx;
struct cvmx_mio_boot_err_s cn38xxp2;
struct cvmx_mio_boot_err_s cn50xx;
struct cvmx_mio_boot_err_s cn52xx;
struct cvmx_mio_boot_err_s cn52xxp1;
struct cvmx_mio_boot_err_s cn56xx;
struct cvmx_mio_boot_err_s cn56xxp1;
struct cvmx_mio_boot_err_s cn58xx;
struct cvmx_mio_boot_err_s cn58xxp1;
struct cvmx_mio_boot_err_s cn61xx;
struct cvmx_mio_boot_err_s cn63xx;
struct cvmx_mio_boot_err_s cn63xxp1;
struct cvmx_mio_boot_err_s cn66xx;
struct cvmx_mio_boot_err_s cn68xx;
struct cvmx_mio_boot_err_s cn68xxp1;
struct cvmx_mio_boot_err_s cnf71xx;
};
typedef union cvmx_mio_boot_err cvmx_mio_boot_err_t;
/**
* cvmx_mio_boot_int
*
* MIO_BOOT_INT = MIO Boot Interrupt Register
*
* Contains the interrupt enable bits for address decode error and wait mode error.
*/
union cvmx_mio_boot_int {
uint64_t u64;
struct cvmx_mio_boot_int_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_2_63 : 62;
uint64_t wait_int : 1; /**< Wait mode error interrupt enable */
uint64_t adr_int : 1; /**< Address decode error interrupt enable */
#else
uint64_t adr_int : 1;
uint64_t wait_int : 1;
uint64_t reserved_2_63 : 62;
#endif
} s;
struct cvmx_mio_boot_int_s cn30xx;
struct cvmx_mio_boot_int_s cn31xx;
struct cvmx_mio_boot_int_s cn38xx;
struct cvmx_mio_boot_int_s cn38xxp2;
struct cvmx_mio_boot_int_s cn50xx;
struct cvmx_mio_boot_int_s cn52xx;
struct cvmx_mio_boot_int_s cn52xxp1;
struct cvmx_mio_boot_int_s cn56xx;
struct cvmx_mio_boot_int_s cn56xxp1;
struct cvmx_mio_boot_int_s cn58xx;
struct cvmx_mio_boot_int_s cn58xxp1;
struct cvmx_mio_boot_int_s cn61xx;
struct cvmx_mio_boot_int_s cn63xx;
struct cvmx_mio_boot_int_s cn63xxp1;
struct cvmx_mio_boot_int_s cn66xx;
struct cvmx_mio_boot_int_s cn68xx;
struct cvmx_mio_boot_int_s cn68xxp1;
struct cvmx_mio_boot_int_s cnf71xx;
};
typedef union cvmx_mio_boot_int cvmx_mio_boot_int_t;
/**
* cvmx_mio_boot_loc_adr
*
* MIO_BOOT_LOC_ADR = MIO Boot Local Memory Region Address Register
*
* Specifies the address for reading or writing the local memory region. This address will post-increment
* following an access to the MIO Boot Local Memory Region Data Register (MIO_BOOT_LOC_DAT).
*
* Local memory region 0 exists from addresses 0x00 - 0x78.
* Local memory region 1 exists from addresses 0x80 - 0xf8.
*/
union cvmx_mio_boot_loc_adr {
uint64_t u64;
struct cvmx_mio_boot_loc_adr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t adr : 5; /**< Local memory region address */
uint64_t reserved_0_2 : 3;
#else
uint64_t reserved_0_2 : 3;
uint64_t adr : 5;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_boot_loc_adr_s cn30xx;
struct cvmx_mio_boot_loc_adr_s cn31xx;
struct cvmx_mio_boot_loc_adr_s cn38xx;
struct cvmx_mio_boot_loc_adr_s cn38xxp2;
struct cvmx_mio_boot_loc_adr_s cn50xx;
struct cvmx_mio_boot_loc_adr_s cn52xx;
struct cvmx_mio_boot_loc_adr_s cn52xxp1;
struct cvmx_mio_boot_loc_adr_s cn56xx;
struct cvmx_mio_boot_loc_adr_s cn56xxp1;
struct cvmx_mio_boot_loc_adr_s cn58xx;
struct cvmx_mio_boot_loc_adr_s cn58xxp1;
struct cvmx_mio_boot_loc_adr_s cn61xx;
struct cvmx_mio_boot_loc_adr_s cn63xx;
struct cvmx_mio_boot_loc_adr_s cn63xxp1;
struct cvmx_mio_boot_loc_adr_s cn66xx;
struct cvmx_mio_boot_loc_adr_s cn68xx;
struct cvmx_mio_boot_loc_adr_s cn68xxp1;
struct cvmx_mio_boot_loc_adr_s cnf71xx;
};
typedef union cvmx_mio_boot_loc_adr cvmx_mio_boot_loc_adr_t;
/**
* cvmx_mio_boot_loc_cfg#
*
* MIO_BOOT_LOC_CFG = MIO Boot Local Memory Region Config Register (1 per region * 2 regions)
*
* Contains local memory region enable and local memory region base address parameters. Each local memory region is 128
* bytes organized as 16 entries x 8 bytes.
*
* Base address specifies address bits [31:7] of the region.
*/
union cvmx_mio_boot_loc_cfgx {
uint64_t u64;
struct cvmx_mio_boot_loc_cfgx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t en : 1; /**< Local memory region X enable */
uint64_t reserved_28_30 : 3;
uint64_t base : 25; /**< Local memory region X base address */
uint64_t reserved_0_2 : 3;
#else
uint64_t reserved_0_2 : 3;
uint64_t base : 25;
uint64_t reserved_28_30 : 3;
uint64_t en : 1;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_mio_boot_loc_cfgx_s cn30xx;
struct cvmx_mio_boot_loc_cfgx_s cn31xx;
struct cvmx_mio_boot_loc_cfgx_s cn38xx;
struct cvmx_mio_boot_loc_cfgx_s cn38xxp2;
struct cvmx_mio_boot_loc_cfgx_s cn50xx;
struct cvmx_mio_boot_loc_cfgx_s cn52xx;
struct cvmx_mio_boot_loc_cfgx_s cn52xxp1;
struct cvmx_mio_boot_loc_cfgx_s cn56xx;
struct cvmx_mio_boot_loc_cfgx_s cn56xxp1;
struct cvmx_mio_boot_loc_cfgx_s cn58xx;
struct cvmx_mio_boot_loc_cfgx_s cn58xxp1;
struct cvmx_mio_boot_loc_cfgx_s cn61xx;
struct cvmx_mio_boot_loc_cfgx_s cn63xx;
struct cvmx_mio_boot_loc_cfgx_s cn63xxp1;
struct cvmx_mio_boot_loc_cfgx_s cn66xx;
struct cvmx_mio_boot_loc_cfgx_s cn68xx;
struct cvmx_mio_boot_loc_cfgx_s cn68xxp1;
struct cvmx_mio_boot_loc_cfgx_s cnf71xx;
};
typedef union cvmx_mio_boot_loc_cfgx cvmx_mio_boot_loc_cfgx_t;
/**
* cvmx_mio_boot_loc_dat
*
* MIO_BOOT_LOC_DAT = MIO Boot Local Memory Region Data Register
*
* This is a pseudo-register that will read/write the local memory region at the address specified by the MIO
* Boot Local Memory Region Address Register (MIO_BOOT_LOC_ADR) when accessed.
*/
union cvmx_mio_boot_loc_dat {
uint64_t u64;
struct cvmx_mio_boot_loc_dat_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t data : 64; /**< Local memory region data */
#else
uint64_t data : 64;
#endif
} s;
struct cvmx_mio_boot_loc_dat_s cn30xx;
struct cvmx_mio_boot_loc_dat_s cn31xx;
struct cvmx_mio_boot_loc_dat_s cn38xx;
struct cvmx_mio_boot_loc_dat_s cn38xxp2;
struct cvmx_mio_boot_loc_dat_s cn50xx;
struct cvmx_mio_boot_loc_dat_s cn52xx;
struct cvmx_mio_boot_loc_dat_s cn52xxp1;
struct cvmx_mio_boot_loc_dat_s cn56xx;
struct cvmx_mio_boot_loc_dat_s cn56xxp1;
struct cvmx_mio_boot_loc_dat_s cn58xx;
struct cvmx_mio_boot_loc_dat_s cn58xxp1;
struct cvmx_mio_boot_loc_dat_s cn61xx;
struct cvmx_mio_boot_loc_dat_s cn63xx;
struct cvmx_mio_boot_loc_dat_s cn63xxp1;
struct cvmx_mio_boot_loc_dat_s cn66xx;
struct cvmx_mio_boot_loc_dat_s cn68xx;
struct cvmx_mio_boot_loc_dat_s cn68xxp1;
struct cvmx_mio_boot_loc_dat_s cnf71xx;
};
typedef union cvmx_mio_boot_loc_dat cvmx_mio_boot_loc_dat_t;
/**
* cvmx_mio_boot_pin_defs
*
* MIO_BOOT_PIN_DEFS = MIO Boot Pin Defaults Register
*
*/
union cvmx_mio_boot_pin_defs {
uint64_t u64;
struct cvmx_mio_boot_pin_defs_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t user1 : 16; /**< BOOT_AD [31:16] latched during power up */
uint64_t ale : 1; /**< Region 0 default ALE mode */
uint64_t width : 1; /**< Region 0 default bus width */
uint64_t dmack_p2 : 1; /**< boot_dmack[2] default polarity */
uint64_t dmack_p1 : 1; /**< boot_dmack[1] default polarity */
uint64_t dmack_p0 : 1; /**< boot_dmack[0] default polarity */
uint64_t term : 2; /**< Selects default driver termination */
uint64_t nand : 1; /**< Region 0 is NAND flash */
uint64_t user0 : 8; /**< BOOT_AD [7:0] latched during power up */
#else
uint64_t user0 : 8;
uint64_t nand : 1;
uint64_t term : 2;
uint64_t dmack_p0 : 1;
uint64_t dmack_p1 : 1;
uint64_t dmack_p2 : 1;
uint64_t width : 1;
uint64_t ale : 1;
uint64_t user1 : 16;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_mio_boot_pin_defs_cn52xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_16_63 : 48;
uint64_t ale : 1; /**< Region 0 default ALE mode */
uint64_t width : 1; /**< Region 0 default bus width */
uint64_t reserved_13_13 : 1;
uint64_t dmack_p1 : 1; /**< boot_dmack[1] default polarity */
uint64_t dmack_p0 : 1; /**< boot_dmack[0] default polarity */
uint64_t term : 2; /**< Selects default driver termination */
uint64_t nand : 1; /**< Region 0 is NAND flash */
uint64_t reserved_0_7 : 8;
#else
uint64_t reserved_0_7 : 8;
uint64_t nand : 1;
uint64_t term : 2;
uint64_t dmack_p0 : 1;
uint64_t dmack_p1 : 1;
uint64_t reserved_13_13 : 1;
uint64_t width : 1;
uint64_t ale : 1;
uint64_t reserved_16_63 : 48;
#endif
} cn52xx;
struct cvmx_mio_boot_pin_defs_cn56xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_16_63 : 48;
uint64_t ale : 1; /**< Region 0 default ALE mode */
uint64_t width : 1; /**< Region 0 default bus width */
uint64_t dmack_p2 : 1; /**< boot_dmack[2] default polarity */
uint64_t dmack_p1 : 1; /**< boot_dmack[1] default polarity */
uint64_t dmack_p0 : 1; /**< boot_dmack[0] default polarity */
uint64_t term : 2; /**< Selects default driver termination */
uint64_t reserved_0_8 : 9;
#else
uint64_t reserved_0_8 : 9;
uint64_t term : 2;
uint64_t dmack_p0 : 1;
uint64_t dmack_p1 : 1;
uint64_t dmack_p2 : 1;
uint64_t width : 1;
uint64_t ale : 1;
uint64_t reserved_16_63 : 48;
#endif
} cn56xx;
struct cvmx_mio_boot_pin_defs_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t user1 : 16; /**< BOOT_AD [31:16] latched during power up */
uint64_t ale : 1; /**< Region 0 default ALE mode */
uint64_t width : 1; /**< Region 0 default bus width */
uint64_t reserved_13_13 : 1;
uint64_t dmack_p1 : 1; /**< boot_dmack[1] default polarity */
uint64_t dmack_p0 : 1; /**< boot_dmack[0] default polarity */
uint64_t term : 2; /**< Selects default driver termination */
uint64_t nand : 1; /**< Region 0 is NAND flash */
uint64_t user0 : 8; /**< BOOT_AD [7:0] latched during power up */
#else
uint64_t user0 : 8;
uint64_t nand : 1;
uint64_t term : 2;
uint64_t dmack_p0 : 1;
uint64_t dmack_p1 : 1;
uint64_t reserved_13_13 : 1;
uint64_t width : 1;
uint64_t ale : 1;
uint64_t user1 : 16;
uint64_t reserved_32_63 : 32;
#endif
} cn61xx;
struct cvmx_mio_boot_pin_defs_cn52xx cn63xx;
struct cvmx_mio_boot_pin_defs_cn52xx cn63xxp1;
struct cvmx_mio_boot_pin_defs_cn52xx cn66xx;
struct cvmx_mio_boot_pin_defs_cn52xx cn68xx;
struct cvmx_mio_boot_pin_defs_cn52xx cn68xxp1;
struct cvmx_mio_boot_pin_defs_cn61xx cnf71xx;
};
typedef union cvmx_mio_boot_pin_defs cvmx_mio_boot_pin_defs_t;
/**
* cvmx_mio_boot_reg_cfg#
*/
union cvmx_mio_boot_reg_cfgx {
uint64_t u64;
struct cvmx_mio_boot_reg_cfgx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_44_63 : 20;
uint64_t dmack : 2; /**< Region X DMACK */
uint64_t tim_mult : 2; /**< Region X timing multiplier */
uint64_t rd_dly : 3; /**< Region X read sample delay */
uint64_t sam : 1; /**< Region X SAM mode */
uint64_t we_ext : 2; /**< Region X write enable count extension */
uint64_t oe_ext : 2; /**< Region X output enable count extension */
uint64_t en : 1; /**< Region X enable */
uint64_t orbit : 1; /**< Region X or bit */
uint64_t ale : 1; /**< Region X ALE mode */
uint64_t width : 1; /**< Region X bus width */
uint64_t size : 12; /**< Region X size */
uint64_t base : 16; /**< Region X base address */
#else
uint64_t base : 16;
uint64_t size : 12;
uint64_t width : 1;
uint64_t ale : 1;
uint64_t orbit : 1;
uint64_t en : 1;
uint64_t oe_ext : 2;
uint64_t we_ext : 2;
uint64_t sam : 1;
uint64_t rd_dly : 3;
uint64_t tim_mult : 2;
uint64_t dmack : 2;
uint64_t reserved_44_63 : 20;
#endif
} s;
struct cvmx_mio_boot_reg_cfgx_cn30xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_37_63 : 27;
uint64_t sam : 1; /**< Region X SAM mode */
uint64_t we_ext : 2; /**< Region X write enable count extension */
uint64_t oe_ext : 2; /**< Region X output enable count extension */
uint64_t en : 1; /**< Region X enable */
uint64_t orbit : 1; /**< Region X or bit */
uint64_t ale : 1; /**< Region X ALE mode */
uint64_t width : 1; /**< Region X bus width */
uint64_t size : 12; /**< Region X size */
uint64_t base : 16; /**< Region X base address */
#else
uint64_t base : 16;
uint64_t size : 12;
uint64_t width : 1;
uint64_t ale : 1;
uint64_t orbit : 1;
uint64_t en : 1;
uint64_t oe_ext : 2;
uint64_t we_ext : 2;
uint64_t sam : 1;
uint64_t reserved_37_63 : 27;
#endif
} cn30xx;
struct cvmx_mio_boot_reg_cfgx_cn30xx cn31xx;
struct cvmx_mio_boot_reg_cfgx_cn38xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t en : 1; /**< Region X enable */
uint64_t orbit : 1; /**< Region X or bit */
uint64_t reserved_28_29 : 2;
uint64_t size : 12; /**< Region X size */
uint64_t base : 16; /**< Region X base address */
#else
uint64_t base : 16;
uint64_t size : 12;
uint64_t reserved_28_29 : 2;
uint64_t orbit : 1;
uint64_t en : 1;
uint64_t reserved_32_63 : 32;
#endif
} cn38xx;
struct cvmx_mio_boot_reg_cfgx_cn38xx cn38xxp2;
struct cvmx_mio_boot_reg_cfgx_cn50xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_42_63 : 22;
uint64_t tim_mult : 2; /**< Region X timing multiplier */
uint64_t rd_dly : 3; /**< Region X read sample delay */
uint64_t sam : 1; /**< Region X SAM mode */
uint64_t we_ext : 2; /**< Region X write enable count extension */
uint64_t oe_ext : 2; /**< Region X output enable count extension */
uint64_t en : 1; /**< Region X enable */
uint64_t orbit : 1; /**< Region X or bit */
uint64_t ale : 1; /**< Region X ALE mode */
uint64_t width : 1; /**< Region X bus width */
uint64_t size : 12; /**< Region X size */
uint64_t base : 16; /**< Region X base address */
#else
uint64_t base : 16;
uint64_t size : 12;
uint64_t width : 1;
uint64_t ale : 1;
uint64_t orbit : 1;
uint64_t en : 1;
uint64_t oe_ext : 2;
uint64_t we_ext : 2;
uint64_t sam : 1;
uint64_t rd_dly : 3;
uint64_t tim_mult : 2;
uint64_t reserved_42_63 : 22;
#endif
} cn50xx;
struct cvmx_mio_boot_reg_cfgx_s cn52xx;
struct cvmx_mio_boot_reg_cfgx_s cn52xxp1;
struct cvmx_mio_boot_reg_cfgx_s cn56xx;
struct cvmx_mio_boot_reg_cfgx_s cn56xxp1;
struct cvmx_mio_boot_reg_cfgx_cn30xx cn58xx;
struct cvmx_mio_boot_reg_cfgx_cn30xx cn58xxp1;
struct cvmx_mio_boot_reg_cfgx_s cn61xx;
struct cvmx_mio_boot_reg_cfgx_s cn63xx;
struct cvmx_mio_boot_reg_cfgx_s cn63xxp1;
struct cvmx_mio_boot_reg_cfgx_s cn66xx;
struct cvmx_mio_boot_reg_cfgx_s cn68xx;
struct cvmx_mio_boot_reg_cfgx_s cn68xxp1;
struct cvmx_mio_boot_reg_cfgx_s cnf71xx;
};
typedef union cvmx_mio_boot_reg_cfgx cvmx_mio_boot_reg_cfgx_t;
/**
* cvmx_mio_boot_reg_tim#
*/
union cvmx_mio_boot_reg_timx {
uint64_t u64;
struct cvmx_mio_boot_reg_timx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t pagem : 1; /**< Region X page mode */
uint64_t waitm : 1; /**< Region X wait mode */
uint64_t pages : 2; /**< Region X page size */
uint64_t ale : 6; /**< Region X ALE count */
uint64_t page : 6; /**< Region X page count */
uint64_t wait : 6; /**< Region X wait count */
uint64_t pause : 6; /**< Region X pause count */
uint64_t wr_hld : 6; /**< Region X write hold count */
uint64_t rd_hld : 6; /**< Region X read hold count */
uint64_t we : 6; /**< Region X write enable count */
uint64_t oe : 6; /**< Region X output enable count */
uint64_t ce : 6; /**< Region X chip enable count */
uint64_t adr : 6; /**< Region X address count */
#else
uint64_t adr : 6;
uint64_t ce : 6;
uint64_t oe : 6;
uint64_t we : 6;
uint64_t rd_hld : 6;
uint64_t wr_hld : 6;
uint64_t pause : 6;
uint64_t wait : 6;
uint64_t page : 6;
uint64_t ale : 6;
uint64_t pages : 2;
uint64_t waitm : 1;
uint64_t pagem : 1;
#endif
} s;
struct cvmx_mio_boot_reg_timx_s cn30xx;
struct cvmx_mio_boot_reg_timx_s cn31xx;
struct cvmx_mio_boot_reg_timx_cn38xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t pagem : 1; /**< Region X page mode */
uint64_t waitm : 1; /**< Region X wait mode */
uint64_t pages : 2; /**< Region X page size (NOT IN PASS 1) */
uint64_t reserved_54_59 : 6;
uint64_t page : 6; /**< Region X page count */
uint64_t wait : 6; /**< Region X wait count */
uint64_t pause : 6; /**< Region X pause count */
uint64_t wr_hld : 6; /**< Region X write hold count */
uint64_t rd_hld : 6; /**< Region X read hold count */
uint64_t we : 6; /**< Region X write enable count */
uint64_t oe : 6; /**< Region X output enable count */
uint64_t ce : 6; /**< Region X chip enable count */
uint64_t adr : 6; /**< Region X address count */
#else
uint64_t adr : 6;
uint64_t ce : 6;
uint64_t oe : 6;
uint64_t we : 6;
uint64_t rd_hld : 6;
uint64_t wr_hld : 6;
uint64_t pause : 6;
uint64_t wait : 6;
uint64_t page : 6;
uint64_t reserved_54_59 : 6;
uint64_t pages : 2;
uint64_t waitm : 1;
uint64_t pagem : 1;
#endif
} cn38xx;
struct cvmx_mio_boot_reg_timx_cn38xx cn38xxp2;
struct cvmx_mio_boot_reg_timx_s cn50xx;
struct cvmx_mio_boot_reg_timx_s cn52xx;
struct cvmx_mio_boot_reg_timx_s cn52xxp1;
struct cvmx_mio_boot_reg_timx_s cn56xx;
struct cvmx_mio_boot_reg_timx_s cn56xxp1;
struct cvmx_mio_boot_reg_timx_s cn58xx;
struct cvmx_mio_boot_reg_timx_s cn58xxp1;
struct cvmx_mio_boot_reg_timx_s cn61xx;
struct cvmx_mio_boot_reg_timx_s cn63xx;
struct cvmx_mio_boot_reg_timx_s cn63xxp1;
struct cvmx_mio_boot_reg_timx_s cn66xx;
struct cvmx_mio_boot_reg_timx_s cn68xx;
struct cvmx_mio_boot_reg_timx_s cn68xxp1;
struct cvmx_mio_boot_reg_timx_s cnf71xx;
};
typedef union cvmx_mio_boot_reg_timx cvmx_mio_boot_reg_timx_t;
/**
* cvmx_mio_boot_thr
*
* MIO_BOOT_THR = MIO Boot Threshold Register
*
* Contains MIO Boot threshold values:
*
* FIF_THR = Assert ncb__busy when the Boot NCB input FIFO reaches this level (not typically for
* customer use).
*
* DMA_THR = When non-DMA accesses are pending, perform a DMA access after this value of non-DMA
* accesses have completed. If set to zero, only perform a DMA access when non-DMA
* accesses are not pending.
*/
union cvmx_mio_boot_thr {
uint64_t u64;
struct cvmx_mio_boot_thr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_22_63 : 42;
uint64_t dma_thr : 6; /**< DMA threshold */
uint64_t reserved_14_15 : 2;
uint64_t fif_cnt : 6; /**< Current NCB FIFO count */
uint64_t reserved_6_7 : 2;
uint64_t fif_thr : 6; /**< NCB busy threshold */
#else
uint64_t fif_thr : 6;
uint64_t reserved_6_7 : 2;
uint64_t fif_cnt : 6;
uint64_t reserved_14_15 : 2;
uint64_t dma_thr : 6;
uint64_t reserved_22_63 : 42;
#endif
} s;
struct cvmx_mio_boot_thr_cn30xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_14_63 : 50;
uint64_t fif_cnt : 6; /**< Current NCB FIFO count */
uint64_t reserved_6_7 : 2;
uint64_t fif_thr : 6; /**< NCB busy threshold */
#else
uint64_t fif_thr : 6;
uint64_t reserved_6_7 : 2;
uint64_t fif_cnt : 6;
uint64_t reserved_14_63 : 50;
#endif
} cn30xx;
struct cvmx_mio_boot_thr_cn30xx cn31xx;
struct cvmx_mio_boot_thr_cn30xx cn38xx;
struct cvmx_mio_boot_thr_cn30xx cn38xxp2;
struct cvmx_mio_boot_thr_cn30xx cn50xx;
struct cvmx_mio_boot_thr_s cn52xx;
struct cvmx_mio_boot_thr_s cn52xxp1;
struct cvmx_mio_boot_thr_s cn56xx;
struct cvmx_mio_boot_thr_s cn56xxp1;
struct cvmx_mio_boot_thr_cn30xx cn58xx;
struct cvmx_mio_boot_thr_cn30xx cn58xxp1;
struct cvmx_mio_boot_thr_s cn61xx;
struct cvmx_mio_boot_thr_s cn63xx;
struct cvmx_mio_boot_thr_s cn63xxp1;
struct cvmx_mio_boot_thr_s cn66xx;
struct cvmx_mio_boot_thr_s cn68xx;
struct cvmx_mio_boot_thr_s cn68xxp1;
struct cvmx_mio_boot_thr_s cnf71xx;
};
typedef union cvmx_mio_boot_thr cvmx_mio_boot_thr_t;
/**
* cvmx_mio_emm_buf_dat
*
* MIO_EMM_BUF_DAT = MIO EMMC Data buffer access Register
*
*/
union cvmx_mio_emm_buf_dat {
uint64_t u64;
struct cvmx_mio_emm_buf_dat_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t dat : 64; /**< Direct access to the 1KB data buffer memory. Address
specified by MIO_EMM_BUF_IDX */
#else
uint64_t dat : 64;
#endif
} s;
struct cvmx_mio_emm_buf_dat_s cn61xx;
struct cvmx_mio_emm_buf_dat_s cnf71xx;
};
typedef union cvmx_mio_emm_buf_dat cvmx_mio_emm_buf_dat_t;
/**
* cvmx_mio_emm_buf_idx
*
* MIO_EMM_BUF_IDX = MIO EMMC Data buffer address Register
*
*/
union cvmx_mio_emm_buf_idx {
uint64_t u64;
struct cvmx_mio_emm_buf_idx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_17_63 : 47;
uint64_t inc : 1; /**< Automatically advance BUF_SEL/OFFSET after each access to
MIO_EMM_BUF_DAT. Wraps after last offset of last data buffer. */
uint64_t reserved_7_15 : 9;
uint64_t buf_num : 1; /**< Specify the data buffer for the next access to MIO_EMM_BUF_DAT */
uint64_t offset : 6; /**< Specify the 8B data buffer offset for the next access to
MIO_EMM_BUF_DAT */
#else
uint64_t offset : 6;
uint64_t buf_num : 1;
uint64_t reserved_7_15 : 9;
uint64_t inc : 1;
uint64_t reserved_17_63 : 47;
#endif
} s;
struct cvmx_mio_emm_buf_idx_s cn61xx;
struct cvmx_mio_emm_buf_idx_s cnf71xx;
};
typedef union cvmx_mio_emm_buf_idx cvmx_mio_emm_buf_idx_t;
/**
* cvmx_mio_emm_cfg
*
* MIO_EMM_CFG = MIO EMMC Configuration Register
*
*/
union cvmx_mio_emm_cfg {
uint64_t u64;
struct cvmx_mio_emm_cfg_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_17_63 : 47;
uint64_t boot_fail : 1; /**< SW should set BOOT_FAIL when an unrecoverable error occurs
while attempt to boot from eMMC or NOR Flash. When set, the
following pattern will be output:
BOOT_AD[7:0] pulled up to 1
BOOT_CE_N[7:0] driven to 1
BOOT_ALE driven to 0
BOOT_OE_L driven to 1
BOOT_WE_L driven to 1 */
uint64_t reserved_4_15 : 12;
uint64_t bus_ena : 4; /**< eMMC bus enable mask.
Setting bit0 of BUS_ENA causes BOOT_CE[1] to become dedicated
eMMC bus 0 command (ie. disabling any NOR use)
Setting bit1 of BUS_ENA causes BOOT_CE[2] to become dedicated
eMMC bus 1 command (ie. disabling any NOR use).
Setting bit2 of BUS_ENA causes BOOT_CE[3] to become dedicated
eMMC bus 2 command (ie. disabling any NOR use).
Setting bit3 of BUS_ENA causes BOOT_CE[4] to become dedicated
eMMC bus 3 command (ie. disabling any NOR use).
Setting any bit of BUS_ENA causes BOOT_CE[5] to become the eMMC
clock for both bus0 and bus1. */
#else
uint64_t bus_ena : 4;
uint64_t reserved_4_15 : 12;
uint64_t boot_fail : 1;
uint64_t reserved_17_63 : 47;
#endif
} s;
struct cvmx_mio_emm_cfg_s cn61xx;
struct cvmx_mio_emm_cfg_s cnf71xx;
};
typedef union cvmx_mio_emm_cfg cvmx_mio_emm_cfg_t;
/**
* cvmx_mio_emm_cmd
*
* MIO_EMM_CMD = MIO EMMC Command Register
*
*/
union cvmx_mio_emm_cmd {
uint64_t u64;
struct cvmx_mio_emm_cmd_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_62_63 : 2;
uint64_t bus_id : 2; /**< Specify the eMMC bus */
uint64_t cmd_val : 1; /**< Request valid. SW writes this bit to a 1. HW clears it when
the operation completes. */
uint64_t reserved_56_58 : 3;
uint64_t dbuf : 1; /**< Specify the data buffer to be used for a block transfer. */
uint64_t offset : 6; /**< Debug only. Specify the number of 8 byte transfers in the
used in the command. Value is 64-OFFSET. The block transfer
will still start at the first btye in the 512B data buffer.
SW must ensure CMD16 has updated the card block length. */
uint64_t reserved_43_48 : 6;
uint64_t ctype_xor : 2; /**< Reserved. Must be zero */
uint64_t rtype_xor : 3; /**< Reserved. Must be zero */
uint64_t cmd_idx : 6; /**< eMMC command */
uint64_t arg : 32; /**< eMMC command argument */
#else
uint64_t arg : 32;
uint64_t cmd_idx : 6;
uint64_t rtype_xor : 3;
uint64_t ctype_xor : 2;
uint64_t reserved_43_48 : 6;
uint64_t offset : 6;
uint64_t dbuf : 1;
uint64_t reserved_56_58 : 3;
uint64_t cmd_val : 1;
uint64_t bus_id : 2;
uint64_t reserved_62_63 : 2;
#endif
} s;
struct cvmx_mio_emm_cmd_s cn61xx;
struct cvmx_mio_emm_cmd_s cnf71xx;
};
typedef union cvmx_mio_emm_cmd cvmx_mio_emm_cmd_t;
/**
* cvmx_mio_emm_dma
*
* MIO_EMM_DMA = MIO EMMC DMA config Register
*
*/
union cvmx_mio_emm_dma {
uint64_t u64;
struct cvmx_mio_emm_dma_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_62_63 : 2;
uint64_t bus_id : 2; /**< Specify the eMMC bus */
uint64_t dma_val : 1; /**< SW writes this bit to a 1 to indicate that HW should perform
the DMA transfer. HW clears when DMA operation completes or
is terminated. */
uint64_t sector : 1; /**< Specify CARD_ADDR and eMMC are using sector (512B) addressing. */
uint64_t dat_null : 1; /**< Do not perform any eMMC commands. A DMA read will return all
0s. A DMA write tosses the data. In the case of a failure,
this can be used to unwind the DMA engine. */
uint64_t thres : 6; /**< Number of 8B blocks of data that must exist in the DBUF before
the starting the 512B block transfer. 0 indicates to wait for
the entire block. */
uint64_t rel_wr : 1; /**< Set the reliable write parameter when performing CMD23
(SET_BLOCK_COUNT) for a multiple block */
uint64_t rw : 1; /**< R/W bit (0 = read, 1 = write) */
uint64_t multi : 1; /**< Perform operation using a multiple block command instead of a
series of single block commands. */
uint64_t block_cnt : 16; /**< Number of blocks to read/write. Hardware decrements the block
count after each successful block transfer. */
uint64_t card_addr : 32; /**< Data address for media =<2GB is a 32bit byte address and data
address for media > 2GB is a 32bit sector (512B) address.
Hardware advances the card address after each successful block
transfer by 512 for byte addressing and by 1 for sector
addressing. */
#else
uint64_t card_addr : 32;
uint64_t block_cnt : 16;
uint64_t multi : 1;
uint64_t rw : 1;
uint64_t rel_wr : 1;
uint64_t thres : 6;
uint64_t dat_null : 1;
uint64_t sector : 1;
uint64_t dma_val : 1;
uint64_t bus_id : 2;
uint64_t reserved_62_63 : 2;
#endif
} s;
struct cvmx_mio_emm_dma_s cn61xx;
struct cvmx_mio_emm_dma_s cnf71xx;
};
typedef union cvmx_mio_emm_dma cvmx_mio_emm_dma_t;
/**
* cvmx_mio_emm_int
*
* MIO_EMM_INT = MIO EMMC Interrupt Register
*
*/
union cvmx_mio_emm_int {
uint64_t u64;
struct cvmx_mio_emm_int_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_7_63 : 57;
uint64_t switch_err : 1; /**< Switch operation encountered an error. */
uint64_t switch_done : 1; /**< Switch operation completed successfully */
uint64_t dma_err : 1; /**< DMA transfer encountered an error. See MIO_EMM_RSP. */
uint64_t cmd_err : 1; /**< Operation specified by MIO_EMM_CMD encountered an error. See
MIO_EMM_RSP. */
uint64_t dma_done : 1; /**< DMA transfer completed successfully */
uint64_t cmd_done : 1; /**< Operation specified by MIO_EMM_CMD completed successfully */
uint64_t buf_done : 1; /**< The next 512B block transfer of a multi-block transfer has
completed. */
#else
uint64_t buf_done : 1;
uint64_t cmd_done : 1;
uint64_t dma_done : 1;
uint64_t cmd_err : 1;
uint64_t dma_err : 1;
uint64_t switch_done : 1;
uint64_t switch_err : 1;
uint64_t reserved_7_63 : 57;
#endif
} s;
struct cvmx_mio_emm_int_s cn61xx;
struct cvmx_mio_emm_int_s cnf71xx;
};
typedef union cvmx_mio_emm_int cvmx_mio_emm_int_t;
/**
* cvmx_mio_emm_int_en
*
* MIO_EMM_INT_EN = MIO EMMC Interrupt enable Register
*
*/
union cvmx_mio_emm_int_en {
uint64_t u64;
struct cvmx_mio_emm_int_en_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_7_63 : 57;
uint64_t switch_err : 1; /**< Switch operation encountered an error. */
uint64_t switch_done : 1; /**< Switch operation completed. */
uint64_t dma_err : 1; /**< DMA transfer encountered an error. See MIO_EMM_RSP. */
uint64_t cmd_err : 1; /**< Operation specified by MIO_EMM_CMD encountered an error. See
MIO_EMM_RSP. */
uint64_t dma_done : 1; /**< DMA transfer completed */
uint64_t cmd_done : 1; /**< Operation specified by MIO_EMM_CMD completed */
uint64_t buf_done : 1; /**< The next 512B block transfer of a multi-block transfer has
completed. */
#else
uint64_t buf_done : 1;
uint64_t cmd_done : 1;
uint64_t dma_done : 1;
uint64_t cmd_err : 1;
uint64_t dma_err : 1;
uint64_t switch_done : 1;
uint64_t switch_err : 1;
uint64_t reserved_7_63 : 57;
#endif
} s;
struct cvmx_mio_emm_int_en_s cn61xx;
struct cvmx_mio_emm_int_en_s cnf71xx;
};
typedef union cvmx_mio_emm_int_en cvmx_mio_emm_int_en_t;
/**
* cvmx_mio_emm_mode#
*
* MIO_EMM_MODE = MIO EMMC Operating mode Register
*
*/
union cvmx_mio_emm_modex {
uint64_t u64;
struct cvmx_mio_emm_modex_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_49_63 : 15;
uint64_t hs_timing : 1; /**< Current high speed timing mode. Required when CLK frequency
higher than 20MHz. */
uint64_t reserved_43_47 : 5;
uint64_t bus_width : 3; /**< Current card bus mode. Out of reset, the card is in 1 bit data
bus mode. Select bus width.
0 - 1 bit data bus (power on)
1 - 4 bit data bus
2 - 8 bit data bus
5 - 4 bit data bus (dual data rate)
6 - 8 bit data bus (dual data rate) */
uint64_t reserved_36_39 : 4;
uint64_t power_class : 4; /**< Out of reset, the card power class is 0, which is the minimum
current consumption class for the card. EXT_CSD bytes
[203:200] and [239:238] contain the power class for different
BUS_WITDH and CLK frequencies. Software should write this
field with the 4-bit field from the EXT_CSD bytes
corresponding to the selected operating mode. */
uint64_t clk_hi : 16; /**< Current number of sclk cycles to hold the eMMC CLK pin high */
uint64_t clk_lo : 16; /**< Current number of sclk cycles to hold the eMMC CLK pin low. */
#else
uint64_t clk_lo : 16;
uint64_t clk_hi : 16;
uint64_t power_class : 4;
uint64_t reserved_36_39 : 4;
uint64_t bus_width : 3;
uint64_t reserved_43_47 : 5;
uint64_t hs_timing : 1;
uint64_t reserved_49_63 : 15;
#endif
} s;
struct cvmx_mio_emm_modex_s cn61xx;
struct cvmx_mio_emm_modex_s cnf71xx;
};
typedef union cvmx_mio_emm_modex cvmx_mio_emm_modex_t;
/**
* cvmx_mio_emm_rca
*/
union cvmx_mio_emm_rca {
uint64_t u64;
struct cvmx_mio_emm_rca_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_16_63 : 48;
uint64_t card_rca : 16; /**< Whenever SW performs CMD7, HW will update CARD_RCA with the
relative card address from the MIO_EMM_CMD[ARG] unless the
operations encounters an error. */
#else
uint64_t card_rca : 16;
uint64_t reserved_16_63 : 48;
#endif
} s;
struct cvmx_mio_emm_rca_s cn61xx;
struct cvmx_mio_emm_rca_s cnf71xx;
};
typedef union cvmx_mio_emm_rca cvmx_mio_emm_rca_t;
/**
* cvmx_mio_emm_rsp_hi
*
* MIO_EMM_RSP_HI = MIO EMMC Response data high Register
*
*/
union cvmx_mio_emm_rsp_hi {
uint64_t u64;
struct cvmx_mio_emm_rsp_hi_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t dat : 64; /**< Command response (as per JEDEC eMMC spec)
RSP_TYPE=1 - DAT[63:0] - 0x0
RSP_TYPE=2 - DAT[63:0] - CID[127:64] or CSD[127:64]
RSP_TYPE=3 - DAT[63:0] - 0x0
RSP_TYPE=4 - DAT[63:0] - 0x0
RSP_TYPE=5 - DAT[63:0] - 0x0 */
#else
uint64_t dat : 64;
#endif
} s;
struct cvmx_mio_emm_rsp_hi_s cn61xx;
struct cvmx_mio_emm_rsp_hi_s cnf71xx;
};
typedef union cvmx_mio_emm_rsp_hi cvmx_mio_emm_rsp_hi_t;
/**
* cvmx_mio_emm_rsp_lo
*
* MIO_EMM_RSP_LO = MIO EMMC Response data low Register
*
*/
union cvmx_mio_emm_rsp_lo {
uint64_t u64;
struct cvmx_mio_emm_rsp_lo_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t dat : 64; /**< Command response (as per JEDEC eMMC spec)
RSP_TYPE = 1
DAT[63:46] - 0x0
DAT[45:40] - Command index
DAT[39: 8] - Card status
DAT[ 7: 1] - CRC7
DAT[ 0] - End bit
RSP_TYPE = 2
DAT[63: 1] - CID[63:1] or CSD[63:1] including CRC
DAT[ 0] - End bit
RSP_TYPE = 3
DAT[63:46] - 0x0
DAT[45:40] - Check bits (0x3f)
DAT[39: 8] - OCR register
DAT[ 7: 1] - Check bits (0x7f)
DAT[ 0] - End bit
RSP_TYPE = 4
DAT[63:46] - 0x0
DAT[45:40] - CMD39 ('10111')
DAT[39:24] - RCA[31:16]
DAT[ 23] - Status
DAT[22:16] - Register address
DAT[15: 8] - Register contents
DAT[ 7: 1] - CRC7
DAT[ 0] - End bit
RSP_TYPE = 5
DAT[63:46] - 0x0
DAT[45:40] - CMD40 ('10100')
DAT[39:24] - RCA[31:16]
DAT[ 23] - Status
DAT[22:16] - Register address
DAT[15: 8] - Not defined. May be used for IRQ data
DAT[ 7: 1] - CRC7
DAT[ 0] - End bit */
#else
uint64_t dat : 64;
#endif
} s;
struct cvmx_mio_emm_rsp_lo_s cn61xx;
struct cvmx_mio_emm_rsp_lo_s cnf71xx;
};
typedef union cvmx_mio_emm_rsp_lo cvmx_mio_emm_rsp_lo_t;
/**
* cvmx_mio_emm_rsp_sts
*
* MIO_EMM_RSP_STS = MIO EMMC Response status Register
*
*/
union cvmx_mio_emm_rsp_sts {
uint64_t u64;
struct cvmx_mio_emm_rsp_sts_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_62_63 : 2;
uint64_t bus_id : 2; /**< eMMC bus id to which the response status corresponds. */
uint64_t cmd_val : 1; /**< Read-only copy of MIO_EMM_CMD[CMD_VAL]. CMD_VAL=1 indicates a
direct operation is in progress. */
uint64_t switch_val : 1; /**< Read-only copy of MIO_EMM_SWITCH[SWITCH_EXE]. SWITCH_VAL=1
indicates a switch operation is in progress. */
uint64_t dma_val : 1; /**< Read-only copy of MIO_EMM_DMA[DMA_VAL]. DMA_VAL=1 indicates a
DMA operation is in progress. */
uint64_t dma_pend : 1; /**< The DMA engine has a pending transfer resulting from an error.
SW can resume the transfer by writing MIO_EMM_DMA[DMA_VAL]=1.
SW can terminate the transfer by writing MIO_EMM_DMA[DMA_VAL]=1
and MIO_EMM_DMA[NULL]=1. HW will clear DMA_PEND and perform
the DMA operation */
uint64_t reserved_29_55 : 27;
uint64_t dbuf_err : 1; /**< For CMD_TYPE=1, indicates a DMA read data arrived from card
without a free DBUF.
For CMD_TYPE=2, indicates a DBUF underflow occurred during a
DMA write. See MIO_EMM_DMA[THRES]. */
uint64_t reserved_24_27 : 4;
uint64_t dbuf : 1; /**< DBUF corresponding to the most recently attempted block
transfer. */
uint64_t blk_timeout : 1; /**< Timeout waiting for read data or 3bit CRC token */
uint64_t blk_crc_err : 1; /**< For CMD_TYPE=1, indicates a card read data CRC mismatch.
MIO_EMM_RSP_STS[DBUF] indicates the failing data buffer.
For CMD_TYPE=2, indicates card returned 3-bit CRC status token
indicating the card encountered a write data CRC check
mismatch. MIO_EMM_RSP_STS[DBUF] indicates the failing data
buffer. */
uint64_t rsp_busybit : 1; /**< Debug only. eMMC protocol utilizes DAT0 as a busy signal
during block writes and R1b responses. */
uint64_t stp_timeout : 1; /**< Stop transmission response timeout. */
uint64_t stp_crc_err : 1; /**< Stop transmission response had a CRC error */
uint64_t stp_bad_sts : 1; /**< Stop transmission response had bad status. */
uint64_t stp_val : 1; /**< Stop transmission response valid. */
uint64_t rsp_timeout : 1; /**< Response timeout */
uint64_t rsp_crc_err : 1; /**< Response CRC error */
uint64_t rsp_bad_sts : 1; /**< Response bad status */
uint64_t rsp_val : 1; /**< Response id. See MIO_EMM_RSP_HI/LO */
uint64_t rsp_type : 3; /**< Indicates the response type. See MIO_EMM_RSP_HI/LO */
uint64_t cmd_type : 2; /**< eMMC command type (0=no data, 1=read, 2=write) */
uint64_t cmd_idx : 6; /**< eMMC command index most recently attempted */
uint64_t cmd_done : 1; /**< eMMC command completed. Once the command has complete, the
status is final and can be examined by SW. */
#else
uint64_t cmd_done : 1;
uint64_t cmd_idx : 6;
uint64_t cmd_type : 2;
uint64_t rsp_type : 3;
uint64_t rsp_val : 1;
uint64_t rsp_bad_sts : 1;
uint64_t rsp_crc_err : 1;
uint64_t rsp_timeout : 1;
uint64_t stp_val : 1;
uint64_t stp_bad_sts : 1;
uint64_t stp_crc_err : 1;
uint64_t stp_timeout : 1;
uint64_t rsp_busybit : 1;
uint64_t blk_crc_err : 1;
uint64_t blk_timeout : 1;
uint64_t dbuf : 1;
uint64_t reserved_24_27 : 4;
uint64_t dbuf_err : 1;
uint64_t reserved_29_55 : 27;
uint64_t dma_pend : 1;
uint64_t dma_val : 1;
uint64_t switch_val : 1;
uint64_t cmd_val : 1;
uint64_t bus_id : 2;
uint64_t reserved_62_63 : 2;
#endif
} s;
struct cvmx_mio_emm_rsp_sts_s cn61xx;
struct cvmx_mio_emm_rsp_sts_s cnf71xx;
};
typedef union cvmx_mio_emm_rsp_sts cvmx_mio_emm_rsp_sts_t;
/**
* cvmx_mio_emm_sample
*/
union cvmx_mio_emm_sample {
uint64_t u64;
struct cvmx_mio_emm_sample_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_26_63 : 38;
uint64_t cmd_cnt : 10; /**< Number of SCLK cycles before the eMMC clock edge to sample the
command pin. */
uint64_t reserved_10_15 : 6;
uint64_t dat_cnt : 10; /**< Number of SCLK cycles before the eMMC clock rising edge to
sample the data pin. */
#else
uint64_t dat_cnt : 10;
uint64_t reserved_10_15 : 6;
uint64_t cmd_cnt : 10;
uint64_t reserved_26_63 : 38;
#endif
} s;
struct cvmx_mio_emm_sample_s cn61xx;
struct cvmx_mio_emm_sample_s cnf71xx;
};
typedef union cvmx_mio_emm_sample cvmx_mio_emm_sample_t;
/**
* cvmx_mio_emm_sts_mask
*/
union cvmx_mio_emm_sts_mask {
uint64_t u64;
struct cvmx_mio_emm_sts_mask_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t sts_msk : 32; /**< Any bit set in STS_MSK causes the corresponding bit in the card
status to be considered when computing response bad status. */
#else
uint64_t sts_msk : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_mio_emm_sts_mask_s cn61xx;
struct cvmx_mio_emm_sts_mask_s cnf71xx;
};
typedef union cvmx_mio_emm_sts_mask cvmx_mio_emm_sts_mask_t;
/**
* cvmx_mio_emm_switch
*
* MIO_EMM_SWITCH = MIO EMMC Operating mode switch Register
*
*/
union cvmx_mio_emm_switch {
uint64_t u64;
struct cvmx_mio_emm_switch_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_62_63 : 2;
uint64_t bus_id : 2; /**< Specify the eMMC bus */
uint64_t switch_exe : 1; /**< When SWITCH_EXE is 0, the operating modes will be update
directly without performing any SWITCH operations. This
allows SW to perform the SWITCH operations manually, then
update the HW.
SW writes this bit to a 1 to indicate that HW should perform
the necessary SWITCH operations. First, the POWER_CLASS
switch will be performed. If it fails, SWITCH_ERR0 will be
and the remaining SWITCH operations will not be performed. If
is succeeds, the POWER_CLASS field will be updated and the
HS_TIMING switch will be performed. If it fails, SWITCH_ERR1
will be set and the remaining SWITCH operations will not be
performed. If is succeeds, the HS_TIMING field will be
updated and the BUS_WITDH switch operation will be performed.
If it fails, SWITCH_ERR2 will be set. If it succeeds, the
BUS_WITDH will be updated.
Changes to CLK_HI and CLK_LO are discarded if any switch error
occurs. */
uint64_t switch_err0 : 1; /**< Error encounter while performing POWER_CLASS switch . See
MIO_EMM_RSP_STS */
uint64_t switch_err1 : 1; /**< Error encounter while performing HS_TIMING switch . See
MIO_EMM_RSP_STS */
uint64_t switch_err2 : 1; /**< Error encounter while performing BUS_WIDTH switch . See
MIO_EMM_RSP_STS */
uint64_t reserved_49_55 : 7;
uint64_t hs_timing : 1; /**< Requested update to HS_TIMING */
uint64_t reserved_43_47 : 5;
uint64_t bus_width : 3; /**< Requested update to BUS_WIDTH */
uint64_t reserved_36_39 : 4;
uint64_t power_class : 4; /**< Requested update to POWER_CLASS */
uint64_t clk_hi : 16; /**< Requested update to CLK_HI */
uint64_t clk_lo : 16; /**< Requested update to CLK_LO */
#else
uint64_t clk_lo : 16;
uint64_t clk_hi : 16;
uint64_t power_class : 4;
uint64_t reserved_36_39 : 4;
uint64_t bus_width : 3;
uint64_t reserved_43_47 : 5;
uint64_t hs_timing : 1;
uint64_t reserved_49_55 : 7;
uint64_t switch_err2 : 1;
uint64_t switch_err1 : 1;
uint64_t switch_err0 : 1;
uint64_t switch_exe : 1;
uint64_t bus_id : 2;
uint64_t reserved_62_63 : 2;
#endif
} s;
struct cvmx_mio_emm_switch_s cn61xx;
struct cvmx_mio_emm_switch_s cnf71xx;
};
typedef union cvmx_mio_emm_switch cvmx_mio_emm_switch_t;
/**
* cvmx_mio_emm_wdog
*
* MIO_EMM_WDOG = MIO EMMC Watchdog Register
*
*/
union cvmx_mio_emm_wdog {
uint64_t u64;
struct cvmx_mio_emm_wdog_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_26_63 : 38;
uint64_t clk_cnt : 26; /**< Number of CLK_CNT cycles to wait for the card to return a
response, read data, or the 3-bit CRC status token. */
#else
uint64_t clk_cnt : 26;
uint64_t reserved_26_63 : 38;
#endif
} s;
struct cvmx_mio_emm_wdog_s cn61xx;
struct cvmx_mio_emm_wdog_s cnf71xx;
};
typedef union cvmx_mio_emm_wdog cvmx_mio_emm_wdog_t;
/**
* cvmx_mio_fus_bnk_dat#
*
* Notes:
* The intial state of MIO_FUS_BNK_DAT* is as if bank6 was just read i.e. DAT* = fus[895:768]
*
*/
union cvmx_mio_fus_bnk_datx {
uint64_t u64;
struct cvmx_mio_fus_bnk_datx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t dat : 64; /**< Efuse bank store
For reads, the DAT gets the fus bank last read
For write, the DAT determines which fuses to blow */
#else
uint64_t dat : 64;
#endif
} s;
struct cvmx_mio_fus_bnk_datx_s cn50xx;
struct cvmx_mio_fus_bnk_datx_s cn52xx;
struct cvmx_mio_fus_bnk_datx_s cn52xxp1;
struct cvmx_mio_fus_bnk_datx_s cn56xx;
struct cvmx_mio_fus_bnk_datx_s cn56xxp1;
struct cvmx_mio_fus_bnk_datx_s cn58xx;
struct cvmx_mio_fus_bnk_datx_s cn58xxp1;
struct cvmx_mio_fus_bnk_datx_s cn61xx;
struct cvmx_mio_fus_bnk_datx_s cn63xx;
struct cvmx_mio_fus_bnk_datx_s cn63xxp1;
struct cvmx_mio_fus_bnk_datx_s cn66xx;
struct cvmx_mio_fus_bnk_datx_s cn68xx;
struct cvmx_mio_fus_bnk_datx_s cn68xxp1;
struct cvmx_mio_fus_bnk_datx_s cnf71xx;
};
typedef union cvmx_mio_fus_bnk_datx cvmx_mio_fus_bnk_datx_t;
/**
* cvmx_mio_fus_dat0
*/
union cvmx_mio_fus_dat0 {
uint64_t u64;
struct cvmx_mio_fus_dat0_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t man_info : 32; /**< Fuse information - manufacturing info [31:0] */
#else
uint64_t man_info : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_mio_fus_dat0_s cn30xx;
struct cvmx_mio_fus_dat0_s cn31xx;
struct cvmx_mio_fus_dat0_s cn38xx;
struct cvmx_mio_fus_dat0_s cn38xxp2;
struct cvmx_mio_fus_dat0_s cn50xx;
struct cvmx_mio_fus_dat0_s cn52xx;
struct cvmx_mio_fus_dat0_s cn52xxp1;
struct cvmx_mio_fus_dat0_s cn56xx;
struct cvmx_mio_fus_dat0_s cn56xxp1;
struct cvmx_mio_fus_dat0_s cn58xx;
struct cvmx_mio_fus_dat0_s cn58xxp1;
struct cvmx_mio_fus_dat0_s cn61xx;
struct cvmx_mio_fus_dat0_s cn63xx;
struct cvmx_mio_fus_dat0_s cn63xxp1;
struct cvmx_mio_fus_dat0_s cn66xx;
struct cvmx_mio_fus_dat0_s cn68xx;
struct cvmx_mio_fus_dat0_s cn68xxp1;
struct cvmx_mio_fus_dat0_s cnf71xx;
};
typedef union cvmx_mio_fus_dat0 cvmx_mio_fus_dat0_t;
/**
* cvmx_mio_fus_dat1
*/
union cvmx_mio_fus_dat1 {
uint64_t u64;
struct cvmx_mio_fus_dat1_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t man_info : 32; /**< Fuse information - manufacturing info [63:32] */
#else
uint64_t man_info : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_mio_fus_dat1_s cn30xx;
struct cvmx_mio_fus_dat1_s cn31xx;
struct cvmx_mio_fus_dat1_s cn38xx;
struct cvmx_mio_fus_dat1_s cn38xxp2;
struct cvmx_mio_fus_dat1_s cn50xx;
struct cvmx_mio_fus_dat1_s cn52xx;
struct cvmx_mio_fus_dat1_s cn52xxp1;
struct cvmx_mio_fus_dat1_s cn56xx;
struct cvmx_mio_fus_dat1_s cn56xxp1;
struct cvmx_mio_fus_dat1_s cn58xx;
struct cvmx_mio_fus_dat1_s cn58xxp1;
struct cvmx_mio_fus_dat1_s cn61xx;
struct cvmx_mio_fus_dat1_s cn63xx;
struct cvmx_mio_fus_dat1_s cn63xxp1;
struct cvmx_mio_fus_dat1_s cn66xx;
struct cvmx_mio_fus_dat1_s cn68xx;
struct cvmx_mio_fus_dat1_s cn68xxp1;
struct cvmx_mio_fus_dat1_s cnf71xx;
};
typedef union cvmx_mio_fus_dat1 cvmx_mio_fus_dat1_t;
/**
* cvmx_mio_fus_dat2
*
* Notes:
* CHIP_ID is consumed in several places within Octeon.
*
* * Core COP0 ProcessorIdentification[Revision]
* * Core EJTAG DeviceIdentification[Version]
* * PCI_CFG02[RID]
* * JTAG controller
*
* Note: The JTAG controller gets CHIP_ID[3:0] solely from the laser fuses.
* Modification to the efuses will not change what the JTAG controller reports
* for CHIP_ID.
*/
union cvmx_mio_fus_dat2 {
uint64_t u64;
struct cvmx_mio_fus_dat2_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_48_63 : 16;
uint64_t fus118 : 1; /**< Ignore Authentik disable */
uint64_t rom_info : 10; /**< Fuse information - ROM info */
uint64_t power_limit : 2; /**< Fuse information - Power limit */
uint64_t dorm_crypto : 1; /**< Fuse information - See NOCRYPTO */
uint64_t fus318 : 1; /**< Reserved */
uint64_t raid_en : 1; /**< Fuse information - RAID enabled */
uint64_t reserved_30_31 : 2;
uint64_t nokasu : 1; /**< Fuse information - Disable Kasumi */
uint64_t nodfa_cp2 : 1; /**< Fuse information - DFA Disable (CP2) */
uint64_t nomul : 1; /**< Fuse information - VMUL disable */
uint64_t nocrypto : 1; /**< Fuse information - DORM_CRYPTO and NOCRYPTO
together to select 1 of 4 mutually-exclusive
modes:
DORM_CRYPT=0,NOCRYPTO=0 AES/DES/HASH enabled
DORM_CRYPT=0,NOCRYPTO=1 AES/DES/HASH disable
DORM_CRYPT=1,NOCRYPTO=0 Dormant Encryption enable
DORM_CRYPT=1,NOCRYPTO=1 Authenik mode */
uint64_t rst_sht : 1; /**< Fuse information - When set, use short reset count */
uint64_t bist_dis : 1; /**< Fuse information - BIST Disable */
uint64_t chip_id : 8; /**< Fuse information - CHIP_ID */
uint64_t reserved_0_15 : 16;
#else
uint64_t reserved_0_15 : 16;
uint64_t chip_id : 8;
uint64_t bist_dis : 1;
uint64_t rst_sht : 1;
uint64_t nocrypto : 1;
uint64_t nomul : 1;
uint64_t nodfa_cp2 : 1;
uint64_t nokasu : 1;
uint64_t reserved_30_31 : 2;
uint64_t raid_en : 1;
uint64_t fus318 : 1;
uint64_t dorm_crypto : 1;
uint64_t power_limit : 2;
uint64_t rom_info : 10;
uint64_t fus118 : 1;
uint64_t reserved_48_63 : 16;
#endif
} s;
struct cvmx_mio_fus_dat2_cn30xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_29_63 : 35;
uint64_t nodfa_cp2 : 1; /**< Fuse information - DFA Disable (CP2) */
uint64_t nomul : 1; /**< Fuse information - VMUL disable */
uint64_t nocrypto : 1; /**< Fuse information - AES/DES/HASH disable */
uint64_t rst_sht : 1; /**< Fuse information - When set, use short reset count */
uint64_t bist_dis : 1; /**< Fuse information - BIST Disable */
uint64_t chip_id : 8; /**< Fuse information - CHIP_ID */
uint64_t pll_off : 4; /**< Fuse information - core pll offset
Used to compute the base offset for the core pll.
the offset will be (PLL_OFF ^ 8)
Note, these fuses can only be set from laser fuse */
uint64_t reserved_1_11 : 11;
uint64_t pp_dis : 1; /**< Fuse information - PP_DISABLES */
#else
uint64_t pp_dis : 1;
uint64_t reserved_1_11 : 11;
uint64_t pll_off : 4;
uint64_t chip_id : 8;
uint64_t bist_dis : 1;
uint64_t rst_sht : 1;
uint64_t nocrypto : 1;
uint64_t nomul : 1;
uint64_t nodfa_cp2 : 1;
uint64_t reserved_29_63 : 35;
#endif
} cn30xx;
struct cvmx_mio_fus_dat2_cn31xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_29_63 : 35;
uint64_t nodfa_cp2 : 1; /**< Fuse information - DFA Disable (CP2) */
uint64_t nomul : 1; /**< Fuse information - VMUL disable */
uint64_t nocrypto : 1; /**< Fuse information - AES/DES/HASH disable */
uint64_t rst_sht : 1; /**< Fuse information - When set, use short reset count */
uint64_t bist_dis : 1; /**< Fuse information - BIST Disable */
uint64_t chip_id : 8; /**< Fuse information - CHIP_ID */
uint64_t pll_off : 4; /**< Fuse information - core pll offset
Used to compute the base offset for the core pll.
the offset will be (PLL_OFF ^ 8)
Note, these fuses can only be set from laser fuse */
uint64_t reserved_2_11 : 10;
uint64_t pp_dis : 2; /**< Fuse information - PP_DISABLES */
#else
uint64_t pp_dis : 2;
uint64_t reserved_2_11 : 10;
uint64_t pll_off : 4;
uint64_t chip_id : 8;
uint64_t bist_dis : 1;
uint64_t rst_sht : 1;
uint64_t nocrypto : 1;
uint64_t nomul : 1;
uint64_t nodfa_cp2 : 1;
uint64_t reserved_29_63 : 35;
#endif
} cn31xx;
struct cvmx_mio_fus_dat2_cn38xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_29_63 : 35;
uint64_t nodfa_cp2 : 1; /**< Fuse information - DFA Disable (CP2)
(PASS2 Only) */
uint64_t nomul : 1; /**< Fuse information - VMUL disable
(PASS2 Only) */
uint64_t nocrypto : 1; /**< Fuse information - AES/DES/HASH disable
(PASS2 Only) */
uint64_t rst_sht : 1; /**< Fuse information - When set, use short reset count */
uint64_t bist_dis : 1; /**< Fuse information - BIST Disable */
uint64_t chip_id : 8; /**< Fuse information - CHIP_ID */
uint64_t pp_dis : 16; /**< Fuse information - PP_DISABLES */
#else
uint64_t pp_dis : 16;
uint64_t chip_id : 8;
uint64_t bist_dis : 1;
uint64_t rst_sht : 1;
uint64_t nocrypto : 1;
uint64_t nomul : 1;
uint64_t nodfa_cp2 : 1;
uint64_t reserved_29_63 : 35;
#endif
} cn38xx;
struct cvmx_mio_fus_dat2_cn38xx cn38xxp2;
struct cvmx_mio_fus_dat2_cn50xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_34_63 : 30;
uint64_t fus318 : 1; /**< Fuse information - a copy of fuse318 */
uint64_t raid_en : 1; /**< Fuse information - RAID enabled
(5020 does not have RAID co-processor) */
uint64_t reserved_30_31 : 2;
uint64_t nokasu : 1; /**< Fuse information - Disable Kasumi */
uint64_t nodfa_cp2 : 1; /**< Fuse information - DFA Disable (CP2)
(5020 does not have DFA co-processor) */
uint64_t nomul : 1; /**< Fuse information - VMUL disable */
uint64_t nocrypto : 1; /**< Fuse information - AES/DES/HASH disable */
uint64_t rst_sht : 1; /**< Fuse information - When set, use short reset count */
uint64_t bist_dis : 1; /**< Fuse information - BIST Disable */
uint64_t chip_id : 8; /**< Fuse information - CHIP_ID */
uint64_t reserved_2_15 : 14;
uint64_t pp_dis : 2; /**< Fuse information - PP_DISABLES */
#else
uint64_t pp_dis : 2;
uint64_t reserved_2_15 : 14;
uint64_t chip_id : 8;
uint64_t bist_dis : 1;
uint64_t rst_sht : 1;
uint64_t nocrypto : 1;
uint64_t nomul : 1;
uint64_t nodfa_cp2 : 1;
uint64_t nokasu : 1;
uint64_t reserved_30_31 : 2;
uint64_t raid_en : 1;
uint64_t fus318 : 1;
uint64_t reserved_34_63 : 30;
#endif
} cn50xx;
struct cvmx_mio_fus_dat2_cn52xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_34_63 : 30;
uint64_t fus318 : 1; /**< Fuse information - a copy of fuse318 */
uint64_t raid_en : 1; /**< Fuse information - RAID enabled */
uint64_t reserved_30_31 : 2;
uint64_t nokasu : 1; /**< Fuse information - Disable Kasumi */
uint64_t nodfa_cp2 : 1; /**< Fuse information - DFA Disable (CP2) */
uint64_t nomul : 1; /**< Fuse information - VMUL disable */
uint64_t nocrypto : 1; /**< Fuse information - AES/DES/HASH disable */
uint64_t rst_sht : 1; /**< Fuse information - When set, use short reset count */
uint64_t bist_dis : 1; /**< Fuse information - BIST Disable */
uint64_t chip_id : 8; /**< Fuse information - CHIP_ID */
uint64_t reserved_4_15 : 12;
uint64_t pp_dis : 4; /**< Fuse information - PP_DISABLES */
#else
uint64_t pp_dis : 4;
uint64_t reserved_4_15 : 12;
uint64_t chip_id : 8;
uint64_t bist_dis : 1;
uint64_t rst_sht : 1;
uint64_t nocrypto : 1;
uint64_t nomul : 1;
uint64_t nodfa_cp2 : 1;
uint64_t nokasu : 1;
uint64_t reserved_30_31 : 2;
uint64_t raid_en : 1;
uint64_t fus318 : 1;
uint64_t reserved_34_63 : 30;
#endif
} cn52xx;
struct cvmx_mio_fus_dat2_cn52xx cn52xxp1;
struct cvmx_mio_fus_dat2_cn56xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_34_63 : 30;
uint64_t fus318 : 1; /**< Fuse information - a copy of fuse318 */
uint64_t raid_en : 1; /**< Fuse information - RAID enabled */
uint64_t reserved_30_31 : 2;
uint64_t nokasu : 1; /**< Fuse information - Disable Kasumi */
uint64_t nodfa_cp2 : 1; /**< Fuse information - DFA Disable (CP2) */
uint64_t nomul : 1; /**< Fuse information - VMUL disable */
uint64_t nocrypto : 1; /**< Fuse information - AES/DES/HASH disable */
uint64_t rst_sht : 1; /**< Fuse information - When set, use short reset count */
uint64_t bist_dis : 1; /**< Fuse information - BIST Disable */
uint64_t chip_id : 8; /**< Fuse information - CHIP_ID */
uint64_t reserved_12_15 : 4;
uint64_t pp_dis : 12; /**< Fuse information - PP_DISABLES */
#else
uint64_t pp_dis : 12;
uint64_t reserved_12_15 : 4;
uint64_t chip_id : 8;
uint64_t bist_dis : 1;
uint64_t rst_sht : 1;
uint64_t nocrypto : 1;
uint64_t nomul : 1;
uint64_t nodfa_cp2 : 1;
uint64_t nokasu : 1;
uint64_t reserved_30_31 : 2;
uint64_t raid_en : 1;
uint64_t fus318 : 1;
uint64_t reserved_34_63 : 30;
#endif
} cn56xx;
struct cvmx_mio_fus_dat2_cn56xx cn56xxp1;
struct cvmx_mio_fus_dat2_cn58xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_30_63 : 34;
uint64_t nokasu : 1; /**< Fuse information - Disable Kasumi */
uint64_t nodfa_cp2 : 1; /**< Fuse information - DFA Disable (CP2) */
uint64_t nomul : 1; /**< Fuse information - VMUL disable */
uint64_t nocrypto : 1; /**< Fuse information - AES/DES/HASH disable */
uint64_t rst_sht : 1; /**< Fuse information - When set, use short reset count */
uint64_t bist_dis : 1; /**< Fuse information - BIST Disable */
uint64_t chip_id : 8; /**< Fuse information - CHIP_ID */
uint64_t pp_dis : 16; /**< Fuse information - PP_DISABLES */
#else
uint64_t pp_dis : 16;
uint64_t chip_id : 8;
uint64_t bist_dis : 1;
uint64_t rst_sht : 1;
uint64_t nocrypto : 1;
uint64_t nomul : 1;
uint64_t nodfa_cp2 : 1;
uint64_t nokasu : 1;
uint64_t reserved_30_63 : 34;
#endif
} cn58xx;
struct cvmx_mio_fus_dat2_cn58xx cn58xxp1;
struct cvmx_mio_fus_dat2_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_48_63 : 16;
uint64_t fus118 : 1; /**< Ignore Authentik disable */
uint64_t rom_info : 10; /**< Fuse information - ROM info */
uint64_t power_limit : 2; /**< Fuse information - Power limit */
uint64_t dorm_crypto : 1; /**< Fuse information - See NOCRYPTO */
uint64_t fus318 : 1; /**< Reserved */
uint64_t raid_en : 1; /**< Fuse information - RAID enabled */
uint64_t reserved_29_31 : 3;
uint64_t nodfa_cp2 : 1; /**< Fuse information - DFA Disable (CP2) */
uint64_t nomul : 1; /**< Fuse information - VMUL disable */
uint64_t nocrypto : 1; /**< Fuse information - DORM_CRYPTO and NOCRYPTO
together to select 1 of 4 mutually-exclusive
modes:
DORM_CRYPT=0,NOCRYPTO=0 AES/DES/HASH enabled
DORM_CRYPT=0,NOCRYPTO=1 AES/DES/HASH disable
DORM_CRYPT=1,NOCRYPTO=0 Dormant Encryption enable
DORM_CRYPT=1,NOCRYPTO=1 Authenik mode */
uint64_t reserved_24_25 : 2;
uint64_t chip_id : 8; /**< Fuse information - CHIP_ID */
uint64_t reserved_4_15 : 12;
uint64_t pp_dis : 4; /**< Fuse information - PP_DISABLES */
#else
uint64_t pp_dis : 4;
uint64_t reserved_4_15 : 12;
uint64_t chip_id : 8;
uint64_t reserved_24_25 : 2;
uint64_t nocrypto : 1;
uint64_t nomul : 1;
uint64_t nodfa_cp2 : 1;
uint64_t reserved_29_31 : 3;
uint64_t raid_en : 1;
uint64_t fus318 : 1;
uint64_t dorm_crypto : 1;
uint64_t power_limit : 2;
uint64_t rom_info : 10;
uint64_t fus118 : 1;
uint64_t reserved_48_63 : 16;
#endif
} cn61xx;
struct cvmx_mio_fus_dat2_cn63xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_35_63 : 29;
uint64_t dorm_crypto : 1; /**< Fuse information - Dormant Encryption enable */
uint64_t fus318 : 1; /**< Reserved */
uint64_t raid_en : 1; /**< Fuse information - RAID enabled */
uint64_t reserved_29_31 : 3;
uint64_t nodfa_cp2 : 1; /**< Fuse information - DFA Disable (CP2) */
uint64_t nomul : 1; /**< Fuse information - VMUL disable */
uint64_t nocrypto : 1; /**< Fuse information - AES/DES/HASH disable */
uint64_t reserved_24_25 : 2;
uint64_t chip_id : 8; /**< Fuse information - CHIP_ID */
uint64_t reserved_6_15 : 10;
uint64_t pp_dis : 6; /**< Fuse information - PP_DISABLES */
#else
uint64_t pp_dis : 6;
uint64_t reserved_6_15 : 10;
uint64_t chip_id : 8;
uint64_t reserved_24_25 : 2;
uint64_t nocrypto : 1;
uint64_t nomul : 1;
uint64_t nodfa_cp2 : 1;
uint64_t reserved_29_31 : 3;
uint64_t raid_en : 1;
uint64_t fus318 : 1;
uint64_t dorm_crypto : 1;
uint64_t reserved_35_63 : 29;
#endif
} cn63xx;
struct cvmx_mio_fus_dat2_cn63xx cn63xxp1;
struct cvmx_mio_fus_dat2_cn66xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_48_63 : 16;
uint64_t fus118 : 1; /**< Ignore Authentik disable */
uint64_t rom_info : 10; /**< Fuse information - ROM info */
uint64_t power_limit : 2; /**< Fuse information - Power limit */
uint64_t dorm_crypto : 1; /**< Fuse information - See NOCRYPTO */
uint64_t fus318 : 1; /**< Reserved */
uint64_t raid_en : 1; /**< Fuse information - RAID enabled */
uint64_t reserved_29_31 : 3;
uint64_t nodfa_cp2 : 1; /**< Fuse information - DFA Disable (CP2) */
uint64_t nomul : 1; /**< Fuse information - VMUL disable */
uint64_t nocrypto : 1; /**< Fuse information - DORM_CRYPTO and NOCRYPTO
together to select 1 of 4 mutually-exclusive
modes:
DORM_CRYPT=0,NOCRYPTO=0 AES/DES/HASH enabled
DORM_CRYPT=0,NOCRYPTO=1 AES/DES/HASH disable
DORM_CRYPT=1,NOCRYPTO=0 Dormant Encryption enable
DORM_CRYPT=1,NOCRYPTO=1 Authenik mode */
uint64_t reserved_24_25 : 2;
uint64_t chip_id : 8; /**< Fuse information - CHIP_ID */
uint64_t reserved_10_15 : 6;
uint64_t pp_dis : 10; /**< Fuse information - PP_DISABLES */
#else
uint64_t pp_dis : 10;
uint64_t reserved_10_15 : 6;
uint64_t chip_id : 8;
uint64_t reserved_24_25 : 2;
uint64_t nocrypto : 1;
uint64_t nomul : 1;
uint64_t nodfa_cp2 : 1;
uint64_t reserved_29_31 : 3;
uint64_t raid_en : 1;
uint64_t fus318 : 1;
uint64_t dorm_crypto : 1;
uint64_t power_limit : 2;
uint64_t rom_info : 10;
uint64_t fus118 : 1;
uint64_t reserved_48_63 : 16;
#endif
} cn66xx;
struct cvmx_mio_fus_dat2_cn68xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_37_63 : 27;
uint64_t power_limit : 2; /**< Fuse information - Power limit */
uint64_t dorm_crypto : 1; /**< Fuse information - Dormant Encryption enable */
uint64_t fus318 : 1; /**< Reserved */
uint64_t raid_en : 1; /**< Fuse information - RAID enabled */
uint64_t reserved_29_31 : 3;
uint64_t nodfa_cp2 : 1; /**< Fuse information - DFA Disable (CP2) */
uint64_t nomul : 1; /**< Fuse information - VMUL disable */
uint64_t nocrypto : 1; /**< Fuse information - AES/DES/HASH disable */
uint64_t reserved_24_25 : 2;
uint64_t chip_id : 8; /**< Fuse information - CHIP_ID */
uint64_t reserved_0_15 : 16;
#else
uint64_t reserved_0_15 : 16;
uint64_t chip_id : 8;
uint64_t reserved_24_25 : 2;
uint64_t nocrypto : 1;
uint64_t nomul : 1;
uint64_t nodfa_cp2 : 1;
uint64_t reserved_29_31 : 3;
uint64_t raid_en : 1;
uint64_t fus318 : 1;
uint64_t dorm_crypto : 1;
uint64_t power_limit : 2;
uint64_t reserved_37_63 : 27;
#endif
} cn68xx;
struct cvmx_mio_fus_dat2_cn68xx cn68xxp1;
struct cvmx_mio_fus_dat2_cn61xx cnf71xx;
};
typedef union cvmx_mio_fus_dat2 cvmx_mio_fus_dat2_t;
/**
* cvmx_mio_fus_dat3
*/
union cvmx_mio_fus_dat3 {
uint64_t u64;
struct cvmx_mio_fus_dat3_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_58_63 : 6;
uint64_t pll_ctl : 10; /**< Fuse information - PLL control */
uint64_t dfa_info_dte : 3; /**< Fuse information - DFA information (DTE) */
uint64_t dfa_info_clm : 4; /**< Fuse information - DFA information (Cluster mask) */
uint64_t reserved_40_40 : 1;
uint64_t ema : 2; /**< Fuse information - EMA */
uint64_t efus_lck_rsv : 1; /**< Fuse information - efuse lockdown */
uint64_t efus_lck_man : 1; /**< Fuse information - efuse lockdown */
uint64_t pll_half_dis : 1; /**< Fuse information - RCLK PLL control */
uint64_t l2c_crip : 3; /**< Fuse information - L2C Cripple (1/8, 1/4, 1/2) */
uint64_t pll_div4 : 1; /**< Fuse information - PLL DIV4 mode
(laser fuse only) */
uint64_t reserved_29_30 : 2;
uint64_t bar2_en : 1; /**< Fuse information - BAR2 Present (when blown '1') */
uint64_t efus_lck : 1; /**< Fuse information - efuse lockdown */
uint64_t efus_ign : 1; /**< Fuse information - efuse ignore */
uint64_t nozip : 1; /**< Fuse information - ZIP disable */
uint64_t nodfa_dte : 1; /**< Fuse information - DFA Disable (DTE) */
uint64_t icache : 24; /**< Fuse information - ICACHE Hard Repair Data */
#else
uint64_t icache : 24;
uint64_t nodfa_dte : 1;
uint64_t nozip : 1;
uint64_t efus_ign : 1;
uint64_t efus_lck : 1;
uint64_t bar2_en : 1;
uint64_t reserved_29_30 : 2;
uint64_t pll_div4 : 1;
uint64_t l2c_crip : 3;
uint64_t pll_half_dis : 1;
uint64_t efus_lck_man : 1;
uint64_t efus_lck_rsv : 1;
uint64_t ema : 2;
uint64_t reserved_40_40 : 1;
uint64_t dfa_info_clm : 4;
uint64_t dfa_info_dte : 3;
uint64_t pll_ctl : 10;
uint64_t reserved_58_63 : 6;
#endif
} s;
struct cvmx_mio_fus_dat3_cn30xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t pll_div4 : 1; /**< Fuse information - PLL DIV4 mode
(laser fuse only) */
uint64_t reserved_29_30 : 2;
uint64_t bar2_en : 1; /**< Fuse information - BAR2 Enable (when blown '1') */
uint64_t efus_lck : 1; /**< Fuse information - efuse lockdown */
uint64_t efus_ign : 1; /**< Fuse information - efuse ignore
This bit only has side effects when blown in
the laser fuses. It is ignore if only set in
efuse store. */
uint64_t nozip : 1; /**< Fuse information - ZIP disable */
uint64_t nodfa_dte : 1; /**< Fuse information - DFA Disable (DTE) */
uint64_t icache : 24; /**< Fuse information - ICACHE Hard Repair Data */
#else
uint64_t icache : 24;
uint64_t nodfa_dte : 1;
uint64_t nozip : 1;
uint64_t efus_ign : 1;
uint64_t efus_lck : 1;
uint64_t bar2_en : 1;
uint64_t reserved_29_30 : 2;
uint64_t pll_div4 : 1;
uint64_t reserved_32_63 : 32;
#endif
} cn30xx;
struct cvmx_mio_fus_dat3_cn31xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t pll_div4 : 1; /**< Fuse information - PLL DIV4 mode
(laser fuse only) */
uint64_t zip_crip : 2; /**< Fuse information - Zip Cripple
(O2P Only) */
uint64_t bar2_en : 1; /**< Fuse information - BAR2 Enable (when blown '1') */
uint64_t efus_lck : 1; /**< Fuse information - efuse lockdown */
uint64_t efus_ign : 1; /**< Fuse information - efuse ignore
This bit only has side effects when blown in
the laser fuses. It is ignore if only set in
efuse store. */
uint64_t nozip : 1; /**< Fuse information - ZIP disable */
uint64_t nodfa_dte : 1; /**< Fuse information - DFA Disable (DTE) */
uint64_t icache : 24; /**< Fuse information - ICACHE Hard Repair Data */
#else
uint64_t icache : 24;
uint64_t nodfa_dte : 1;
uint64_t nozip : 1;
uint64_t efus_ign : 1;
uint64_t efus_lck : 1;
uint64_t bar2_en : 1;
uint64_t zip_crip : 2;
uint64_t pll_div4 : 1;
uint64_t reserved_32_63 : 32;
#endif
} cn31xx;
struct cvmx_mio_fus_dat3_cn38xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_31_63 : 33;
uint64_t zip_crip : 2; /**< Fuse information - Zip Cripple
(PASS3 Only) */
uint64_t bar2_en : 1; /**< Fuse information - BAR2 Enable (when blown '1')
(PASS2 Only) */
uint64_t efus_lck : 1; /**< Fuse information - efuse lockdown
(PASS2 Only) */
uint64_t efus_ign : 1; /**< Fuse information - efuse ignore
This bit only has side effects when blown in
the laser fuses. It is ignore if only set in
efuse store.
(PASS2 Only) */
uint64_t nozip : 1; /**< Fuse information - ZIP disable
(PASS2 Only) */
uint64_t nodfa_dte : 1; /**< Fuse information - DFA Disable (DTE)
(PASS2 Only) */
uint64_t icache : 24; /**< Fuse information - ICACHE Hard Repair Data */
#else
uint64_t icache : 24;
uint64_t nodfa_dte : 1;
uint64_t nozip : 1;
uint64_t efus_ign : 1;
uint64_t efus_lck : 1;
uint64_t bar2_en : 1;
uint64_t zip_crip : 2;
uint64_t reserved_31_63 : 33;
#endif
} cn38xx;
struct cvmx_mio_fus_dat3_cn38xxp2 {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_29_63 : 35;
uint64_t bar2_en : 1; /**< Fuse information - BAR2 Enable (when blown '1')
(PASS2 Only) */
uint64_t efus_lck : 1; /**< Fuse information - efuse lockdown
(PASS2 Only) */
uint64_t efus_ign : 1; /**< Fuse information - efuse ignore
This bit only has side effects when blown in
the laser fuses. It is ignore if only set in
efuse store.
(PASS2 Only) */
uint64_t nozip : 1; /**< Fuse information - ZIP disable
(PASS2 Only) */
uint64_t nodfa_dte : 1; /**< Fuse information - DFA Disable (DTE)
(PASS2 Only) */
uint64_t icache : 24; /**< Fuse information - ICACHE Hard Repair Data */
#else
uint64_t icache : 24;
uint64_t nodfa_dte : 1;
uint64_t nozip : 1;
uint64_t efus_ign : 1;
uint64_t efus_lck : 1;
uint64_t bar2_en : 1;
uint64_t reserved_29_63 : 35;
#endif
} cn38xxp2;
struct cvmx_mio_fus_dat3_cn38xx cn50xx;
struct cvmx_mio_fus_dat3_cn38xx cn52xx;
struct cvmx_mio_fus_dat3_cn38xx cn52xxp1;
struct cvmx_mio_fus_dat3_cn38xx cn56xx;
struct cvmx_mio_fus_dat3_cn38xx cn56xxp1;
struct cvmx_mio_fus_dat3_cn38xx cn58xx;
struct cvmx_mio_fus_dat3_cn38xx cn58xxp1;
struct cvmx_mio_fus_dat3_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_58_63 : 6;
uint64_t pll_ctl : 10; /**< Fuse information - PLL control */
uint64_t dfa_info_dte : 3; /**< Fuse information - DFA information (DTE) */
uint64_t dfa_info_clm : 4; /**< Fuse information - DFA information (Cluster mask) */
uint64_t reserved_40_40 : 1;
uint64_t ema : 2; /**< Fuse information - EMA */
uint64_t efus_lck_rsv : 1; /**< Fuse information - efuse lockdown */
uint64_t efus_lck_man : 1; /**< Fuse information - efuse lockdown */
uint64_t pll_half_dis : 1; /**< Fuse information - RCLK PLL control */
uint64_t l2c_crip : 3; /**< Fuse information - L2C Cripple (1/8, 1/4, 1/2) */
uint64_t reserved_31_31 : 1;
uint64_t zip_info : 2; /**< Fuse information - Zip information */
uint64_t bar2_en : 1; /**< Fuse information - BAR2 Present (when blown '1') */
uint64_t efus_lck : 1; /**< Fuse information - efuse lockdown */
uint64_t efus_ign : 1; /**< Fuse information - efuse ignore */
uint64_t nozip : 1; /**< Fuse information - ZIP disable */
uint64_t nodfa_dte : 1; /**< Fuse information - DFA Disable (DTE) */
uint64_t reserved_0_23 : 24;
#else
uint64_t reserved_0_23 : 24;
uint64_t nodfa_dte : 1;
uint64_t nozip : 1;
uint64_t efus_ign : 1;
uint64_t efus_lck : 1;
uint64_t bar2_en : 1;
uint64_t zip_info : 2;
uint64_t reserved_31_31 : 1;
uint64_t l2c_crip : 3;
uint64_t pll_half_dis : 1;
uint64_t efus_lck_man : 1;
uint64_t efus_lck_rsv : 1;
uint64_t ema : 2;
uint64_t reserved_40_40 : 1;
uint64_t dfa_info_clm : 4;
uint64_t dfa_info_dte : 3;
uint64_t pll_ctl : 10;
uint64_t reserved_58_63 : 6;
#endif
} cn61xx;
struct cvmx_mio_fus_dat3_cn61xx cn63xx;
struct cvmx_mio_fus_dat3_cn61xx cn63xxp1;
struct cvmx_mio_fus_dat3_cn61xx cn66xx;
struct cvmx_mio_fus_dat3_cn61xx cn68xx;
struct cvmx_mio_fus_dat3_cn61xx cn68xxp1;
struct cvmx_mio_fus_dat3_cn61xx cnf71xx;
};
typedef union cvmx_mio_fus_dat3 cvmx_mio_fus_dat3_t;
/**
* cvmx_mio_fus_ema
*
* DON'T PUT IN HRM*
*
*/
union cvmx_mio_fus_ema {
uint64_t u64;
struct cvmx_mio_fus_ema_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_7_63 : 57;
uint64_t eff_ema : 3; /**< Reserved */
uint64_t reserved_3_3 : 1;
uint64_t ema : 3; /**< Reserved */
#else
uint64_t ema : 3;
uint64_t reserved_3_3 : 1;
uint64_t eff_ema : 3;
uint64_t reserved_7_63 : 57;
#endif
} s;
struct cvmx_mio_fus_ema_s cn50xx;
struct cvmx_mio_fus_ema_s cn52xx;
struct cvmx_mio_fus_ema_s cn52xxp1;
struct cvmx_mio_fus_ema_s cn56xx;
struct cvmx_mio_fus_ema_s cn56xxp1;
struct cvmx_mio_fus_ema_cn58xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_2_63 : 62;
uint64_t ema : 2; /**< EMA Settings */
#else
uint64_t ema : 2;
uint64_t reserved_2_63 : 62;
#endif
} cn58xx;
struct cvmx_mio_fus_ema_cn58xx cn58xxp1;
struct cvmx_mio_fus_ema_s cn61xx;
struct cvmx_mio_fus_ema_s cn63xx;
struct cvmx_mio_fus_ema_s cn63xxp1;
struct cvmx_mio_fus_ema_s cn66xx;
struct cvmx_mio_fus_ema_s cn68xx;
struct cvmx_mio_fus_ema_s cn68xxp1;
struct cvmx_mio_fus_ema_s cnf71xx;
};
typedef union cvmx_mio_fus_ema cvmx_mio_fus_ema_t;
/**
* cvmx_mio_fus_pdf
*/
union cvmx_mio_fus_pdf {
uint64_t u64;
struct cvmx_mio_fus_pdf_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t pdf : 64; /**< Fuse information - Product Definition Field */
#else
uint64_t pdf : 64;
#endif
} s;
struct cvmx_mio_fus_pdf_s cn50xx;
struct cvmx_mio_fus_pdf_s cn52xx;
struct cvmx_mio_fus_pdf_s cn52xxp1;
struct cvmx_mio_fus_pdf_s cn56xx;
struct cvmx_mio_fus_pdf_s cn56xxp1;
struct cvmx_mio_fus_pdf_s cn58xx;
struct cvmx_mio_fus_pdf_s cn61xx;
struct cvmx_mio_fus_pdf_s cn63xx;
struct cvmx_mio_fus_pdf_s cn63xxp1;
struct cvmx_mio_fus_pdf_s cn66xx;
struct cvmx_mio_fus_pdf_s cn68xx;
struct cvmx_mio_fus_pdf_s cn68xxp1;
struct cvmx_mio_fus_pdf_s cnf71xx;
};
typedef union cvmx_mio_fus_pdf cvmx_mio_fus_pdf_t;
/**
* cvmx_mio_fus_pll
*
* Notes:
* The core clkout postscaler should be placed in reset at least 10 ref clocks prior to changing
* the core clkout select. The core clkout postscaler should remain under reset for at least 10
* ref clocks after the core clkout select changes.
*
* The pnr clkout postscaler should be placed in reset at least 10 ref clocks prior to changing
* the pnr clkout select. The pnr clkout postscaler should remain under reset for at least 10
* ref clocks after the pnr clkout select changes.
*/
union cvmx_mio_fus_pll {
uint64_t u64;
struct cvmx_mio_fus_pll_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_48_63 : 16;
uint64_t rclk_align_r : 8; /**< RCLK right alignment settings */
uint64_t rclk_align_l : 8; /**< RCLK left alignment settings */
uint64_t reserved_8_31 : 24;
uint64_t c_cout_rst : 1; /**< Core clkout postscaler reset */
uint64_t c_cout_sel : 2; /**< Core clkout select
0=RCLK,1=PS output,2=PLL output,3=undivided RCLK | $PR
(***Pass 1.x: 3=GND) */
uint64_t pnr_cout_rst : 1; /**< PNR clkout postscaler reset */
uint64_t pnr_cout_sel : 2; /**< PNR clkout select
0=SCLK,1=PS output,2=PLL output,3=undivided RCLK | $PR
(***Pass 1.x: 3=GND) */
uint64_t rfslip : 1; /**< Reserved */
uint64_t fbslip : 1; /**< Reserved */
#else
uint64_t fbslip : 1;
uint64_t rfslip : 1;
uint64_t pnr_cout_sel : 2;
uint64_t pnr_cout_rst : 1;
uint64_t c_cout_sel : 2;
uint64_t c_cout_rst : 1;
uint64_t reserved_8_31 : 24;
uint64_t rclk_align_l : 8;
uint64_t rclk_align_r : 8;
uint64_t reserved_48_63 : 16;
#endif
} s;
struct cvmx_mio_fus_pll_cn50xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_2_63 : 62;
uint64_t rfslip : 1; /**< PLL reference clock slip */
uint64_t fbslip : 1; /**< PLL feedback clock slip */
#else
uint64_t fbslip : 1;
uint64_t rfslip : 1;
uint64_t reserved_2_63 : 62;
#endif
} cn50xx;
struct cvmx_mio_fus_pll_cn50xx cn52xx;
struct cvmx_mio_fus_pll_cn50xx cn52xxp1;
struct cvmx_mio_fus_pll_cn50xx cn56xx;
struct cvmx_mio_fus_pll_cn50xx cn56xxp1;
struct cvmx_mio_fus_pll_cn50xx cn58xx;
struct cvmx_mio_fus_pll_cn50xx cn58xxp1;
struct cvmx_mio_fus_pll_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t c_cout_rst : 1; /**< Core clkout postscaler reset */
uint64_t c_cout_sel : 2; /**< Core clkout select
0=RCLK,1=PS output,2=PLL output,3=undivided RCLK | $PR
(***Pass 1.x: 3=GND) */
uint64_t pnr_cout_rst : 1; /**< PNR clkout postscaler reset */
uint64_t pnr_cout_sel : 2; /**< PNR clkout select
0=SCLK,1=PS output,2=PLL output,3=undivided RCLK | $PR
(***Pass 1.x: 3=GND) */
uint64_t rfslip : 1; /**< Reserved */
uint64_t fbslip : 1; /**< Reserved */
#else
uint64_t fbslip : 1;
uint64_t rfslip : 1;
uint64_t pnr_cout_sel : 2;
uint64_t pnr_cout_rst : 1;
uint64_t c_cout_sel : 2;
uint64_t c_cout_rst : 1;
uint64_t reserved_8_63 : 56;
#endif
} cn61xx;
struct cvmx_mio_fus_pll_cn61xx cn63xx;
struct cvmx_mio_fus_pll_cn61xx cn63xxp1;
struct cvmx_mio_fus_pll_cn61xx cn66xx;
struct cvmx_mio_fus_pll_s cn68xx;
struct cvmx_mio_fus_pll_s cn68xxp1;
struct cvmx_mio_fus_pll_cn61xx cnf71xx;
};
typedef union cvmx_mio_fus_pll cvmx_mio_fus_pll_t;
/**
* cvmx_mio_fus_prog
*
* DON'T PUT IN HRM*
*
*
* Notes:
* This CSR is not present in the HRM.
*
* To write a bank of fuses, SW must set MIO_FUS_WADR[ADDR] to the bank to be
* programmed and then set each bit within MIO_FUS_BNK_DATX to indicate which
* fuses to blow. Once ADDR, and DAT are setup, SW can write to
* MIO_FUS_PROG[PROG] to start the bank write and poll on PROG. Once PROG is
* clear, the bank write is complete.
*
* A soft blow is still subject to lockdown fuses. After a soft/warm reset, the
* chip will behave as though the fuses were actually blown. A cold reset restores
* the actual fuse valuse.
*/
union cvmx_mio_fus_prog {
uint64_t u64;
struct cvmx_mio_fus_prog_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_2_63 : 62;
uint64_t soft : 1; /**< When set with PROG, causes only the local storeage
to change. Will not really blow any fuses. HW
will clear when the program operation is complete */
uint64_t prog : 1; /**< Blow the fuse bank
SW will set PROG, and then the HW will clear
when the program operation is complete */
#else
uint64_t prog : 1;
uint64_t soft : 1;
uint64_t reserved_2_63 : 62;
#endif
} s;
struct cvmx_mio_fus_prog_cn30xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_1_63 : 63;
uint64_t prog : 1; /**< Blow the fuse
SW will set PROG, hold it for 10us, then clear it */
#else
uint64_t prog : 1;
uint64_t reserved_1_63 : 63;
#endif
} cn30xx;
struct cvmx_mio_fus_prog_cn30xx cn31xx;
struct cvmx_mio_fus_prog_cn30xx cn38xx;
struct cvmx_mio_fus_prog_cn30xx cn38xxp2;
struct cvmx_mio_fus_prog_cn30xx cn50xx;
struct cvmx_mio_fus_prog_cn30xx cn52xx;
struct cvmx_mio_fus_prog_cn30xx cn52xxp1;
struct cvmx_mio_fus_prog_cn30xx cn56xx;
struct cvmx_mio_fus_prog_cn30xx cn56xxp1;
struct cvmx_mio_fus_prog_cn30xx cn58xx;
struct cvmx_mio_fus_prog_cn30xx cn58xxp1;
struct cvmx_mio_fus_prog_s cn61xx;
struct cvmx_mio_fus_prog_s cn63xx;
struct cvmx_mio_fus_prog_s cn63xxp1;
struct cvmx_mio_fus_prog_s cn66xx;
struct cvmx_mio_fus_prog_s cn68xx;
struct cvmx_mio_fus_prog_s cn68xxp1;
struct cvmx_mio_fus_prog_s cnf71xx;
};
typedef union cvmx_mio_fus_prog cvmx_mio_fus_prog_t;
/**
* cvmx_mio_fus_prog_times
*
* DON'T PUT IN HRM*
*
*
* Notes:
* This CSR is not present in the HRM.
*
* All values must be > 0 for correct electrical operation.
*
* IFB fuses are 0..1791
* L6G fuses are 1792 to 2047
*
* The reset values are for IFB fuses for ref_clk of 100MHZ
*/
union cvmx_mio_fus_prog_times {
uint64_t u64;
struct cvmx_mio_fus_prog_times_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_35_63 : 29;
uint64_t vgate_pin : 1; /**< efuse vgate pin (L6G) */
uint64_t fsrc_pin : 1; /**< efuse fsource pin (L6G) */
uint64_t prog_pin : 1; /**< efuse program pin (IFB) */
uint64_t reserved_6_31 : 26;
uint64_t setup : 6; /**< efuse timing param
SETUP = (tWRS/refclk period)-1
For IFB: tWRS = 20ns
For L6G: tWRS = 20ns */
#else
uint64_t setup : 6;
uint64_t reserved_6_31 : 26;
uint64_t prog_pin : 1;
uint64_t fsrc_pin : 1;
uint64_t vgate_pin : 1;
uint64_t reserved_35_63 : 29;
#endif
} s;
struct cvmx_mio_fus_prog_times_cn50xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_33_63 : 31;
uint64_t prog_pin : 1; /**< efuse program pin */
uint64_t out : 8; /**< efuse timing param (ref_clks to delay 10ns) */
uint64_t sclk_lo : 4; /**< efuse timing param (ref_clks to delay 5ns) */
uint64_t sclk_hi : 12; /**< efuse timing param (ref_clks to delay 1000ns) */
uint64_t setup : 8; /**< efuse timing param (ref_clks to delay 10ns) */
#else
uint64_t setup : 8;
uint64_t sclk_hi : 12;
uint64_t sclk_lo : 4;
uint64_t out : 8;
uint64_t prog_pin : 1;
uint64_t reserved_33_63 : 31;
#endif
} cn50xx;
struct cvmx_mio_fus_prog_times_cn50xx cn52xx;
struct cvmx_mio_fus_prog_times_cn50xx cn52xxp1;
struct cvmx_mio_fus_prog_times_cn50xx cn56xx;
struct cvmx_mio_fus_prog_times_cn50xx cn56xxp1;
struct cvmx_mio_fus_prog_times_cn50xx cn58xx;
struct cvmx_mio_fus_prog_times_cn50xx cn58xxp1;
struct cvmx_mio_fus_prog_times_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_35_63 : 29;
uint64_t vgate_pin : 1; /**< efuse vgate pin (L6G) */
uint64_t fsrc_pin : 1; /**< efuse fsource pin (L6G) */
uint64_t prog_pin : 1; /**< efuse program pin (IFB) */
uint64_t out : 7; /**< efuse timing param
OUT = (tOUT/refclk period)-1
For IFB: tOUT = 20ns
For L6G: tOUT = 20ns */
uint64_t sclk_lo : 4; /**< efuse timing param
SCLK_LO=(tSLO/refclk period)-1
For IFB: tSLO = 20ns
For L6G: tSLO = 20ns */
uint64_t sclk_hi : 15; /**< efuse timing param
***NOTE: Pass 1.x reset value is 20000
SCLK_HI=(tSHI/refclk period)-1
For IFB: tSHI = 200us
For L6G: tSHI = 25us */
uint64_t setup : 6; /**< efuse timing param
SETUP = (tWRS/refclk period)-1
For IFB: tWRS = 20ns
For L6G: tWRS = 20ns */
#else
uint64_t setup : 6;
uint64_t sclk_hi : 15;
uint64_t sclk_lo : 4;
uint64_t out : 7;
uint64_t prog_pin : 1;
uint64_t fsrc_pin : 1;
uint64_t vgate_pin : 1;
uint64_t reserved_35_63 : 29;
#endif
} cn61xx;
struct cvmx_mio_fus_prog_times_cn61xx cn63xx;
struct cvmx_mio_fus_prog_times_cn61xx cn63xxp1;
struct cvmx_mio_fus_prog_times_cn61xx cn66xx;
struct cvmx_mio_fus_prog_times_cn61xx cn68xx;
struct cvmx_mio_fus_prog_times_cn61xx cn68xxp1;
struct cvmx_mio_fus_prog_times_cn61xx cnf71xx;
};
typedef union cvmx_mio_fus_prog_times cvmx_mio_fus_prog_times_t;
/**
* cvmx_mio_fus_rcmd
*
* Notes:
* To read an efuse, SW writes MIO_FUS_RCMD[ADDR,PEND] with the byte address of
* the fuse in question, then SW can poll MIO_FUS_RCMD[PEND]. When PEND is
* clear, then MIO_FUS_RCMD[DAT] is valid. In addition, if the efuse read went
* to the efuse banks (eg. ((ADDR/16) not [0,1,7]) || EFUSE) SW can read
* MIO_FUS_BNK_DATX which contains all 128 fuses in the bank associated in
* ADDR.
*/
union cvmx_mio_fus_rcmd {
uint64_t u64;
struct cvmx_mio_fus_rcmd_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_24_63 : 40;
uint64_t dat : 8; /**< 8bits of fuse data */
uint64_t reserved_13_15 : 3;
uint64_t pend : 1; /**< SW sets this bit on a write to start FUSE read
operation. HW clears when read is complete and
the DAT is valid */
uint64_t reserved_9_11 : 3;
uint64_t efuse : 1; /**< When set, return data from the efuse storage
rather than the local storage */
uint64_t addr : 8; /**< The byte address of the fuse to read */
#else
uint64_t addr : 8;
uint64_t efuse : 1;
uint64_t reserved_9_11 : 3;
uint64_t pend : 1;
uint64_t reserved_13_15 : 3;
uint64_t dat : 8;
uint64_t reserved_24_63 : 40;
#endif
} s;
struct cvmx_mio_fus_rcmd_cn30xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_24_63 : 40;
uint64_t dat : 8; /**< 8bits of fuse data */
uint64_t reserved_13_15 : 3;
uint64_t pend : 1; /**< SW sets this bit on a write to start FUSE read
operation. HW clears when read is complete and
the DAT is valid */
uint64_t reserved_9_11 : 3;
uint64_t efuse : 1; /**< When set, return data from the efuse storage
rather than the local storage for the 320 HW fuses */
uint64_t reserved_7_7 : 1;
uint64_t addr : 7; /**< The byte address of the fuse to read */
#else
uint64_t addr : 7;
uint64_t reserved_7_7 : 1;
uint64_t efuse : 1;
uint64_t reserved_9_11 : 3;
uint64_t pend : 1;
uint64_t reserved_13_15 : 3;
uint64_t dat : 8;
uint64_t reserved_24_63 : 40;
#endif
} cn30xx;
struct cvmx_mio_fus_rcmd_cn30xx cn31xx;
struct cvmx_mio_fus_rcmd_cn30xx cn38xx;
struct cvmx_mio_fus_rcmd_cn30xx cn38xxp2;
struct cvmx_mio_fus_rcmd_cn30xx cn50xx;
struct cvmx_mio_fus_rcmd_s cn52xx;
struct cvmx_mio_fus_rcmd_s cn52xxp1;
struct cvmx_mio_fus_rcmd_s cn56xx;
struct cvmx_mio_fus_rcmd_s cn56xxp1;
struct cvmx_mio_fus_rcmd_cn30xx cn58xx;
struct cvmx_mio_fus_rcmd_cn30xx cn58xxp1;
struct cvmx_mio_fus_rcmd_s cn61xx;
struct cvmx_mio_fus_rcmd_s cn63xx;
struct cvmx_mio_fus_rcmd_s cn63xxp1;
struct cvmx_mio_fus_rcmd_s cn66xx;
struct cvmx_mio_fus_rcmd_s cn68xx;
struct cvmx_mio_fus_rcmd_s cn68xxp1;
struct cvmx_mio_fus_rcmd_s cnf71xx;
};
typedef union cvmx_mio_fus_rcmd cvmx_mio_fus_rcmd_t;
/**
* cvmx_mio_fus_read_times
*
* Notes:
* IFB fuses are 0..1791
* L6G fuses are 1792 to 2047
*
* The reset values are for IFB fuses for refclk up to 100MHZ when core PLL is enagaged
*
* If any of the formulas above result in a value less than zero, the corresponding
* timing parameter should be set to zero.
*
* Prior to issuing a read to the fuse banks (via. MIO_FUS_RCMD), this register
* should be written with the timing parameters which correspond to the fuse bank type (IFB vs L6G)
* that will be read.
*
* This register should not be written while MIO_FUS_RCMD[PEND]=1.
*/
union cvmx_mio_fus_read_times {
uint64_t u64;
struct cvmx_mio_fus_read_times_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_26_63 : 38;
uint64_t sch : 4; /**< Hold CS for (SCH+1) refclks after FSET desserts
SCH = (tSCH/refclk period)-1
For IFB: tSCH = 160ns
For L6G: tSCH = 10ns */
uint64_t fsh : 4; /**< Hold FSET for (FSH+1) refclks after PRCHG deasserts
FSH = (tFSH/refclk period)-1
For IFB: tFSH = 160ns
For L6G: tFSH = 10ns */
uint64_t prh : 4; /**< Assert PRCHG (PRH+1) refclks after SIGDEV deasserts
PRH = (tPRH/refclk period)-1
For IFB: tPRH = 70ns
For L6G: tPRH = 10ns */
uint64_t sdh : 4; /**< Hold SIGDEV for (SDH+1) refclks after FSET asserts
SDH = (tSDH/refclk period)-1
For IFB: tPRH = 10ns
For L6G: tPRH = 10ns */
uint64_t setup : 10; /**< Assert CS for (SETUP+1) refclks before asserting
SIGDEV, FSET, or PRCHG
SETUP=(tRDS/refclk period)-1
For IFB: tRDS = 10000ns
For L6G: tRDS = max(tSCS,tSDS,tPRS)
where tSCS = 10ns
tSDS = 10ns
tPRS = 10ns */
#else
uint64_t setup : 10;
uint64_t sdh : 4;
uint64_t prh : 4;
uint64_t fsh : 4;
uint64_t sch : 4;
uint64_t reserved_26_63 : 38;
#endif
} s;
struct cvmx_mio_fus_read_times_s cn61xx;
struct cvmx_mio_fus_read_times_s cn63xx;
struct cvmx_mio_fus_read_times_s cn63xxp1;
struct cvmx_mio_fus_read_times_s cn66xx;
struct cvmx_mio_fus_read_times_s cn68xx;
struct cvmx_mio_fus_read_times_s cn68xxp1;
struct cvmx_mio_fus_read_times_s cnf71xx;
};
typedef union cvmx_mio_fus_read_times cvmx_mio_fus_read_times_t;
/**
* cvmx_mio_fus_repair_res0
*/
union cvmx_mio_fus_repair_res0 {
uint64_t u64;
struct cvmx_mio_fus_repair_res0_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_55_63 : 9;
uint64_t too_many : 1; /**< Too many defects */
uint64_t repair2 : 18; /**< BISR Results */
uint64_t repair1 : 18; /**< BISR Results */
uint64_t repair0 : 18; /**< BISR Results */
#else
uint64_t repair0 : 18;
uint64_t repair1 : 18;
uint64_t repair2 : 18;
uint64_t too_many : 1;
uint64_t reserved_55_63 : 9;
#endif
} s;
struct cvmx_mio_fus_repair_res0_s cn61xx;
struct cvmx_mio_fus_repair_res0_s cn63xx;
struct cvmx_mio_fus_repair_res0_s cn63xxp1;
struct cvmx_mio_fus_repair_res0_s cn66xx;
struct cvmx_mio_fus_repair_res0_s cn68xx;
struct cvmx_mio_fus_repair_res0_s cn68xxp1;
struct cvmx_mio_fus_repair_res0_s cnf71xx;
};
typedef union cvmx_mio_fus_repair_res0 cvmx_mio_fus_repair_res0_t;
/**
* cvmx_mio_fus_repair_res1
*/
union cvmx_mio_fus_repair_res1 {
uint64_t u64;
struct cvmx_mio_fus_repair_res1_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_54_63 : 10;
uint64_t repair5 : 18; /**< BISR Results */
uint64_t repair4 : 18; /**< BISR Results */
uint64_t repair3 : 18; /**< BISR Results */
#else
uint64_t repair3 : 18;
uint64_t repair4 : 18;
uint64_t repair5 : 18;
uint64_t reserved_54_63 : 10;
#endif
} s;
struct cvmx_mio_fus_repair_res1_s cn61xx;
struct cvmx_mio_fus_repair_res1_s cn63xx;
struct cvmx_mio_fus_repair_res1_s cn63xxp1;
struct cvmx_mio_fus_repair_res1_s cn66xx;
struct cvmx_mio_fus_repair_res1_s cn68xx;
struct cvmx_mio_fus_repair_res1_s cn68xxp1;
struct cvmx_mio_fus_repair_res1_s cnf71xx;
};
typedef union cvmx_mio_fus_repair_res1 cvmx_mio_fus_repair_res1_t;
/**
* cvmx_mio_fus_repair_res2
*/
union cvmx_mio_fus_repair_res2 {
uint64_t u64;
struct cvmx_mio_fus_repair_res2_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_18_63 : 46;
uint64_t repair6 : 18; /**< BISR Results */
#else
uint64_t repair6 : 18;
uint64_t reserved_18_63 : 46;
#endif
} s;
struct cvmx_mio_fus_repair_res2_s cn61xx;
struct cvmx_mio_fus_repair_res2_s cn63xx;
struct cvmx_mio_fus_repair_res2_s cn63xxp1;
struct cvmx_mio_fus_repair_res2_s cn66xx;
struct cvmx_mio_fus_repair_res2_s cn68xx;
struct cvmx_mio_fus_repair_res2_s cn68xxp1;
struct cvmx_mio_fus_repair_res2_s cnf71xx;
};
typedef union cvmx_mio_fus_repair_res2 cvmx_mio_fus_repair_res2_t;
/**
* cvmx_mio_fus_spr_repair_res
*
* DON'T PUT IN HRM*
*
*/
union cvmx_mio_fus_spr_repair_res {
uint64_t u64;
struct cvmx_mio_fus_spr_repair_res_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_42_63 : 22;
uint64_t repair2 : 14; /**< Reserved (see MIO_FUS_REPAIR_RES*) */
uint64_t repair1 : 14; /**< Reserved (see MIO_FUS_REPAIR_RES*) */
uint64_t repair0 : 14; /**< Reserved (see MIO_FUS_REPAIR_RES*) */
#else
uint64_t repair0 : 14;
uint64_t repair1 : 14;
uint64_t repair2 : 14;
uint64_t reserved_42_63 : 22;
#endif
} s;
struct cvmx_mio_fus_spr_repair_res_s cn30xx;
struct cvmx_mio_fus_spr_repair_res_s cn31xx;
struct cvmx_mio_fus_spr_repair_res_s cn38xx;
struct cvmx_mio_fus_spr_repair_res_s cn50xx;
struct cvmx_mio_fus_spr_repair_res_s cn52xx;
struct cvmx_mio_fus_spr_repair_res_s cn52xxp1;
struct cvmx_mio_fus_spr_repair_res_s cn56xx;
struct cvmx_mio_fus_spr_repair_res_s cn56xxp1;
struct cvmx_mio_fus_spr_repair_res_s cn58xx;
struct cvmx_mio_fus_spr_repair_res_s cn58xxp1;
struct cvmx_mio_fus_spr_repair_res_s cn61xx;
struct cvmx_mio_fus_spr_repair_res_s cn63xx;
struct cvmx_mio_fus_spr_repair_res_s cn63xxp1;
struct cvmx_mio_fus_spr_repair_res_s cn66xx;
struct cvmx_mio_fus_spr_repair_res_s cn68xx;
struct cvmx_mio_fus_spr_repair_res_s cn68xxp1;
struct cvmx_mio_fus_spr_repair_res_s cnf71xx;
};
typedef union cvmx_mio_fus_spr_repair_res cvmx_mio_fus_spr_repair_res_t;
/**
* cvmx_mio_fus_spr_repair_sum
*
* DON'T PUT IN HRM*
*
*/
union cvmx_mio_fus_spr_repair_sum {
uint64_t u64;
struct cvmx_mio_fus_spr_repair_sum_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_1_63 : 63;
uint64_t too_many : 1; /**< Reserved (see MIO_FUS_REPAIR_RES*) */
#else
uint64_t too_many : 1;
uint64_t reserved_1_63 : 63;
#endif
} s;
struct cvmx_mio_fus_spr_repair_sum_s cn30xx;
struct cvmx_mio_fus_spr_repair_sum_s cn31xx;
struct cvmx_mio_fus_spr_repair_sum_s cn38xx;
struct cvmx_mio_fus_spr_repair_sum_s cn50xx;
struct cvmx_mio_fus_spr_repair_sum_s cn52xx;
struct cvmx_mio_fus_spr_repair_sum_s cn52xxp1;
struct cvmx_mio_fus_spr_repair_sum_s cn56xx;
struct cvmx_mio_fus_spr_repair_sum_s cn56xxp1;
struct cvmx_mio_fus_spr_repair_sum_s cn58xx;
struct cvmx_mio_fus_spr_repair_sum_s cn58xxp1;
struct cvmx_mio_fus_spr_repair_sum_s cn61xx;
struct cvmx_mio_fus_spr_repair_sum_s cn63xx;
struct cvmx_mio_fus_spr_repair_sum_s cn63xxp1;
struct cvmx_mio_fus_spr_repair_sum_s cn66xx;
struct cvmx_mio_fus_spr_repair_sum_s cn68xx;
struct cvmx_mio_fus_spr_repair_sum_s cn68xxp1;
struct cvmx_mio_fus_spr_repair_sum_s cnf71xx;
};
typedef union cvmx_mio_fus_spr_repair_sum cvmx_mio_fus_spr_repair_sum_t;
/**
* cvmx_mio_fus_tgg
*
* Notes:
* The TGG fuses are fuses[831:768]. The valid bit (TGG[63]) is fuse[831].
*
*/
union cvmx_mio_fus_tgg {
uint64_t u64;
struct cvmx_mio_fus_tgg_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t val : 1; /**< Out of reset, VAL will return the TGG[63] fuse.
Software may write this CSR bit to zero (to hide
the value of the TGG fuses). Software cannot write
the valid bit to a one, so it is not possible to
read the value of the TGG fuses after the valid
bit is clear.
It is never possible to read the value of the TGG
fuses directly (ie. the only way to read the value
of the TGG fuses is via the MIO_FUS_TGG CSR.)
Whenever the fuse corresponding to the valid bit
(ie. TGG[63]) is blown, it is not possible to blow
the other 63 TGG fuses. (ie. only when the TGG[63]
fuse is not blown, the other 63 TGG fuses can be
blown. The TGG[63] fuse is the one and only fuse
lockdown bit for the other 63 fuses TGG fuses. No
other fuse lockdown bits can prevent blowing the 63
fuses. */
uint64_t dat : 63; /**< Whenever VAL is clear, DAT will always read as
zero, regardless of the value of the TGG[62:0]
fuses.
Whenever VAL is set, DAT will match the value of
other 63 TGG fuses (ie. TGG[62:0]) */
#else
uint64_t dat : 63;
uint64_t val : 1;
#endif
} s;
struct cvmx_mio_fus_tgg_s cn61xx;
struct cvmx_mio_fus_tgg_s cn66xx;
struct cvmx_mio_fus_tgg_s cnf71xx;
};
typedef union cvmx_mio_fus_tgg cvmx_mio_fus_tgg_t;
/**
* cvmx_mio_fus_unlock
*/
union cvmx_mio_fus_unlock {
uint64_t u64;
struct cvmx_mio_fus_unlock_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_24_63 : 40;
uint64_t key : 24; /**< When set to the typical value, allows SW to
program the efuses */
#else
uint64_t key : 24;
uint64_t reserved_24_63 : 40;
#endif
} s;
struct cvmx_mio_fus_unlock_s cn30xx;
struct cvmx_mio_fus_unlock_s cn31xx;
};
typedef union cvmx_mio_fus_unlock cvmx_mio_fus_unlock_t;
/**
* cvmx_mio_fus_wadr
*/
union cvmx_mio_fus_wadr {
uint64_t u64;
struct cvmx_mio_fus_wadr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_10_63 : 54;
uint64_t addr : 10; /**< Which of the banks of 128 fuses to blow */
#else
uint64_t addr : 10;
uint64_t reserved_10_63 : 54;
#endif
} s;
struct cvmx_mio_fus_wadr_s cn30xx;
struct cvmx_mio_fus_wadr_s cn31xx;
struct cvmx_mio_fus_wadr_s cn38xx;
struct cvmx_mio_fus_wadr_s cn38xxp2;
struct cvmx_mio_fus_wadr_cn50xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_2_63 : 62;
uint64_t addr : 2; /**< Which of the four banks of 256 fuses to blow */
#else
uint64_t addr : 2;
uint64_t reserved_2_63 : 62;
#endif
} cn50xx;
struct cvmx_mio_fus_wadr_cn52xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_3_63 : 61;
uint64_t addr : 3; /**< Which of the four banks of 256 fuses to blow */
#else
uint64_t addr : 3;
uint64_t reserved_3_63 : 61;
#endif
} cn52xx;
struct cvmx_mio_fus_wadr_cn52xx cn52xxp1;
struct cvmx_mio_fus_wadr_cn52xx cn56xx;
struct cvmx_mio_fus_wadr_cn52xx cn56xxp1;
struct cvmx_mio_fus_wadr_cn50xx cn58xx;
struct cvmx_mio_fus_wadr_cn50xx cn58xxp1;
struct cvmx_mio_fus_wadr_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_4_63 : 60;
uint64_t addr : 4; /**< Which of the banks of 128 fuses to blow */
#else
uint64_t addr : 4;
uint64_t reserved_4_63 : 60;
#endif
} cn61xx;
struct cvmx_mio_fus_wadr_cn61xx cn63xx;
struct cvmx_mio_fus_wadr_cn61xx cn63xxp1;
struct cvmx_mio_fus_wadr_cn61xx cn66xx;
struct cvmx_mio_fus_wadr_cn61xx cn68xx;
struct cvmx_mio_fus_wadr_cn61xx cn68xxp1;
struct cvmx_mio_fus_wadr_cn61xx cnf71xx;
};
typedef union cvmx_mio_fus_wadr cvmx_mio_fus_wadr_t;
/**
* cvmx_mio_gpio_comp
*
* MIO_GPIO_COMP = MIO GPIO Compensation Register
*
*/
union cvmx_mio_gpio_comp {
uint64_t u64;
struct cvmx_mio_gpio_comp_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_12_63 : 52;
uint64_t pctl : 6; /**< GPIO bus PCTL */
uint64_t nctl : 6; /**< GPIO bus NCTL */
#else
uint64_t nctl : 6;
uint64_t pctl : 6;
uint64_t reserved_12_63 : 52;
#endif
} s;
struct cvmx_mio_gpio_comp_s cn61xx;
struct cvmx_mio_gpio_comp_s cn63xx;
struct cvmx_mio_gpio_comp_s cn63xxp1;
struct cvmx_mio_gpio_comp_s cn66xx;
struct cvmx_mio_gpio_comp_s cn68xx;
struct cvmx_mio_gpio_comp_s cn68xxp1;
struct cvmx_mio_gpio_comp_s cnf71xx;
};
typedef union cvmx_mio_gpio_comp cvmx_mio_gpio_comp_t;
/**
* cvmx_mio_ndf_dma_cfg
*
* MIO_NDF_DMA_CFG = MIO NAND Flash DMA Config Register
*
* SIZE is specified in number of 64 bit transfers (encoded in -1 notation).
*
* ADR must be 64 bit aligned.
*/
union cvmx_mio_ndf_dma_cfg {
uint64_t u64;
struct cvmx_mio_ndf_dma_cfg_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t en : 1; /**< DMA Engine enable */
uint64_t rw : 1; /**< DMA Engine R/W bit (0 = read, 1 = write) */
uint64_t clr : 1; /**< DMA Engine clear EN on device terminated burst */
uint64_t reserved_60_60 : 1;
uint64_t swap32 : 1; /**< DMA Engine 32 bit swap */
uint64_t swap16 : 1; /**< DMA Engine 16 bit swap */
uint64_t swap8 : 1; /**< DMA Engine 8 bit swap */
uint64_t endian : 1; /**< DMA Engine NCB endian mode (0 = big, 1 = little) */
uint64_t size : 20; /**< DMA Engine size */
uint64_t adr : 36; /**< DMA Engine address */
#else
uint64_t adr : 36;
uint64_t size : 20;
uint64_t endian : 1;
uint64_t swap8 : 1;
uint64_t swap16 : 1;
uint64_t swap32 : 1;
uint64_t reserved_60_60 : 1;
uint64_t clr : 1;
uint64_t rw : 1;
uint64_t en : 1;
#endif
} s;
struct cvmx_mio_ndf_dma_cfg_s cn52xx;
struct cvmx_mio_ndf_dma_cfg_s cn61xx;
struct cvmx_mio_ndf_dma_cfg_s cn63xx;
struct cvmx_mio_ndf_dma_cfg_s cn63xxp1;
struct cvmx_mio_ndf_dma_cfg_s cn66xx;
struct cvmx_mio_ndf_dma_cfg_s cn68xx;
struct cvmx_mio_ndf_dma_cfg_s cn68xxp1;
struct cvmx_mio_ndf_dma_cfg_s cnf71xx;
};
typedef union cvmx_mio_ndf_dma_cfg cvmx_mio_ndf_dma_cfg_t;
/**
* cvmx_mio_ndf_dma_int
*
* MIO_NDF_DMA_INT = MIO NAND Flash DMA Interrupt Register
*
*/
union cvmx_mio_ndf_dma_int {
uint64_t u64;
struct cvmx_mio_ndf_dma_int_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_1_63 : 63;
uint64_t done : 1; /**< DMA Engine request completion interrupt */
#else
uint64_t done : 1;
uint64_t reserved_1_63 : 63;
#endif
} s;
struct cvmx_mio_ndf_dma_int_s cn52xx;
struct cvmx_mio_ndf_dma_int_s cn61xx;
struct cvmx_mio_ndf_dma_int_s cn63xx;
struct cvmx_mio_ndf_dma_int_s cn63xxp1;
struct cvmx_mio_ndf_dma_int_s cn66xx;
struct cvmx_mio_ndf_dma_int_s cn68xx;
struct cvmx_mio_ndf_dma_int_s cn68xxp1;
struct cvmx_mio_ndf_dma_int_s cnf71xx;
};
typedef union cvmx_mio_ndf_dma_int cvmx_mio_ndf_dma_int_t;
/**
* cvmx_mio_ndf_dma_int_en
*
* MIO_NDF_DMA_INT_EN = MIO NAND Flash DMA Interrupt Enable Register
*
*/
union cvmx_mio_ndf_dma_int_en {
uint64_t u64;
struct cvmx_mio_ndf_dma_int_en_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_1_63 : 63;
uint64_t done : 1; /**< DMA Engine request completion interrupt enable */
#else
uint64_t done : 1;
uint64_t reserved_1_63 : 63;
#endif
} s;
struct cvmx_mio_ndf_dma_int_en_s cn52xx;
struct cvmx_mio_ndf_dma_int_en_s cn61xx;
struct cvmx_mio_ndf_dma_int_en_s cn63xx;
struct cvmx_mio_ndf_dma_int_en_s cn63xxp1;
struct cvmx_mio_ndf_dma_int_en_s cn66xx;
struct cvmx_mio_ndf_dma_int_en_s cn68xx;
struct cvmx_mio_ndf_dma_int_en_s cn68xxp1;
struct cvmx_mio_ndf_dma_int_en_s cnf71xx;
};
typedef union cvmx_mio_ndf_dma_int_en cvmx_mio_ndf_dma_int_en_t;
/**
* cvmx_mio_pll_ctl
*/
union cvmx_mio_pll_ctl {
uint64_t u64;
struct cvmx_mio_pll_ctl_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_5_63 : 59;
uint64_t bw_ctl : 5; /**< Core PLL bandwidth control */
#else
uint64_t bw_ctl : 5;
uint64_t reserved_5_63 : 59;
#endif
} s;
struct cvmx_mio_pll_ctl_s cn30xx;
struct cvmx_mio_pll_ctl_s cn31xx;
};
typedef union cvmx_mio_pll_ctl cvmx_mio_pll_ctl_t;
/**
* cvmx_mio_pll_setting
*/
union cvmx_mio_pll_setting {
uint64_t u64;
struct cvmx_mio_pll_setting_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_17_63 : 47;
uint64_t setting : 17; /**< Core PLL setting */
#else
uint64_t setting : 17;
uint64_t reserved_17_63 : 47;
#endif
} s;
struct cvmx_mio_pll_setting_s cn30xx;
struct cvmx_mio_pll_setting_s cn31xx;
};
typedef union cvmx_mio_pll_setting cvmx_mio_pll_setting_t;
/**
* cvmx_mio_ptp_ckout_hi_incr
*
* MIO_PTP_CKOUT_HI_INCR = PTP Clock Out Hi Increment
*
*/
union cvmx_mio_ptp_ckout_hi_incr {
uint64_t u64;
struct cvmx_mio_ptp_ckout_hi_incr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t nanosec : 32; /**< Nanoseconds */
uint64_t frnanosec : 32; /**< Fractions of Nanoseconds */
#else
uint64_t frnanosec : 32;
uint64_t nanosec : 32;
#endif
} s;
struct cvmx_mio_ptp_ckout_hi_incr_s cn61xx;
struct cvmx_mio_ptp_ckout_hi_incr_s cn66xx;
struct cvmx_mio_ptp_ckout_hi_incr_s cn68xx;
struct cvmx_mio_ptp_ckout_hi_incr_s cnf71xx;
};
typedef union cvmx_mio_ptp_ckout_hi_incr cvmx_mio_ptp_ckout_hi_incr_t;
/**
* cvmx_mio_ptp_ckout_lo_incr
*
* MIO_PTP_CKOUT_LO_INCR = PTP Clock Out Lo Increment
*
*/
union cvmx_mio_ptp_ckout_lo_incr {
uint64_t u64;
struct cvmx_mio_ptp_ckout_lo_incr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t nanosec : 32; /**< Nanoseconds */
uint64_t frnanosec : 32; /**< Fractions of Nanoseconds */
#else
uint64_t frnanosec : 32;
uint64_t nanosec : 32;
#endif
} s;
struct cvmx_mio_ptp_ckout_lo_incr_s cn61xx;
struct cvmx_mio_ptp_ckout_lo_incr_s cn66xx;
struct cvmx_mio_ptp_ckout_lo_incr_s cn68xx;
struct cvmx_mio_ptp_ckout_lo_incr_s cnf71xx;
};
typedef union cvmx_mio_ptp_ckout_lo_incr cvmx_mio_ptp_ckout_lo_incr_t;
/**
* cvmx_mio_ptp_ckout_thresh_hi
*
* MIO_PTP_CKOUT_THRESH_HI = Hi bytes of PTP Clock Out
*
* Writes to MIO_PTP_CKOUT_THRESH_HI also clear MIO_PTP_CKOUT_THRESH_LO. To update all 96 bits, write MIO_PTP_CKOUT_THRESH_HI followed
* by MIO_PTP_CKOUT_THRESH_LO
*/
union cvmx_mio_ptp_ckout_thresh_hi {
uint64_t u64;
struct cvmx_mio_ptp_ckout_thresh_hi_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t nanosec : 64; /**< Nanoseconds */
#else
uint64_t nanosec : 64;
#endif
} s;
struct cvmx_mio_ptp_ckout_thresh_hi_s cn61xx;
struct cvmx_mio_ptp_ckout_thresh_hi_s cn66xx;
struct cvmx_mio_ptp_ckout_thresh_hi_s cn68xx;
struct cvmx_mio_ptp_ckout_thresh_hi_s cnf71xx;
};
typedef union cvmx_mio_ptp_ckout_thresh_hi cvmx_mio_ptp_ckout_thresh_hi_t;
/**
* cvmx_mio_ptp_ckout_thresh_lo
*
* MIO_PTP_CKOUT_THRESH_LO = Lo bytes of PTP Clock Out
*
*/
union cvmx_mio_ptp_ckout_thresh_lo {
uint64_t u64;
struct cvmx_mio_ptp_ckout_thresh_lo_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t frnanosec : 32; /**< Fractions of Nanoseconds */
#else
uint64_t frnanosec : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_mio_ptp_ckout_thresh_lo_s cn61xx;
struct cvmx_mio_ptp_ckout_thresh_lo_s cn66xx;
struct cvmx_mio_ptp_ckout_thresh_lo_s cn68xx;
struct cvmx_mio_ptp_ckout_thresh_lo_s cnf71xx;
};
typedef union cvmx_mio_ptp_ckout_thresh_lo cvmx_mio_ptp_ckout_thresh_lo_t;
/**
* cvmx_mio_ptp_clock_cfg
*
* MIO_PTP_CLOCK_CFG = Configuration
*
*/
union cvmx_mio_ptp_clock_cfg {
uint64_t u64;
struct cvmx_mio_ptp_clock_cfg_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_42_63 : 22;
uint64_t pps : 1; /**< PTP PPS Output
reflects ptp__pps after PPS_INV inverter */
uint64_t ckout : 1; /**< PTP Clock Output
reflects ptp__ckout after CKOUT_INV inverter */
uint64_t ext_clk_edge : 2; /**< External Clock input edge
00 = rising edge
01 = falling edge
10 = both rising & falling edge
11 = reserved */
uint64_t ckout_out4 : 1; /**< Destination for PTP Clock Out output
See CKOUT_OUT */
uint64_t pps_out : 5; /**< Destination for PTP PPS output to GPIO
0-19 : GPIO[PPS_OUT[4:0]]
- 20:30: Reserved
31 : Disabled
This should be different from CKOUT_OUT */
uint64_t pps_inv : 1; /**< Invert PTP PPS
0 = don't invert
1 = invert */
uint64_t pps_en : 1; /**< Enable PTP PPS */
uint64_t ckout_out : 4; /**< Destination for PTP Clock Out output to GPIO
0-19 : GPIO[[CKOUT_OUT4,CKOUT_OUT[3:0]]]
- 20:30: Reserved
31 : Disabled
This should be different from PPS_OUT */
uint64_t ckout_inv : 1; /**< Invert PTP Clock Out
0 = don't invert
1 = invert */
uint64_t ckout_en : 1; /**< Enable PTP Clock Out */
uint64_t evcnt_in : 6; /**< Source for event counter input
0x00-0x0f : GPIO[EVCNT_IN[3:0]]
0x20 : GPIO[16]
0x21 : GPIO[17]
0x22 : GPIO[18]
0x23 : GPIO[19]
0x10 : QLM0_REF_CLK
0x11 : QLM1_REF_CLK
0x18 : RF_MCLK (PHY pin)
0x12-0x17 : Reserved
0x19-0x1f : Reserved
0x24-0x3f : Reserved */
uint64_t evcnt_edge : 1; /**< Event counter input edge
0 = falling edge
1 = rising edge */
uint64_t evcnt_en : 1; /**< Enable event counter */
uint64_t tstmp_in : 6; /**< Source for timestamp input
0x00-0x0f : GPIO[TSTMP_IN[3:0]]
0x20 : GPIO[16]
0x21 : GPIO[17]
0x22 : GPIO[18]
0x23 : GPIO[19]
0x10 : QLM0_REF_CLK
0x11 : QLM1_REF_CLK
0x18 : RF_MCLK (PHY pin)
0x12-0x17 : Reserved
0x19-0x1f : Reserved
0x24-0x3f : Reserved */
uint64_t tstmp_edge : 1; /**< External timestamp input edge
0 = falling edge
1 = rising edge */
uint64_t tstmp_en : 1; /**< Enable external timestamp */
uint64_t ext_clk_in : 6; /**< Source for external clock
0x00-0x0f : GPIO[EXT_CLK_IN[3:0]]
0x20 : GPIO[16]
0x21 : GPIO[17]
0x22 : GPIO[18]
0x23 : GPIO[19]
0x10 : QLM0_REF_CLK
0x11 : QLM1_REF_CLK
0x18 : RF_MCLK (PHY pin)
0x12-0x17 : Reserved
0x19-0x1f : Reserved
0x24-0x3f : Reserved */
uint64_t ext_clk_en : 1; /**< Use external clock */
uint64_t ptp_en : 1; /**< Enable PTP Module */
#else
uint64_t ptp_en : 1;
uint64_t ext_clk_en : 1;
uint64_t ext_clk_in : 6;
uint64_t tstmp_en : 1;
uint64_t tstmp_edge : 1;
uint64_t tstmp_in : 6;
uint64_t evcnt_en : 1;
uint64_t evcnt_edge : 1;
uint64_t evcnt_in : 6;
uint64_t ckout_en : 1;
uint64_t ckout_inv : 1;
uint64_t ckout_out : 4;
uint64_t pps_en : 1;
uint64_t pps_inv : 1;
uint64_t pps_out : 5;
uint64_t ckout_out4 : 1;
uint64_t ext_clk_edge : 2;
uint64_t ckout : 1;
uint64_t pps : 1;
uint64_t reserved_42_63 : 22;
#endif
} s;
struct cvmx_mio_ptp_clock_cfg_s cn61xx;
struct cvmx_mio_ptp_clock_cfg_cn63xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_24_63 : 40;
uint64_t evcnt_in : 6; /**< Source for event counter input
0x00-0x0f : GPIO[EVCNT_IN[3:0]]
0x10 : QLM0_REF_CLK
0x11 : QLM1_REF_CLK
0x12 : QLM2_REF_CLK
0x13-0x3f : Reserved */
uint64_t evcnt_edge : 1; /**< Event counter input edge
0 = falling edge
1 = rising edge */
uint64_t evcnt_en : 1; /**< Enable event counter */
uint64_t tstmp_in : 6; /**< Source for timestamp input
0x00-0x0f : GPIO[TSTMP_IN[3:0]]
0x10 : QLM0_REF_CLK
0x11 : QLM1_REF_CLK
0x12 : QLM2_REF_CLK
0x13-0x3f : Reserved */
uint64_t tstmp_edge : 1; /**< External timestamp input edge
0 = falling edge
1 = rising edge */
uint64_t tstmp_en : 1; /**< Enable external timestamp */
uint64_t ext_clk_in : 6; /**< Source for external clock
0x00-0x0f : GPIO[EXT_CLK_IN[3:0]]
0x10 : QLM0_REF_CLK
0x11 : QLM1_REF_CLK
0x12 : QLM2_REF_CLK
0x13-0x3f : Reserved */
uint64_t ext_clk_en : 1; /**< Use positive edge of external clock */
uint64_t ptp_en : 1; /**< Enable PTP Module */
#else
uint64_t ptp_en : 1;
uint64_t ext_clk_en : 1;
uint64_t ext_clk_in : 6;
uint64_t tstmp_en : 1;
uint64_t tstmp_edge : 1;
uint64_t tstmp_in : 6;
uint64_t evcnt_en : 1;
uint64_t evcnt_edge : 1;
uint64_t evcnt_in : 6;
uint64_t reserved_24_63 : 40;
#endif
} cn63xx;
struct cvmx_mio_ptp_clock_cfg_cn63xx cn63xxp1;
struct cvmx_mio_ptp_clock_cfg_cn66xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_40_63 : 24;
uint64_t ext_clk_edge : 2; /**< External Clock input edge
00 = rising edge
01 = falling edge
10 = both rising & falling edge
11 = reserved */
uint64_t ckout_out4 : 1; /**< Destination for PTP Clock Out output
0-19 : GPIO[[CKOUT_OUT4,CKOUT_OUT[3:0]]]
This should be different from PPS_OUT */
uint64_t pps_out : 5; /**< Destination for PTP PPS output
0-19 : GPIO[PPS_OUT[4:0]]
This should be different from CKOUT_OUT */
uint64_t pps_inv : 1; /**< Invert PTP PPS
0 = don't invert
1 = invert */
uint64_t pps_en : 1; /**< Enable PTP PPS */
uint64_t ckout_out : 4; /**< Destination for PTP Clock Out output
0-19 : GPIO[[CKOUT_OUT4,CKOUT_OUT[3:0]]]
This should be different from PPS_OUT */
uint64_t ckout_inv : 1; /**< Invert PTP Clock Out
0 = don't invert
1 = invert */
uint64_t ckout_en : 1; /**< Enable PTP Clock Out */
uint64_t evcnt_in : 6; /**< Source for event counter input
0x00-0x0f : GPIO[EVCNT_IN[3:0]]
0x20 : GPIO[16]
0x21 : GPIO[17]
0x22 : GPIO[18]
0x23 : GPIO[19]
0x10 : QLM0_REF_CLK
0x11 : QLM1_REF_CLK
0x12 : QLM2_REF_CLK
0x13-0x1f : Reserved
0x24-0x3f : Reserved */
uint64_t evcnt_edge : 1; /**< Event counter input edge
0 = falling edge
1 = rising edge */
uint64_t evcnt_en : 1; /**< Enable event counter */
uint64_t tstmp_in : 6; /**< Source for timestamp input
0x00-0x0f : GPIO[TSTMP_IN[3:0]]
0x20 : GPIO[16]
0x21 : GPIO[17]
0x22 : GPIO[18]
0x23 : GPIO[19]
0x10 : QLM0_REF_CLK
0x11 : QLM1_REF_CLK
0x12 : QLM2_REF_CLK
0x13-0x1f : Reserved
0x24-0x3f : Reserved */
uint64_t tstmp_edge : 1; /**< External timestamp input edge
0 = falling edge
1 = rising edge */
uint64_t tstmp_en : 1; /**< Enable external timestamp */
uint64_t ext_clk_in : 6; /**< Source for external clock
0x00-0x0f : GPIO[EXT_CLK_IN[3:0]]
0x20 : GPIO[16]
0x21 : GPIO[17]
0x22 : GPIO[18]
0x23 : GPIO[19]
0x10 : QLM0_REF_CLK
0x11 : QLM1_REF_CLK
0x12 : QLM2_REF_CLK
0x13-0x1f : Reserved
0x24-0x3f : Reserved */
uint64_t ext_clk_en : 1; /**< Use external clock */
uint64_t ptp_en : 1; /**< Enable PTP Module */
#else
uint64_t ptp_en : 1;
uint64_t ext_clk_en : 1;
uint64_t ext_clk_in : 6;
uint64_t tstmp_en : 1;
uint64_t tstmp_edge : 1;
uint64_t tstmp_in : 6;
uint64_t evcnt_en : 1;
uint64_t evcnt_edge : 1;
uint64_t evcnt_in : 6;
uint64_t ckout_en : 1;
uint64_t ckout_inv : 1;
uint64_t ckout_out : 4;
uint64_t pps_en : 1;
uint64_t pps_inv : 1;
uint64_t pps_out : 5;
uint64_t ckout_out4 : 1;
uint64_t ext_clk_edge : 2;
uint64_t reserved_40_63 : 24;
#endif
} cn66xx;
struct cvmx_mio_ptp_clock_cfg_s cn68xx;
struct cvmx_mio_ptp_clock_cfg_cn63xx cn68xxp1;
struct cvmx_mio_ptp_clock_cfg_s cnf71xx;
};
typedef union cvmx_mio_ptp_clock_cfg cvmx_mio_ptp_clock_cfg_t;
/**
* cvmx_mio_ptp_clock_comp
*
* MIO_PTP_CLOCK_COMP = Compensator
*
*/
union cvmx_mio_ptp_clock_comp {
uint64_t u64;
struct cvmx_mio_ptp_clock_comp_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t nanosec : 32; /**< Nanoseconds */
uint64_t frnanosec : 32; /**< Fractions of Nanoseconds */
#else
uint64_t frnanosec : 32;
uint64_t nanosec : 32;
#endif
} s;
struct cvmx_mio_ptp_clock_comp_s cn61xx;
struct cvmx_mio_ptp_clock_comp_s cn63xx;
struct cvmx_mio_ptp_clock_comp_s cn63xxp1;
struct cvmx_mio_ptp_clock_comp_s cn66xx;
struct cvmx_mio_ptp_clock_comp_s cn68xx;
struct cvmx_mio_ptp_clock_comp_s cn68xxp1;
struct cvmx_mio_ptp_clock_comp_s cnf71xx;
};
typedef union cvmx_mio_ptp_clock_comp cvmx_mio_ptp_clock_comp_t;
/**
* cvmx_mio_ptp_clock_hi
*
* MIO_PTP_CLOCK_HI = Hi bytes of CLOCK
*
* Writes to MIO_PTP_CLOCK_HI also clear MIO_PTP_CLOCK_LO. To update all 96 bits, write MIO_PTP_CLOCK_HI followed
* by MIO_PTP_CLOCK_LO
*/
union cvmx_mio_ptp_clock_hi {
uint64_t u64;
struct cvmx_mio_ptp_clock_hi_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t nanosec : 64; /**< Nanoseconds */
#else
uint64_t nanosec : 64;
#endif
} s;
struct cvmx_mio_ptp_clock_hi_s cn61xx;
struct cvmx_mio_ptp_clock_hi_s cn63xx;
struct cvmx_mio_ptp_clock_hi_s cn63xxp1;
struct cvmx_mio_ptp_clock_hi_s cn66xx;
struct cvmx_mio_ptp_clock_hi_s cn68xx;
struct cvmx_mio_ptp_clock_hi_s cn68xxp1;
struct cvmx_mio_ptp_clock_hi_s cnf71xx;
};
typedef union cvmx_mio_ptp_clock_hi cvmx_mio_ptp_clock_hi_t;
/**
* cvmx_mio_ptp_clock_lo
*
* MIO_PTP_CLOCK_LO = Lo bytes of CLOCK
*
*/
union cvmx_mio_ptp_clock_lo {
uint64_t u64;
struct cvmx_mio_ptp_clock_lo_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t frnanosec : 32; /**< Fractions of Nanoseconds */
#else
uint64_t frnanosec : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_mio_ptp_clock_lo_s cn61xx;
struct cvmx_mio_ptp_clock_lo_s cn63xx;
struct cvmx_mio_ptp_clock_lo_s cn63xxp1;
struct cvmx_mio_ptp_clock_lo_s cn66xx;
struct cvmx_mio_ptp_clock_lo_s cn68xx;
struct cvmx_mio_ptp_clock_lo_s cn68xxp1;
struct cvmx_mio_ptp_clock_lo_s cnf71xx;
};
typedef union cvmx_mio_ptp_clock_lo cvmx_mio_ptp_clock_lo_t;
/**
* cvmx_mio_ptp_evt_cnt
*
* MIO_PTP_EVT_CNT = Event Counter
*
* Writes to MIO_PTP_EVT_CNT increment this register by the written data. The register counts down by
* 1 for every MIO_PTP_CLOCK_CFG[EVCNT_EDGE] edge of MIO_PTP_CLOCK_CFG[EVCNT_IN]. When register equals
* 0, an interrupt gets gerated
*/
union cvmx_mio_ptp_evt_cnt {
uint64_t u64;
struct cvmx_mio_ptp_evt_cnt_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t cntr : 64; /**< Nanoseconds */
#else
uint64_t cntr : 64;
#endif
} s;
struct cvmx_mio_ptp_evt_cnt_s cn61xx;
struct cvmx_mio_ptp_evt_cnt_s cn63xx;
struct cvmx_mio_ptp_evt_cnt_s cn63xxp1;
struct cvmx_mio_ptp_evt_cnt_s cn66xx;
struct cvmx_mio_ptp_evt_cnt_s cn68xx;
struct cvmx_mio_ptp_evt_cnt_s cn68xxp1;
struct cvmx_mio_ptp_evt_cnt_s cnf71xx;
};
typedef union cvmx_mio_ptp_evt_cnt cvmx_mio_ptp_evt_cnt_t;
/**
* cvmx_mio_ptp_phy_1pps_in
*
* MIO_PTP_PHY_1PPS_IN = PHY 1PPS input mux selection
*
*/
union cvmx_mio_ptp_phy_1pps_in {
uint64_t u64;
struct cvmx_mio_ptp_phy_1pps_in_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_5_63 : 59;
uint64_t sel : 5; /**< Source for PHY 1pps input signal
0-19 : GPIO[SEL[4:0]], for AGPS_1PPS
24 : PPS_OUT (Enabled by PPS_EN and PPS_INV,
reflects ptp_pps after PPS_INV inverter)
- 20-23: Reserved
- 25-30: Reserved
31 : Disabled */
#else
uint64_t sel : 5;
uint64_t reserved_5_63 : 59;
#endif
} s;
struct cvmx_mio_ptp_phy_1pps_in_s cnf71xx;
};
typedef union cvmx_mio_ptp_phy_1pps_in cvmx_mio_ptp_phy_1pps_in_t;
/**
* cvmx_mio_ptp_pps_hi_incr
*
* MIO_PTP_PPS_HI_INCR = PTP PPS Hi Increment
*
*/
union cvmx_mio_ptp_pps_hi_incr {
uint64_t u64;
struct cvmx_mio_ptp_pps_hi_incr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t nanosec : 32; /**< Nanoseconds */
uint64_t frnanosec : 32; /**< Fractions of Nanoseconds */
#else
uint64_t frnanosec : 32;
uint64_t nanosec : 32;
#endif
} s;
struct cvmx_mio_ptp_pps_hi_incr_s cn61xx;
struct cvmx_mio_ptp_pps_hi_incr_s cn66xx;
struct cvmx_mio_ptp_pps_hi_incr_s cn68xx;
struct cvmx_mio_ptp_pps_hi_incr_s cnf71xx;
};
typedef union cvmx_mio_ptp_pps_hi_incr cvmx_mio_ptp_pps_hi_incr_t;
/**
* cvmx_mio_ptp_pps_lo_incr
*
* MIO_PTP_PPS_LO_INCR = PTP PPS Lo Increment
*
*/
union cvmx_mio_ptp_pps_lo_incr {
uint64_t u64;
struct cvmx_mio_ptp_pps_lo_incr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t nanosec : 32; /**< Nanoseconds */
uint64_t frnanosec : 32; /**< Fractions of Nanoseconds */
#else
uint64_t frnanosec : 32;
uint64_t nanosec : 32;
#endif
} s;
struct cvmx_mio_ptp_pps_lo_incr_s cn61xx;
struct cvmx_mio_ptp_pps_lo_incr_s cn66xx;
struct cvmx_mio_ptp_pps_lo_incr_s cn68xx;
struct cvmx_mio_ptp_pps_lo_incr_s cnf71xx;
};
typedef union cvmx_mio_ptp_pps_lo_incr cvmx_mio_ptp_pps_lo_incr_t;
/**
* cvmx_mio_ptp_pps_thresh_hi
*
* MIO_PTP_PPS_THRESH_HI = Hi bytes of PTP PPS
*
* Writes to MIO_PTP_PPS_THRESH_HI also clear MIO_PTP_PPS_THRESH_LO. To update all 96 bits, write MIO_PTP_PPS_THRESH_HI followed
* by MIO_PTP_PPS_THRESH_LO
*/
union cvmx_mio_ptp_pps_thresh_hi {
uint64_t u64;
struct cvmx_mio_ptp_pps_thresh_hi_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t nanosec : 64; /**< Nanoseconds */
#else
uint64_t nanosec : 64;
#endif
} s;
struct cvmx_mio_ptp_pps_thresh_hi_s cn61xx;
struct cvmx_mio_ptp_pps_thresh_hi_s cn66xx;
struct cvmx_mio_ptp_pps_thresh_hi_s cn68xx;
struct cvmx_mio_ptp_pps_thresh_hi_s cnf71xx;
};
typedef union cvmx_mio_ptp_pps_thresh_hi cvmx_mio_ptp_pps_thresh_hi_t;
/**
* cvmx_mio_ptp_pps_thresh_lo
*
* MIO_PTP_PPS_THRESH_LO = Lo bytes of PTP PPS
*
*/
union cvmx_mio_ptp_pps_thresh_lo {
uint64_t u64;
struct cvmx_mio_ptp_pps_thresh_lo_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t frnanosec : 32; /**< Fractions of Nanoseconds */
#else
uint64_t frnanosec : 32;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_mio_ptp_pps_thresh_lo_s cn61xx;
struct cvmx_mio_ptp_pps_thresh_lo_s cn66xx;
struct cvmx_mio_ptp_pps_thresh_lo_s cn68xx;
struct cvmx_mio_ptp_pps_thresh_lo_s cnf71xx;
};
typedef union cvmx_mio_ptp_pps_thresh_lo cvmx_mio_ptp_pps_thresh_lo_t;
/**
* cvmx_mio_ptp_timestamp
*
* MIO_PTP_TIMESTAMP = Timestamp latched on MIO_PTP_CLOCK_CFG[TSTMP_EDGE] edge of MIO_PTP_CLOCK_CFG[TSTMP_IN]
*
*/
union cvmx_mio_ptp_timestamp {
uint64_t u64;
struct cvmx_mio_ptp_timestamp_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t nanosec : 64; /**< Nanoseconds */
#else
uint64_t nanosec : 64;
#endif
} s;
struct cvmx_mio_ptp_timestamp_s cn61xx;
struct cvmx_mio_ptp_timestamp_s cn63xx;
struct cvmx_mio_ptp_timestamp_s cn63xxp1;
struct cvmx_mio_ptp_timestamp_s cn66xx;
struct cvmx_mio_ptp_timestamp_s cn68xx;
struct cvmx_mio_ptp_timestamp_s cn68xxp1;
struct cvmx_mio_ptp_timestamp_s cnf71xx;
};
typedef union cvmx_mio_ptp_timestamp cvmx_mio_ptp_timestamp_t;
/**
* cvmx_mio_qlm#_cfg
*
* Notes:
* Certain QLM_SPD is valid only for certain QLM_CFG configuration, refer to HRM for valid
* combinations. These csrs are reset only on COLD_RESET. The Reset values for QLM_SPD and QLM_CFG
* are as follows: MIO_QLM0_CFG SPD=F, CFG=2 SGMII (AGX0)
* MIO_QLM1_CFG SPD=0, CFG=1 PCIE 2x1 (PEM0/PEM1)
*/
union cvmx_mio_qlmx_cfg {
uint64_t u64;
struct cvmx_mio_qlmx_cfg_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_15_63 : 49;
uint64_t prtmode : 1; /**< Port Mode, value of MIO_RST_CNTLX.PRTMODE[0]
0 = port is EP mode
1 = port is RC mode */
uint64_t reserved_12_13 : 2;
uint64_t qlm_spd : 4; /**< QLM0 speed for SGMii
0 = 5 Gbaud 100.00 MHz Ref
1 = 2.5 Gbaud 100.00 MHz Ref
2 = 2.5 Gbaud 100.00 MHz Ref
3 = 1.25 Gbaud 100.00 MHz Ref
4 = 1.25 Gbaud 156.25 MHz Ref
5 = 6.25 Gbaud 125.00 MHz Ref
6 = 5 Gbaud 125.00 MHz Ref
7 = 2.5 Gbaud 156.25 MHz Ref
8 = 3.125 Gbaud 125.00 MHz Ref
9 = 2.5 Gbaud 125.00 MHz Ref
10 = 1.25 Gbaud 125.00 MHz Ref
11 = 5 Gbaud 156.25 MHz Ref
12 = 6.25 Gbaud 156.25 MHz Ref
13 = 3.75 Gbaud 156.25 MHz Ref
14 = 3.125 Gbaud 156.25 MHz Ref
15 = QLM Disabled
QLM1 speed PEM0 PEM1
0 = 2.5/5 2.5/5 Gbaud 100.00 MHz Ref
1 = 2.5 2.5/5 Gbaud 100.00 MHz Ref
2 = 2.5/5 2.5 Gbaud 100.00 MHz Ref
3 = 2.5 2.5 Gbaud 100.00 MHz Ref
4 = 2.5/5 2.5/5 Gbaud 125.00 MHz Ref
6 = 2.5/5 2.5 Gbaud 125.00 MHz Ref
7 = 2.5 2.5 Gbaud 125.00 MHz Ref
9 = 2.5 2.5/5 Gbaud 125.00 MHz Ref
15 = QLM Disabled
5,8,10-14 are reserved */
uint64_t reserved_4_7 : 4;
uint64_t qlm_cfg : 4; /**< QLM configuration mode
For Interface 0:
00 Reserved
01 Reserved
10 SGMII (AGX0)
11 Reserved
For Interface 1:
00 PCIE 1x2 (PEM1)
01 PCIE 2x1 (PEM0/PEM1)
1x Reserved */
#else
uint64_t qlm_cfg : 4;
uint64_t reserved_4_7 : 4;
uint64_t qlm_spd : 4;
uint64_t reserved_12_13 : 2;
uint64_t prtmode : 1;
uint64_t reserved_15_63 : 49;
#endif
} s;
struct cvmx_mio_qlmx_cfg_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_15_63 : 49;
uint64_t prtmode : 1; /**< Port Mode, value of MIO_RST_CNTLX.PRTMODE[0]
0 = port is EP mode
1 = port is RC mode
For QLM2, HOST_MODE is always '0' because PCIe
is not supported. */
uint64_t reserved_12_13 : 2;
uint64_t qlm_spd : 4; /**< QLM speed for SGMii/XAUI
0 = 5 Gbaud 100.00 MHz Ref
1 = 2.5 Gbaud 100.00 MHz Ref
2 = 2.5 Gbaud 100.00 MHz Ref
3 = 1.25 Gbaud 100.00 MHz Ref
4 = 1.25 Gbaud 156.25 MHz Ref
5 = 6.25 Gbaud 125.00 MHz Ref
6 = 5 Gbaud 125.00 MHz Ref
7 = 2.5 Gbaud 156.25 MHz Ref
8 = 3.125 Gbaud 125.00 MHz Ref
9 = 2.5 Gbaud 125.00 MHz Ref
10 = 1.25 Gbaud 125.00 MHz Ref
11 = 5 Gbaud 156.25 MHz Ref
12 = 6.25 Gbaud 156.25 MHz Ref
13 = 3.75 Gbaud 156.25 MHz Ref
14 = 3.125 Gbaud 156.25 MHz Ref
15 = QLM Disabled
QLM speed PEM0 PEM1
0 = 2.5/5 2.5/5 Gbaud 100.00 MHz Ref
1 = 2.5 2.5/5 Gbaud 100.00 MHz Ref
2 = 2.5/5 2.5 Gbaud 100.00 MHz Ref
3 = 2.5 2.5 Gbaud 100.00 MHz Ref
4 = 2.5/5 2.5/5 Gbaud 125.00 MHz Ref
6 = 2.5/5 2.5 Gbaud 125.00 MHz Ref
7 = 2.5 2.5 Gbaud 125.00 MHz Ref
9 = 2.5 2.5/5 Gbaud 125.00 MHz Ref
15 = QLM Disabled
5,8,10-14 are reserved */
uint64_t reserved_2_7 : 6;
uint64_t qlm_cfg : 2; /**< QLM configuration mode
For Interface 0:
00 PCIE 1x4 (PEM0)
01 Reserved
10 SGMII (AGX1)
11 XAUI (AGX1)
For Interface 1:
00 PCIE 1x2 (PEM1)
01 PCIE 2x1 (PEM0/PEM1)
10 Reserved
11 Reserved
For Interface 2:
00 Reserved
01 Reserved
10 SGMII (AGX0)
11 XAUI (AGX0) */
#else
uint64_t qlm_cfg : 2;
uint64_t reserved_2_7 : 6;
uint64_t qlm_spd : 4;
uint64_t reserved_12_13 : 2;
uint64_t prtmode : 1;
uint64_t reserved_15_63 : 49;
#endif
} cn61xx;
struct cvmx_mio_qlmx_cfg_cn66xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_12_63 : 52;
uint64_t qlm_spd : 4; /**< QLM speed
0 = 5 Gbaud
1 = 2.5 Gbaud
2 = 2.5 Gbaud
3 = 1.25 Gbaud
4 = 1.25 Gbaud
5 = 6.25 Gbaud
6 = 5 Gbaud
7 = 2.5 Gbaud
8 = 3.125 Gbaud
9 = 2.5 Gbaud
10 = 1.25 Gbaud
11 = 5 Gbaud
12 = 6.25 Gbaud
13 = 3.75 Gbaud
14 = 3.125 Gbaud
15 = QLM Disabled */
uint64_t reserved_4_7 : 4;
uint64_t qlm_cfg : 4; /**< QLM configuration mode
0000 PCIE gen2
0001 SRIO 1x4 short
0010 PCIE gen1 only
0011 SRIO 1x4 long
0100 SRIO 2x2 short
0101 SRIO 4x1 short
0110 SRIO 2x2 long
0111 SRIO 4x1 long
1000 PCIE gen2 (alias)
1001 SGMII
1010 PCIE gen1 only (alias)
1011 XAUI
1100 RESERVED
1101 RESERVED
1110 RESERVED
1111 RESERVED
NOTE: Internal encodings differ from QLM_MODE
pins encodings */
#else
uint64_t qlm_cfg : 4;
uint64_t reserved_4_7 : 4;
uint64_t qlm_spd : 4;
uint64_t reserved_12_63 : 52;
#endif
} cn66xx;
struct cvmx_mio_qlmx_cfg_cn68xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_12_63 : 52;
uint64_t qlm_spd : 4; /**< QLM speed
0 = 5 Gbaud 100.00 MHz Ref
1 = 2.5 Gbaud 100.00 MHz Ref
2 = 2.5 Gbaud 100.00 MHz Ref
3 = 1.25 Gbaud 100.00 MHz Ref
4 = 1.25 Gbaud 156.25 MHz Ref
5 = 6.25 Gbaud 125.00 MHz Ref
6 = 5 Gbaud 125.00 MHz Ref
7 = 2.5 Gbaud 156.25 MHz Ref
8 = 3.125 Gbaud 125.00 MHz Ref
9 = 2.5 Gbaud 125.00 MHz Ref
10 = 1.25 Gbaud 125.00 MHz Ref
11 = 5 Gbaud 156.25 MHz Ref
12 = 6.25 Gbaud 156.25 MHz Ref
13 = 3.75 Gbaud 156.25 MHz Ref
14 = 3.125 Gbaud 156.25 MHz Ref
15 = QLM Disabled */
uint64_t reserved_3_7 : 5;
uint64_t qlm_cfg : 3; /**< QLM configuration mode
000 = PCIE
001 = ILK
010 = SGMII
011 = XAUI
100 = RESERVED
101 = RESERVED
110 = RESERVED
111 = RXAUI
NOTE: Internal encodings differ from QLM_MODE
pins encodings */
#else
uint64_t qlm_cfg : 3;
uint64_t reserved_3_7 : 5;
uint64_t qlm_spd : 4;
uint64_t reserved_12_63 : 52;
#endif
} cn68xx;
struct cvmx_mio_qlmx_cfg_cn68xx cn68xxp1;
struct cvmx_mio_qlmx_cfg_cn61xx cnf71xx;
};
typedef union cvmx_mio_qlmx_cfg cvmx_mio_qlmx_cfg_t;
/**
* cvmx_mio_rst_boot
*
* Notes:
* JTCSRDIS, EJTAGDIS, ROMEN reset to 1 in authentik mode; in all other modes they reset to 0.
*
*/
union cvmx_mio_rst_boot {
uint64_t u64;
struct cvmx_mio_rst_boot_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t chipkill : 1; /**< A 0->1 transition of CHIPKILL starts the CHIPKILL
timer. When CHIPKILL=1 and the timer expires,
internal chip reset is asserted forever until the
next chip reset. The CHIPKILL timer can be
stopped only by a chip (cold, warm, soft) reset.
The length of the CHIPKILL timer is specified by
MIO_RST_CKILL[TIMER]. */
uint64_t jtcsrdis : 1; /**< If JTCSRDIS=1, internal CSR access via JTAG TAP
controller is disabled */
uint64_t ejtagdis : 1; /**< If EJTAGDIS=1, external EJTAG access is disabled */
uint64_t romen : 1; /**< If ROMEN=1, Authentik/eMMC boot ROM is visible
in the boot bus address space. */
uint64_t ckill_ppdis : 1; /**< If CK_PPDIS=1, PPs other than 0 are disabled
during a CHIPKILL. Writes have no effect when
MIO_RST_BOOT[CHIPKILL]=1. */
uint64_t jt_tstmode : 1; /**< JTAG test mode */
uint64_t reserved_50_57 : 8;
uint64_t lboot_ext : 2; /**< Reserved */
uint64_t reserved_44_47 : 4;
uint64_t qlm4_spd : 4; /**< QLM4_SPD pins sampled at DCOK assertion */
uint64_t qlm3_spd : 4; /**< QLM3_SPD pins sampled at DCOK assertion */
uint64_t c_mul : 6; /**< Core clock multiplier:
C_MUL = (core clk speed) / (ref clock speed)
"ref clock speed" should always be 50MHz.
If PLL_QLM_REF_CLK_EN=0, "ref clock" comes
from PLL_REF_CLK pin.
If PLL_QLM_REF_CLK_EN=1, "ref clock" is
1/2 speed of QLMC_REF_CLK_* pins. */
uint64_t pnr_mul : 6; /**< Coprocessor clock multiplier:
PNR_MUL = (coprocessor clk speed) /
(ref clock speed)
See C_MUL comments about ref clock. */
uint64_t qlm2_spd : 4; /**< QLM2_SPD, report MIO_QLM2_CFG[SPD] */
uint64_t qlm1_spd : 4; /**< QLM1_SPD, report MIO_QLM1_CFG[SPD] */
uint64_t qlm0_spd : 4; /**< QLM0_SPD, report MIO_QLM0_CFG[SPD] */
uint64_t lboot : 10; /**< Last boot cause mask, resets only with dcok.
bit9 - Soft reset due to watchdog
bit8 - Soft reset due to CIU_SOFT_RST write
bit7 - Warm reset due to cntl0 link-down or
hot-reset
bit6 - Warm reset due to cntl1 link-down or
hot-reset
bit5 - Cntl1 reset due to PERST1_L pin
bit4 - Cntl0 reset due to PERST0_L pin
bit3 - Warm reset due to PERST1_L pin
bit2 - Warm reset due to PERST0_L pin
bit1 - Warm reset due to CHIP_RESET_L pin
bit0 - Cold reset due to DCOK pin */
uint64_t rboot : 1; /**< Determines whether core 0 remains in reset after
after chip cold/warm/soft reset. */
uint64_t rboot_pin : 1; /**< Read-only access to REMOTE_BOOT pin */
#else
uint64_t rboot_pin : 1;
uint64_t rboot : 1;
uint64_t lboot : 10;
uint64_t qlm0_spd : 4;
uint64_t qlm1_spd : 4;
uint64_t qlm2_spd : 4;
uint64_t pnr_mul : 6;
uint64_t c_mul : 6;
uint64_t qlm3_spd : 4;
uint64_t qlm4_spd : 4;
uint64_t reserved_44_47 : 4;
uint64_t lboot_ext : 2;
uint64_t reserved_50_57 : 8;
uint64_t jt_tstmode : 1;
uint64_t ckill_ppdis : 1;
uint64_t romen : 1;
uint64_t ejtagdis : 1;
uint64_t jtcsrdis : 1;
uint64_t chipkill : 1;
#endif
} s;
struct cvmx_mio_rst_boot_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t chipkill : 1; /**< A 0->1 transition of CHIPKILL starts the CHIPKILL
timer. When CHIPKILL=1 and the timer expires,
internal chip reset is asserted forever until the
next chip reset. The CHIPKILL timer can be
stopped only by a chip (cold, warm, soft) reset.
The length of the CHIPKILL timer is specified by
MIO_RST_CKILL[TIMER]. */
uint64_t jtcsrdis : 1; /**< If JTCSRDIS=1, internal CSR access via JTAG TAP
controller is disabled */
uint64_t ejtagdis : 1; /**< If EJTAGDIS=1, external EJTAG access is disabled */
uint64_t romen : 1; /**< If ROMEN=1, Authentik/eMMC boot ROM is visible
in the boot bus address space. */
uint64_t ckill_ppdis : 1; /**< If CK_PPDIS=1, PPs other than 0 are disabled
during a CHIPKILL. Writes have no effect when
MIO_RST_BOOT[CHIPKILL]=1. */
uint64_t jt_tstmode : 1; /**< JTAG test mode */
uint64_t reserved_50_57 : 8;
uint64_t lboot_ext : 2; /**< Reserved */
uint64_t reserved_36_47 : 12;
uint64_t c_mul : 6; /**< Core clock multiplier:
C_MUL = (core clk speed) / (ref clock speed)
"ref clock speed" should always be 50MHz.
If PLL_QLM_REF_CLK_EN=0, "ref clock" comes
from PLL_REF_CLK pin.
If PLL_QLM_REF_CLK_EN=1, "ref clock" is
1/2 speed of QLMC_REF_CLK_* pins. */
uint64_t pnr_mul : 6; /**< Coprocessor clock multiplier:
PNR_MUL = (coprocessor clk speed) /
(ref clock speed)
See C_MUL comments about ref clock. */
uint64_t qlm2_spd : 4; /**< QLM2_SPD, report MIO_QLM2_CFG[SPD] */
uint64_t qlm1_spd : 4; /**< QLM1_SPD, report MIO_QLM1_CFG[SPD] */
uint64_t qlm0_spd : 4; /**< QLM0_SPD, report MIO_QLM0_CFG[SPD] */
uint64_t lboot : 10; /**< Last boot cause mask, resets only with dcok.
bit9 - Soft reset due to watchdog
bit8 - Soft reset due to CIU_SOFT_RST write
bit7 - Warm reset due to cntl0 link-down or
hot-reset
bit6 - Warm reset due to cntl1 link-down or
hot-reset
bit5 - Cntl1 reset due to PERST1_L pin
bit4 - Cntl0 reset due to PERST0_L pin
bit3 - Warm reset due to PERST1_L pin
bit2 - Warm reset due to PERST0_L pin
bit1 - Warm reset due to CHIP_RESET_L pin
bit0 - Cold reset due to DCOK pin */
uint64_t rboot : 1; /**< Determines whether core 0 remains in reset after
after chip cold/warm/soft reset. */
uint64_t rboot_pin : 1; /**< Read-only access to REMOTE_BOOT pin */
#else
uint64_t rboot_pin : 1;
uint64_t rboot : 1;
uint64_t lboot : 10;
uint64_t qlm0_spd : 4;
uint64_t qlm1_spd : 4;
uint64_t qlm2_spd : 4;
uint64_t pnr_mul : 6;
uint64_t c_mul : 6;
uint64_t reserved_36_47 : 12;
uint64_t lboot_ext : 2;
uint64_t reserved_50_57 : 8;
uint64_t jt_tstmode : 1;
uint64_t ckill_ppdis : 1;
uint64_t romen : 1;
uint64_t ejtagdis : 1;
uint64_t jtcsrdis : 1;
uint64_t chipkill : 1;
#endif
} cn61xx;
struct cvmx_mio_rst_boot_cn63xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_36_63 : 28;
uint64_t c_mul : 6; /**< Core clock multiplier:
C_MUL = (core clk speed) / (ref clock speed)
"ref clock speed" should always be 50MHz.
If PLL_QLM_REF_CLK_EN=0, "ref clock" comes
from PLL_REF_CLK pin.
If PLL_QLM_REF_CLK_EN=1, "ref clock" is
1/2 speed of QLMC_REF_CLK_* pins. */
uint64_t pnr_mul : 6; /**< Coprocessor clock multiplier:
PNR_MUL = (coprocessor clk speed) /
(ref clock speed)
See C_MUL comments about ref clock. */
uint64_t qlm2_spd : 4; /**< QLM2_SPD pins sampled at DCOK assertion */
uint64_t qlm1_spd : 4; /**< QLM1_SPD pins sampled at DCOK assertion */
uint64_t qlm0_spd : 4; /**< QLM0_SPD pins sampled at DCOK assertion */
uint64_t lboot : 10; /**< Last boot cause mask, resets only with dock.
bit9 - Soft reset due to watchdog
bit8 - Soft reset due to CIU_SOFT_RST write
bit7 - Warm reset due to cntl0 link-down or
hot-reset
bit6 - Warm reset due to cntl1 link-down or
hot-reset
bit5 - Cntl1 reset due to PERST1_L pin
bit4 - Cntl0 reset due to PERST0_L pin
bit3 - Warm reset due to PERST1_L pin
bit2 - Warm reset due to PERST0_L pin
bit1 - Warm reset due to CHIP_RESET_L pin
bit0 - Cold reset due to DCOK pin */
uint64_t rboot : 1; /**< Determines whether core 0 remains in reset after
after chip cold/warm/soft reset. */
uint64_t rboot_pin : 1; /**< Read-only access to REMOTE_BOOT pin */
#else
uint64_t rboot_pin : 1;
uint64_t rboot : 1;
uint64_t lboot : 10;
uint64_t qlm0_spd : 4;
uint64_t qlm1_spd : 4;
uint64_t qlm2_spd : 4;
uint64_t pnr_mul : 6;
uint64_t c_mul : 6;
uint64_t reserved_36_63 : 28;
#endif
} cn63xx;
struct cvmx_mio_rst_boot_cn63xx cn63xxp1;
struct cvmx_mio_rst_boot_cn66xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t chipkill : 1; /**< A 0->1 transition of CHIPKILL starts the CHIPKILL
timer. When CHIPKILL=1 and the timer expires,
internal chip reset is asserted forever until the
next chip reset. The CHIPKILL timer can be
stopped only by a chip (cold, warm, soft) reset.
The length of the CHIPKILL timer is specified by
MIO_RST_CKILL[TIMER]. */
uint64_t jtcsrdis : 1; /**< If JTCSRDIS=1, internal CSR access via JTAG TAP
controller is disabled */
uint64_t ejtagdis : 1; /**< If EJTAGDIS=1, external EJTAG access is disabled */
uint64_t romen : 1; /**< If ROMEN=1, Authentik ROM is visible in the boot
bus address space. */
uint64_t ckill_ppdis : 1; /**< If CK_PPDIS=1, PPs other than 0 are disabled
during a CHIPKILL. Writes have no effect when
MIO_RST_BOOT[CHIPKILL]=1. */
uint64_t reserved_50_58 : 9;
uint64_t lboot_ext : 2; /**< Extended Last boot cause mask, resets only with
dock.
bit1 - Warm reset due to cntl3 link-down or
hot-reset
bit0 - Warm reset due to cntl2 link-down or
hot-reset */
uint64_t reserved_36_47 : 12;
uint64_t c_mul : 6; /**< Core clock multiplier:
C_MUL = (core clk speed) / (ref clock speed)
"ref clock speed" should always be 50MHz.
If PLL_QLM_REF_CLK_EN=0, "ref clock" comes
from PLL_REF_CLK pin.
If PLL_QLM_REF_CLK_EN=1, "ref clock" is
1/2 speed of QLMC_REF_CLK_* pins. */
uint64_t pnr_mul : 6; /**< Coprocessor clock multiplier:
PNR_MUL = (coprocessor clk speed) /
(ref clock speed)
See C_MUL comments about ref clock. */
uint64_t qlm2_spd : 4; /**< QLM2_SPD pins sampled at DCOK assertion */
uint64_t qlm1_spd : 4; /**< QLM1_SPD pins sampled at DCOK assertion */
uint64_t qlm0_spd : 4; /**< QLM0_SPD pins sampled at DCOK assertion */
uint64_t lboot : 10; /**< Last boot cause mask, resets only with dock.
bit9 - Soft reset due to watchdog
bit8 - Soft reset due to CIU_SOFT_RST write
bit7 - Warm reset due to cntl0 link-down or
hot-reset
bit6 - Warm reset due to cntl1 link-down or
hot-reset
bit5 - Cntl1 reset due to PERST1_L pin
bit4 - Cntl0 reset due to PERST0_L pin
bit3 - Warm reset due to PERST1_L pin
bit2 - Warm reset due to PERST0_L pin
bit1 - Warm reset due to CHIP_RESET_L pin
bit0 - Cold reset due to DCOK pin */
uint64_t rboot : 1; /**< Determines whether core 0 remains in reset after
after chip cold/warm/soft reset. */
uint64_t rboot_pin : 1; /**< Read-only access to REMOTE_BOOT pin */
#else
uint64_t rboot_pin : 1;
uint64_t rboot : 1;
uint64_t lboot : 10;
uint64_t qlm0_spd : 4;
uint64_t qlm1_spd : 4;
uint64_t qlm2_spd : 4;
uint64_t pnr_mul : 6;
uint64_t c_mul : 6;
uint64_t reserved_36_47 : 12;
uint64_t lboot_ext : 2;
uint64_t reserved_50_58 : 9;
uint64_t ckill_ppdis : 1;
uint64_t romen : 1;
uint64_t ejtagdis : 1;
uint64_t jtcsrdis : 1;
uint64_t chipkill : 1;
#endif
} cn66xx;
struct cvmx_mio_rst_boot_cn68xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_59_63 : 5;
uint64_t jt_tstmode : 1; /**< JTAG test mode */
uint64_t reserved_44_57 : 14;
uint64_t qlm4_spd : 4; /**< QLM4_SPD pins sampled at DCOK assertion */
uint64_t qlm3_spd : 4; /**< QLM3_SPD pins sampled at DCOK assertion */
uint64_t c_mul : 6; /**< Core clock multiplier:
C_MUL = (core clk speed) / (ref clock speed)
"ref clock" is PLL_REF_CLK pin, which should
always be 50 MHz. */
uint64_t pnr_mul : 6; /**< Coprocessor clock multiplier:
PNR_MUL = (coprocessor clk speed)
(ref clock speed)
See C_MUL comments about ref clock. */
uint64_t qlm2_spd : 4; /**< QLM2_SPD pins sampled at DCOK assertion */
uint64_t qlm1_spd : 4; /**< QLM1_SPD pins sampled at DCOK assertion */
uint64_t qlm0_spd : 4; /**< QLM0_SPD pins sampled at DCOK assertion */
uint64_t lboot : 10; /**< Last boot cause mask, resets only with dock.
bit9 - Soft reset due to watchdog
bit8 - Soft reset due to CIU_SOFT_RST write
bit7 - Warm reset due to cntl0 link-down or
hot-reset
bit6 - Warm reset due to cntl1 link-down or
hot-reset
bit5 - Cntl1 reset due to PERST1_L pin
bit4 - Cntl0 reset due to PERST0_L pin
bit3 - Warm reset due to PERST1_L pin
bit2 - Warm reset due to PERST0_L pin
bit1 - Warm reset due to CHIP_RESET_L pin
bit0 - Cold reset due to DCOK pin */
uint64_t rboot : 1; /**< Determines whether core 0 remains in reset after
after chip cold/warm/soft reset. */
uint64_t rboot_pin : 1; /**< Read-only access to REMOTE_BOOT pin */
#else
uint64_t rboot_pin : 1;
uint64_t rboot : 1;
uint64_t lboot : 10;
uint64_t qlm0_spd : 4;
uint64_t qlm1_spd : 4;
uint64_t qlm2_spd : 4;
uint64_t pnr_mul : 6;
uint64_t c_mul : 6;
uint64_t qlm3_spd : 4;
uint64_t qlm4_spd : 4;
uint64_t reserved_44_57 : 14;
uint64_t jt_tstmode : 1;
uint64_t reserved_59_63 : 5;
#endif
} cn68xx;
struct cvmx_mio_rst_boot_cn68xxp1 {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_44_63 : 20;
uint64_t qlm4_spd : 4; /**< QLM4_SPD pins sampled at DCOK assertion */
uint64_t qlm3_spd : 4; /**< QLM3_SPD pins sampled at DCOK assertion */
uint64_t c_mul : 6; /**< Core clock multiplier:
C_MUL = (core clk speed) / (ref clock speed)
"ref clock" is PLL_REF_CLK pin, which should
always be 50 MHz. */
uint64_t pnr_mul : 6; /**< Coprocessor clock multiplier:
PNR_MUL = (coprocessor clk speed)
(ref clock speed)
See C_MUL comments about ref clock. */
uint64_t qlm2_spd : 4; /**< QLM2_SPD pins sampled at DCOK assertion */
uint64_t qlm1_spd : 4; /**< QLM1_SPD pins sampled at DCOK assertion */
uint64_t qlm0_spd : 4; /**< QLM0_SPD pins sampled at DCOK assertion */
uint64_t lboot : 10; /**< Last boot cause mask, resets only with dock.
bit9 - Soft reset due to watchdog
bit8 - Soft reset due to CIU_SOFT_RST write
bit7 - Warm reset due to cntl0 link-down or
hot-reset
bit6 - Warm reset due to cntl1 link-down or
hot-reset
bit5 - Cntl1 reset due to PERST1_L pin
bit4 - Cntl0 reset due to PERST0_L pin
bit3 - Warm reset due to PERST1_L pin
bit2 - Warm reset due to PERST0_L pin
bit1 - Warm reset due to CHIP_RESET_L pin
bit0 - Cold reset due to DCOK pin */
uint64_t rboot : 1; /**< Determines whether core 0 remains in reset after
after chip cold/warm/soft reset. */
uint64_t rboot_pin : 1; /**< Read-only access to REMOTE_BOOT pin */
#else
uint64_t rboot_pin : 1;
uint64_t rboot : 1;
uint64_t lboot : 10;
uint64_t qlm0_spd : 4;
uint64_t qlm1_spd : 4;
uint64_t qlm2_spd : 4;
uint64_t pnr_mul : 6;
uint64_t c_mul : 6;
uint64_t qlm3_spd : 4;
uint64_t qlm4_spd : 4;
uint64_t reserved_44_63 : 20;
#endif
} cn68xxp1;
struct cvmx_mio_rst_boot_cn61xx cnf71xx;
};
typedef union cvmx_mio_rst_boot cvmx_mio_rst_boot_t;
/**
* cvmx_mio_rst_cfg
*
* Notes:
* Cold reset will always performs a full bist.
*
*/
union cvmx_mio_rst_cfg {
uint64_t u64;
struct cvmx_mio_rst_cfg_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_3_63 : 61;
uint64_t cntl_clr_bist : 1; /**< Peform clear bist during cntl only reset,
instead of a full bist. A warm/soft reset will
not change this field. */
uint64_t warm_clr_bist : 1; /**< Peform clear bist during warm reset, instead
of a full bist. A warm/soft reset will not
change this field. */
uint64_t soft_clr_bist : 1; /**< Peform clear bist during soft reset, instead
of a full bist. A warm/soft reset will not
change this field. */
#else
uint64_t soft_clr_bist : 1;
uint64_t warm_clr_bist : 1;
uint64_t cntl_clr_bist : 1;
uint64_t reserved_3_63 : 61;
#endif
} s;
struct cvmx_mio_rst_cfg_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t bist_delay : 58; /**< Reserved */
uint64_t reserved_3_5 : 3;
uint64_t cntl_clr_bist : 1; /**< Peform clear bist during cntl only reset,
instead of a full bist. A warm/soft reset will
not change this field. */
uint64_t warm_clr_bist : 1; /**< Peform clear bist during warm reset, instead
of a full bist. A warm/soft reset will not
change this field. */
uint64_t soft_clr_bist : 1; /**< Peform clear bist during soft reset, instead
of a full bist. A warm/soft reset will not
change this field. */
#else
uint64_t soft_clr_bist : 1;
uint64_t warm_clr_bist : 1;
uint64_t cntl_clr_bist : 1;
uint64_t reserved_3_5 : 3;
uint64_t bist_delay : 58;
#endif
} cn61xx;
struct cvmx_mio_rst_cfg_cn61xx cn63xx;
struct cvmx_mio_rst_cfg_cn63xxp1 {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t bist_delay : 58; /**< Reserved */
uint64_t reserved_2_5 : 4;
uint64_t warm_clr_bist : 1; /**< Peform clear bist during warm reset, instead
of a full bist. A warm/soft reset will not
change this field. */
uint64_t soft_clr_bist : 1; /**< Peform clear bist during soft reset, instead
of a full bist. A warm/soft reset will not
change this field. */
#else
uint64_t soft_clr_bist : 1;
uint64_t warm_clr_bist : 1;
uint64_t reserved_2_5 : 4;
uint64_t bist_delay : 58;
#endif
} cn63xxp1;
struct cvmx_mio_rst_cfg_cn61xx cn66xx;
struct cvmx_mio_rst_cfg_cn68xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t bist_delay : 56; /**< Reserved */
uint64_t reserved_3_7 : 5;
uint64_t cntl_clr_bist : 1; /**< Peform clear bist during cntl only reset,
instead of a full bist. A warm/soft reset will
not change this field. */
uint64_t warm_clr_bist : 1; /**< Peform clear bist during warm reset, instead
of a full bist. A warm/soft reset will not
change this field. */
uint64_t soft_clr_bist : 1; /**< Peform clear bist during soft reset, instead
of a full bist. A warm/soft reset will not
change this field. */
#else
uint64_t soft_clr_bist : 1;
uint64_t warm_clr_bist : 1;
uint64_t cntl_clr_bist : 1;
uint64_t reserved_3_7 : 5;
uint64_t bist_delay : 56;
#endif
} cn68xx;
struct cvmx_mio_rst_cfg_cn68xx cn68xxp1;
struct cvmx_mio_rst_cfg_cn61xx cnf71xx;
};
typedef union cvmx_mio_rst_cfg cvmx_mio_rst_cfg_t;
/**
* cvmx_mio_rst_ckill
*
* MIO_RST_CKILL = MIO Chipkill Timer Register
*
*/
union cvmx_mio_rst_ckill {
uint64_t u64;
struct cvmx_mio_rst_ckill_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_47_63 : 17;
uint64_t timer : 47; /**< CHIPKILL timer measured in SCLKs. Reads return
the current CHIPKILL timer. Writes have no
effect when MIO_RST_BOOT[CHIPKILL]=1. */
#else
uint64_t timer : 47;
uint64_t reserved_47_63 : 17;
#endif
} s;
struct cvmx_mio_rst_ckill_s cn61xx;
struct cvmx_mio_rst_ckill_s cn66xx;
struct cvmx_mio_rst_ckill_s cnf71xx;
};
typedef union cvmx_mio_rst_ckill cvmx_mio_rst_ckill_t;
/**
* cvmx_mio_rst_cntl#
*
* Notes:
* GEN1_Only mode is enabled for PEM0 when QLM1_SPD[0] is set or when sclk < 550Mhz.
* GEN1_Only mode is enabled for PEM1 when QLM1_SPD[1] is set or when sclk < 550Mhz.
*/
union cvmx_mio_rst_cntlx {
uint64_t u64;
struct cvmx_mio_rst_cntlx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_13_63 : 51;
uint64_t in_rev_ln : 1; /**< RO access to corresponding pin PCIE*_REV_LANES
which is used for initial value for REV_LANES
For INT0/CNTL0: pin PCIE0_REV_LANES
For INT1/CNTL1: always zero as no PCIE1 pin */
uint64_t rev_lanes : 1; /**< Reverse the lanes for INT*.
A warm/soft reset will not change this field.
On cold reset, this field is initialized to
IN_REVLANE value.
When QLM1_CFG=1, INT0(PEM0) REV_LANES internal
setting will be always forced to '0', INT1(PEM1)
will be forced to '1' regardless CSR value. */
uint64_t gen1_only : 1; /**< Disable PCIE GEN2 Capability. This bit is
always unpredictable whenever the controller
is not attached to any SerDes lanes, and is
otherwise always set when SCLK is slower than
550Mhz.
The MIO_RST_CNTL*[GEN1_ONLY] value is based on
the MIO_QLM1_CFG[QLM_SPD] value. */
uint64_t prst_link : 1; /**< Controls whether corresponding controller
link-down or hot-reset causes the assertion of
CIU_SOFT_PRST*[SOFT_PRST]
A warm/soft reset will not change this field.
On cold reset, this field is initialized to 0 */
uint64_t rst_done : 1; /**< Read-only access to controller reset status
RESET_DONE is always zero (i.e. the controller
is held in reset) when:
- CIU_SOFT_PRST*[SOFT_PRST]=1, or
- RST_RCV==1 and PERST*_L pin is asserted */
uint64_t rst_link : 1; /**< Controls whether corresponding controller
link-down or hot-reset causes a warm chip reset
On cold reset, this field is initialized as
follows:
0 = when corresponding HOST_MODE=1
1 = when corresponding HOST_MODE=0
Note that a link-down or hot-reset event can
never cause a warm chip reset when the
controller is in reset (i.e. can never cause a
warm reset when RST_DONE==0). */
uint64_t host_mode : 1; /**< RO access to corresponding strap PCIE*_HOST_MODE
For CNTL1/INT1, HOST_MODE is always '1' because
there is no PCIE1_HOST_MODE pin. */
uint64_t prtmode : 2; /**< Port mode
0 = port is EP mode
1 = port is RC mode
2,3 = Reserved
A warm/soft reset will not change this field.
On cold reset, this field is initialized as
HOST_MODE (corresponding strap PCIE*_HOST_MODE) */
uint64_t rst_drv : 1; /**< Controls whether corresponding PERST*_L chip pin
is driven by the OCTEON. A warm/soft reset
will not change this field. On cold reset,
this field is initialized as follows:
0 = when corresponding HOST_MODE=0
1 = when corresponding HOST_MODE=1
When set, OCTEON drives the corresponding
PERST*_L pin. Otherwise, OCTEON does not drive
the corresponding PERST*_L pin. */
uint64_t rst_rcv : 1; /**< Controls whether corresponding PERST*_L chip pin
is recieved by OCTEON. A warm/soft reset
will not change this field. On cold reset,
this field is initialized as follows:
0 = when corresponding HOST_MODE=1
1 = when corresponding HOST_MODE=0
When RST_RCV==1, the PERST*_L value is
received and may be used to reset the
controller and (optionally, based on RST_CHIP)
warm reset the chip.
When RST_RCV==1 (and RST_CHIP=0),
MIO_RST_INT[PERST*] gets set when the PERST*_L
pin asserts. (This interrupt can alert SW
whenever the external reset pin initiates a
controller reset sequence.)
RST_VAL gives the PERST*_L pin value when
RST_RCV==1.
When RST_RCV==0, the PERST*_L pin value is
ignored. */
uint64_t rst_chip : 1; /**< Controls whether corresponding PERST*_L chip
pin causes a chip warm reset like CHIP_RESET_L.
A warm/soft reset will not change this field.
On cold reset, this field is initialized to 0.
RST_CHIP is not used when RST_RCV==0.
When RST_RCV==0, RST_CHIP is ignored.
When RST_RCV==1, RST_CHIP==1, and PERST*_L
asserts, a chip warm reset will be generated. */
uint64_t rst_val : 1; /**< Read-only access to corresponding PERST*_L pin
Unpredictable when RST_RCV==0. Reads as 1 when
RST_RCV==1 and the PERST*_L pin is asserted.
Reads as 0 when RST_RCV==1 and the PERST*_L
pin is not asserted. */
#else
uint64_t rst_val : 1;
uint64_t rst_chip : 1;
uint64_t rst_rcv : 1;
uint64_t rst_drv : 1;
uint64_t prtmode : 2;
uint64_t host_mode : 1;
uint64_t rst_link : 1;
uint64_t rst_done : 1;
uint64_t prst_link : 1;
uint64_t gen1_only : 1;
uint64_t rev_lanes : 1;
uint64_t in_rev_ln : 1;
uint64_t reserved_13_63 : 51;
#endif
} s;
struct cvmx_mio_rst_cntlx_s cn61xx;
struct cvmx_mio_rst_cntlx_cn66xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_10_63 : 54;
uint64_t prst_link : 1; /**< Controls whether corresponding controller
link-down or hot-reset causes the assertion of
CIU_SOFT_PRST*[SOFT_PRST]
A warm/soft reset will not change this field.
On cold reset, this field is initialized to 0 */
uint64_t rst_done : 1; /**< Read-only access to controller reset status
RESET_DONE is always zero (i.e. the controller
is held in reset) when:
- CIU_SOFT_PRST*[SOFT_PRST]=1, or
- RST_RCV==1 and PERST*_L pin is asserted */
uint64_t rst_link : 1; /**< Controls whether corresponding controller
link-down or hot-reset causes a warm chip reset
On cold reset, this field is initialized as
follows:
0 = when corresponding strap QLM*_HOST_MODE=1
1 = when corresponding strap QLM*_HOST_MODE=0
For MIO_RST_CNTL2 and MIO_RST_CNTL3, this field
is initialized to 1 on cold reset.
Note that a link-down or hot-reset event can
never cause a warm chip reset when the
controller is in reset (i.e. can never cause a
warm reset when RST_DONE==0). */
uint64_t host_mode : 1; /**< RO access to corresponding strap QLM*_HOST_MODE
For MIO_RST_CNTL2 and MIO_RST_CNTL3, this field
is reserved/RAZ.
QLM0_HOST_MODE corresponds to PCIe0/sRIO0
QLM1_HOST_MODE corresponds to PCIe1/sRIO1 */
uint64_t prtmode : 2; /**< Port mode
0 = port is EP mode
1 = port is RC mode
2,3 = Reserved
A warm/soft reset will not change this field.
On cold reset, this field is initialized as
follows:
0 = when corresponding strap QLM*_HOST_MODE=0
1 = when corresponding strap QLM*_HOST_MODE=1
For MIO_RST_CNTL2 and MIO_RST_CNTL3, this field
is initialized to 0 on cold reset. */
uint64_t rst_drv : 1; /**< Controls whether corresponding PERST*_L chip pin
is driven by the OCTEON. A warm/soft reset
will not change this field. On cold reset,
this field is initialized as follows:
0 = when corresponding strap QLM*_HOST_MODE=0
1 = when corresponding strap QLM*_HOST_MODE=1
When set, OCTEON drives the corresponding
PERST*_L pin. Otherwise, OCTEON does not drive
the corresponding PERST*_L pin.
For MIO_RST_CNTL2 and MIO_RST_CNTL3, this field
is reserved/RAZ. */
uint64_t rst_rcv : 1; /**< Controls whether corresponding PERST*_L chip pin
is recieved by OCTEON. A warm/soft reset
will not change this field. On cold reset,
this field is initialized as follows:
0 = when corresponding strap QLM*_HOST_MODE=1
1 = when corresponding strap QLM*_HOST_MODE=0
When RST_RCV==1, the PERST*_L value is
received and may be used to reset the
controller and (optionally, based on RST_CHIP)
warm reset the chip.
When RST_RCV==1 (and RST_CHIP=0),
MIO_RST_INT[PERST*] gets set when the PERST*_L
pin asserts. (This interrupt can alert SW
whenever the external reset pin initiates a
controller reset sequence.)
RST_VAL gives the PERST*_L pin value when
RST_RCV==1.
When RST_RCV==0, the PERST*_L pin value is
ignored.
For MIO_RST_CNTL2 and MIO_RST_CNTL3, this field
is reserved/RAZ. */
uint64_t rst_chip : 1; /**< Controls whether corresponding PERST*_L chip
pin causes a chip warm reset like CHIP_RESET_L.
A warm/soft reset will not change this field.
On cold reset, this field is initialized to 0.
RST_CHIP is not used when RST_RCV==0.
When RST_RCV==0, RST_CHIP is ignored.
When RST_RCV==1, RST_CHIP==1, and PERST*_L
asserts, a chip warm reset will be generated.
For MIO_RST_CNTL2 and MIO_RST_CNTL3, this field
is reserved/RAZ. */
uint64_t rst_val : 1; /**< Read-only access to corresponding PERST*_L pin
Unpredictable when RST_RCV==0. Reads as 1 when
RST_RCV==1 and the PERST*_L pin is asserted.
Reads as 0 when RST_RCV==1 and the PERST*_L
pin is not asserted.
For MIO_RST_CNTL2 and MIO_RST_CNTL3, this field
is reserved/RAZ. */
#else
uint64_t rst_val : 1;
uint64_t rst_chip : 1;
uint64_t rst_rcv : 1;
uint64_t rst_drv : 1;
uint64_t prtmode : 2;
uint64_t host_mode : 1;
uint64_t rst_link : 1;
uint64_t rst_done : 1;
uint64_t prst_link : 1;
uint64_t reserved_10_63 : 54;
#endif
} cn66xx;
struct cvmx_mio_rst_cntlx_cn66xx cn68xx;
struct cvmx_mio_rst_cntlx_s cnf71xx;
};
typedef union cvmx_mio_rst_cntlx cvmx_mio_rst_cntlx_t;
/**
* cvmx_mio_rst_ctl#
*
* Notes:
* GEN1_Only mode is enabled for PEM0 when QLM1_SPD[0] is set or when sclk < 550Mhz.
* GEN1_Only mode is enabled for PEM1 when QLM1_SPD[1] is set or when sclk < 550Mhz.
*/
union cvmx_mio_rst_ctlx {
uint64_t u64;
struct cvmx_mio_rst_ctlx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_13_63 : 51;
uint64_t in_rev_ln : 1; /**< RO access to corresponding pin PCIE*_REV_LANES
which is used for initial value for REV_LANES
For INT0/CNTL0: pin PCIE0_REV_LANES
For INT1/CNTL1: always zero as no PCIE1 pin */
uint64_t rev_lanes : 1; /**< Reverse the lanes for INT*.
A warm/soft reset will not change this field.
On cold reset, this field is initialized to
IN_REVLANE value.
When QLM1_CFG=1, INT0(PEM0) REV_LANES internal
setting will be always forced to '0', INT1(PEM1)
will be forced to '1' regardless CSR value. */
uint64_t gen1_only : 1; /**< Disable PCIE GEN2 Capability. This bit is
always unpredictable whenever the controller
is not attached to any SerDes lanes, and is
otherwise always set when SCLK is slower than
550Mhz.
The MIO_RST_CNTL*[GEN1_ONLY] value is based on
the MIO_QLM1_CFG[QLM_SPD] value. */
uint64_t prst_link : 1; /**< Controls whether corresponding controller
link-down or hot-reset causes the assertion of
CIU_SOFT_PRST*[SOFT_PRST]
A warm/soft reset will not change this field.
On cold reset, this field is initialized to 0 */
uint64_t rst_done : 1; /**< Read-only access to controller reset status
RESET_DONE is always zero (i.e. the controller
is held in reset) when:
- CIU_SOFT_PRST*[SOFT_PRST]=1, or
- RST_RCV==1 and PERST*_L pin is asserted */
uint64_t rst_link : 1; /**< Controls whether corresponding controller
link-down or hot-reset causes a warm chip reset
On cold reset, this field is initialized as
follows:
0 = when corresponding HOST_MODE=1
1 = when corresponding HOST_MODE=0
Note that a link-down or hot-reset event can
never cause a warm chip reset when the
controller is in reset (i.e. can never cause a
warm reset when RST_DONE==0). */
uint64_t host_mode : 1; /**< RO access to corresponding strap PCIE*_HOST_MODE
For CNTL1/INT1, HOST_MODE is always '1' because
there is no PCIE1_HOST_MODE pin. */
uint64_t prtmode : 2; /**< Port mode
0 = port is EP mode
1 = port is RC mode
2,3 = Reserved
A warm/soft reset will not change this field.
On cold reset, this field is initialized as
HOST_MODE (corresponding strap PCIE*_HOST_MODE) */
uint64_t rst_drv : 1; /**< Controls whether corresponding PERST*_L chip pin
is driven by the OCTEON. A warm/soft reset
will not change this field. On cold reset,
this field is initialized as follows:
0 = when corresponding HOST_MODE=0
1 = when corresponding HOST_MODE=1
When set, OCTEON drives the corresponding
PERST*_L pin. Otherwise, OCTEON does not drive
the corresponding PERST*_L pin. */
uint64_t rst_rcv : 1; /**< Controls whether corresponding PERST*_L chip pin
is recieved by OCTEON. A warm/soft reset
will not change this field. On cold reset,
this field is initialized as follows:
0 = when corresponding HOST_MODE=1
1 = when corresponding HOST_MODE=0
When RST_RCV==1, the PERST*_L value is
received and may be used to reset the
controller and (optionally, based on RST_CHIP)
warm reset the chip.
When RST_RCV==1 (and RST_CHIP=0),
MIO_RST_INT[PERST*] gets set when the PERST*_L
pin asserts. (This interrupt can alert SW
whenever the external reset pin initiates a
controller reset sequence.)
RST_VAL gives the PERST*_L pin value when
RST_RCV==1.
When RST_RCV==0, the PERST*_L pin value is
ignored. */
uint64_t rst_chip : 1; /**< Controls whether corresponding PERST*_L chip
pin causes a chip warm reset like CHIP_RESET_L.
A warm/soft reset will not change this field.
On cold reset, this field is initialized to 0.
RST_CHIP is not used when RST_RCV==0.
When RST_RCV==0, RST_CHIP is ignored.
When RST_RCV==1, RST_CHIP==1, and PERST*_L
asserts, a chip warm reset will be generated. */
uint64_t rst_val : 1; /**< Read-only access to corresponding PERST*_L pin
Unpredictable when RST_RCV==0. Reads as 1 when
RST_RCV==1 and the PERST*_L pin is asserted.
Reads as 0 when RST_RCV==1 and the PERST*_L
pin is not asserted. */
#else
uint64_t rst_val : 1;
uint64_t rst_chip : 1;
uint64_t rst_rcv : 1;
uint64_t rst_drv : 1;
uint64_t prtmode : 2;
uint64_t host_mode : 1;
uint64_t rst_link : 1;
uint64_t rst_done : 1;
uint64_t prst_link : 1;
uint64_t gen1_only : 1;
uint64_t rev_lanes : 1;
uint64_t in_rev_ln : 1;
uint64_t reserved_13_63 : 51;
#endif
} s;
struct cvmx_mio_rst_ctlx_s cn61xx;
struct cvmx_mio_rst_ctlx_cn63xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_10_63 : 54;
uint64_t prst_link : 1; /**< Controls whether corresponding controller
link-down or hot-reset causes the assertion of
CIU_SOFT_PRST*[SOFT_PRST]
A warm/soft reset will not change this field.
On cold reset, this field is initialized to 0
***NOTE: Added in pass 2.0 */
uint64_t rst_done : 1; /**< Read-only access to controller reset status
RESET_DONE is always zero (i.e. the controller
is held in reset) when:
- CIU_SOFT_PRST*[SOFT_PRST]=1, or
- RST_RCV==1 and PERST*_L pin is asserted */
uint64_t rst_link : 1; /**< Controls whether corresponding controller
link-down or hot-reset causes a warm chip reset
On cold reset, this field is initialized as
follows:
0 = when corresponding strap QLM*_HOST_MODE=1
1 = when corresponding strap QLM*_HOST_MODE=0
Note that a link-down or hot-reset event can
never cause a warm chip reset when the
controller is in reset (i.e. can never cause a
warm reset when RST_DONE==0). */
uint64_t host_mode : 1; /**< RO access to corresponding strap QLM*_HOST_MODE */
uint64_t prtmode : 2; /**< Port mode
0 = port is EP mode
1 = port is RC mode
2,3 = Reserved
A warm/soft reset will not change this field.
On cold reset, this field is initialized as
follows:
0 = when corresponding strap QLM*_HOST_MODE=0
1 = when corresponding strap QLM*_HOST_MODE=1 */
uint64_t rst_drv : 1; /**< Controls whether corresponding PERST*_L chip pin
is driven by the OCTEON. A warm/soft reset
will not change this field. On cold reset,
this field is initialized as follows:
0 = when corresponding strap QLM*_HOST_MODE=0
1 = when corresponding strap QLM*_HOST_MODE=1
When set, OCTEON drives the corresponding
PERST*_L pin. Otherwise, OCTEON does not drive
the corresponding PERST*_L pin. */
uint64_t rst_rcv : 1; /**< Controls whether corresponding PERST*_L chip pin
is recieved by OCTEON. A warm/soft reset
will not change this field. On cold reset,
this field is initialized as follows:
0 = when corresponding strap QLM*_HOST_MODE=1
1 = when corresponding strap QLM*_HOST_MODE=0
When RST_RCV==1, the PERST*_L value is
received and may be used to reset the
controller and (optionally, based on RST_CHIP)
warm reset the chip.
When RST_RCV==1 (and RST_CHIP=0),
MIO_RST_INT[PERST*] gets set when the PERST*_L
pin asserts. (This interrupt can alert SW
whenever the external reset pin initiates a
controller reset sequence.)
RST_VAL gives the PERST*_L pin value when
RST_RCV==1.
When RST_RCV==0, the PERST*_L pin value is
ignored. */
uint64_t rst_chip : 1; /**< Controls whether corresponding PERST*_L chip
pin causes a chip warm reset like CHIP_RESET_L.
A warm/soft reset will not change this field.
On cold reset, this field is initialized to 0.
RST_CHIP is not used when RST_RCV==0.
When RST_RCV==0, RST_CHIP is ignored.
When RST_RCV==1, RST_CHIP==1, and PERST*_L
asserts, a chip warm reset will be generated. */
uint64_t rst_val : 1; /**< Read-only access to corresponding PERST*_L pin
Unpredictable when RST_RCV==0. Reads as 1 when
RST_RCV==1 and the PERST*_L pin is asserted.
Reads as 0 when RST_RCV==1 and the PERST*_L
pin is not asserted. */
#else
uint64_t rst_val : 1;
uint64_t rst_chip : 1;
uint64_t rst_rcv : 1;
uint64_t rst_drv : 1;
uint64_t prtmode : 2;
uint64_t host_mode : 1;
uint64_t rst_link : 1;
uint64_t rst_done : 1;
uint64_t prst_link : 1;
uint64_t reserved_10_63 : 54;
#endif
} cn63xx;
struct cvmx_mio_rst_ctlx_cn63xxp1 {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_9_63 : 55;
uint64_t rst_done : 1; /**< Read-only access to controller reset status
RESET_DONE is always zero (i.e. the controller
is held in reset) when:
- CIU_SOFT_PRST*[SOFT_PRST]=1, or
- RST_RCV==1 and PERST*_L pin is asserted */
uint64_t rst_link : 1; /**< Controls whether corresponding controller
link-down or hot-reset causes a warm chip reset
On cold reset, this field is initialized as
follows:
0 = when corresponding strap QLM*_HOST_MODE=1
1 = when corresponding strap QLM*_HOST_MODE=0
Note that a link-down or hot-reset event can
never cause a warm chip reset when the
controller is in reset (i.e. can never cause a
warm reset when RST_DONE==0). */
uint64_t host_mode : 1; /**< RO access to corresponding strap QLM*_HOST_MODE */
uint64_t prtmode : 2; /**< Port mode
0 = port is EP mode
1 = port is RC mode
2,3 = Reserved
A warm/soft reset will not change this field.
On cold reset, this field is initialized as
follows:
0 = when corresponding strap QLM*_HOST_MODE=0
1 = when corresponding strap QLM*_HOST_MODE=1 */
uint64_t rst_drv : 1; /**< Controls whether corresponding PERST*_L chip pin
is driven by the OCTEON. A warm/soft reset
will not change this field. On cold reset,
this field is initialized as follows:
0 = when corresponding strap QLM*_HOST_MODE=0
1 = when corresponding strap QLM*_HOST_MODE=1
When set, OCTEON drives the corresponding
PERST*_L pin. Otherwise, OCTEON does not drive
the corresponding PERST*_L pin. */
uint64_t rst_rcv : 1; /**< Controls whether corresponding PERST*_L chip pin
is recieved by OCTEON. A warm/soft reset
will not change this field. On cold reset,
this field is initialized as follows:
0 = when corresponding strap QLM*_HOST_MODE=1
1 = when corresponding strap QLM*_HOST_MODE=0
When RST_RCV==1, the PERST*_L value is
received and may be used to reset the
controller and (optionally, based on RST_CHIP)
warm reset the chip.
When RST_RCV==1 (and RST_CHIP=0),
MIO_RST_INT[PERST*] gets set when the PERST*_L
pin asserts. (This interrupt can alert SW
whenever the external reset pin initiates a
controller reset sequence.)
RST_VAL gives the PERST*_L pin value when
RST_RCV==1.
When RST_RCV==0, the PERST*_L pin value is
ignored. */
uint64_t rst_chip : 1; /**< Controls whether corresponding PERST*_L chip
pin causes a chip warm reset like CHIP_RESET_L.
A warm/soft reset will not change this field.
On cold reset, this field is initialized to 0.
RST_CHIP is not used when RST_RCV==0.
When RST_RCV==0, RST_CHIP is ignored.
When RST_RCV==1, RST_CHIP==1, and PERST*_L
asserts, a chip warm reset will be generated. */
uint64_t rst_val : 1; /**< Read-only access to corresponding PERST*_L pin
Unpredictable when RST_RCV==0. Reads as 1 when
RST_RCV==1 and the PERST*_L pin is asserted.
Reads as 0 when RST_RCV==1 and the PERST*_L
pin is not asserted. */
#else
uint64_t rst_val : 1;
uint64_t rst_chip : 1;
uint64_t rst_rcv : 1;
uint64_t rst_drv : 1;
uint64_t prtmode : 2;
uint64_t host_mode : 1;
uint64_t rst_link : 1;
uint64_t rst_done : 1;
uint64_t reserved_9_63 : 55;
#endif
} cn63xxp1;
struct cvmx_mio_rst_ctlx_cn63xx cn66xx;
struct cvmx_mio_rst_ctlx_cn63xx cn68xx;
struct cvmx_mio_rst_ctlx_cn63xx cn68xxp1;
struct cvmx_mio_rst_ctlx_s cnf71xx;
};
typedef union cvmx_mio_rst_ctlx cvmx_mio_rst_ctlx_t;
/**
* cvmx_mio_rst_delay
*/
union cvmx_mio_rst_delay {
uint64_t u64;
struct cvmx_mio_rst_delay_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_32_63 : 32;
uint64_t warm_rst_dly : 16; /**< A warm reset immediately causes an early warm
reset notification. However, the assertion of
warm reset will be delayed this many sclks.
A warm/soft reset will not change this field.
NOTE: This must be at least 500 dclks */
uint64_t soft_rst_dly : 16; /**< A soft reset immediately causes an early soft
reset notification. However, the assertion of
soft reset will be delayed this many sclks.
A warm/soft reset will not change this field.
NOTE: This must be at least 500 dclks */
#else
uint64_t soft_rst_dly : 16;
uint64_t warm_rst_dly : 16;
uint64_t reserved_32_63 : 32;
#endif
} s;
struct cvmx_mio_rst_delay_s cn61xx;
struct cvmx_mio_rst_delay_s cn63xx;
struct cvmx_mio_rst_delay_s cn63xxp1;
struct cvmx_mio_rst_delay_s cn66xx;
struct cvmx_mio_rst_delay_s cn68xx;
struct cvmx_mio_rst_delay_s cn68xxp1;
struct cvmx_mio_rst_delay_s cnf71xx;
};
typedef union cvmx_mio_rst_delay cvmx_mio_rst_delay_t;
/**
* cvmx_mio_rst_int
*
* MIO_RST_INT = MIO Reset Interrupt Register
*
*/
union cvmx_mio_rst_int {
uint64_t u64;
struct cvmx_mio_rst_int_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_10_63 : 54;
uint64_t perst1 : 1; /**< PERST1_L asserted while MIO_RST_CTL1[RST_RCV]=1
and MIO_RST_CTL1[RST_CHIP]=0 */
uint64_t perst0 : 1; /**< PERST0_L asserted while MIO_RST_CTL0[RST_RCV]=1
and MIO_RST_CTL0[RST_CHIP]=0 */
uint64_t reserved_4_7 : 4;
uint64_t rst_link3 : 1; /**< A controller3 link-down/hot-reset occurred while
MIO_RST_CNTL3[RST_LINK]=0. Software must assert
then de-assert CIU_SOFT_PRST3[SOFT_PRST] */
uint64_t rst_link2 : 1; /**< A controller2 link-down/hot-reset occurred while
MIO_RST_CNTL2[RST_LINK]=0. Software must assert
then de-assert CIU_SOFT_PRST2[SOFT_PRST] */
uint64_t rst_link1 : 1; /**< A controller1 link-down/hot-reset occurred while
MIO_RST_CTL1[RST_LINK]=0. Software must assert
then de-assert CIU_SOFT_PRST1[SOFT_PRST] */
uint64_t rst_link0 : 1; /**< A controller0 link-down/hot-reset occurred while
MIO_RST_CTL0[RST_LINK]=0. Software must assert
then de-assert CIU_SOFT_PRST[SOFT_PRST] */
#else
uint64_t rst_link0 : 1;
uint64_t rst_link1 : 1;
uint64_t rst_link2 : 1;
uint64_t rst_link3 : 1;
uint64_t reserved_4_7 : 4;
uint64_t perst0 : 1;
uint64_t perst1 : 1;
uint64_t reserved_10_63 : 54;
#endif
} s;
struct cvmx_mio_rst_int_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_10_63 : 54;
uint64_t perst1 : 1; /**< PERST1_L asserted while MIO_RST_CTL1[RST_RCV]=1
and MIO_RST_CTL1[RST_CHIP]=0 */
uint64_t perst0 : 1; /**< PERST0_L asserted while MIO_RST_CTL0[RST_RCV]=1
and MIO_RST_CTL0[RST_CHIP]=0 */
uint64_t reserved_2_7 : 6;
uint64_t rst_link1 : 1; /**< A controller1 link-down/hot-reset occurred while
MIO_RST_CTL1[RST_LINK]=0. Software must assert
then de-assert CIU_SOFT_PRST1[SOFT_PRST] */
uint64_t rst_link0 : 1; /**< A controller0 link-down/hot-reset occurred while
MIO_RST_CTL0[RST_LINK]=0. Software must assert
then de-assert CIU_SOFT_PRST[SOFT_PRST] */
#else
uint64_t rst_link0 : 1;
uint64_t rst_link1 : 1;
uint64_t reserved_2_7 : 6;
uint64_t perst0 : 1;
uint64_t perst1 : 1;
uint64_t reserved_10_63 : 54;
#endif
} cn61xx;
struct cvmx_mio_rst_int_cn61xx cn63xx;
struct cvmx_mio_rst_int_cn61xx cn63xxp1;
struct cvmx_mio_rst_int_s cn66xx;
struct cvmx_mio_rst_int_cn61xx cn68xx;
struct cvmx_mio_rst_int_cn61xx cn68xxp1;
struct cvmx_mio_rst_int_cn61xx cnf71xx;
};
typedef union cvmx_mio_rst_int cvmx_mio_rst_int_t;
/**
* cvmx_mio_rst_int_en
*
* MIO_RST_INT_EN = MIO Reset Interrupt Enable Register
*
*/
union cvmx_mio_rst_int_en {
uint64_t u64;
struct cvmx_mio_rst_int_en_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_10_63 : 54;
uint64_t perst1 : 1; /**< Controller1 PERST reset interrupt enable */
uint64_t perst0 : 1; /**< Controller0 PERST reset interrupt enable */
uint64_t reserved_4_7 : 4;
uint64_t rst_link3 : 1; /**< Controller3 link-down/hot reset interrupt enable */
uint64_t rst_link2 : 1; /**< Controller2 link-down/hot reset interrupt enable */
uint64_t rst_link1 : 1; /**< Controller1 link-down/hot reset interrupt enable */
uint64_t rst_link0 : 1; /**< Controller0 link-down/hot reset interrupt enable */
#else
uint64_t rst_link0 : 1;
uint64_t rst_link1 : 1;
uint64_t rst_link2 : 1;
uint64_t rst_link3 : 1;
uint64_t reserved_4_7 : 4;
uint64_t perst0 : 1;
uint64_t perst1 : 1;
uint64_t reserved_10_63 : 54;
#endif
} s;
struct cvmx_mio_rst_int_en_cn61xx {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_10_63 : 54;
uint64_t perst1 : 1; /**< Controller1 PERST reset interrupt enable */
uint64_t perst0 : 1; /**< Controller0 PERST reset interrupt enable */
uint64_t reserved_2_7 : 6;
uint64_t rst_link1 : 1; /**< Controller1 link-down/hot reset interrupt enable */
uint64_t rst_link0 : 1; /**< Controller0 link-down/hot reset interrupt enable */
#else
uint64_t rst_link0 : 1;
uint64_t rst_link1 : 1;
uint64_t reserved_2_7 : 6;
uint64_t perst0 : 1;
uint64_t perst1 : 1;
uint64_t reserved_10_63 : 54;
#endif
} cn61xx;
struct cvmx_mio_rst_int_en_cn61xx cn63xx;
struct cvmx_mio_rst_int_en_cn61xx cn63xxp1;
struct cvmx_mio_rst_int_en_s cn66xx;
struct cvmx_mio_rst_int_en_cn61xx cn68xx;
struct cvmx_mio_rst_int_en_cn61xx cn68xxp1;
struct cvmx_mio_rst_int_en_cn61xx cnf71xx;
};
typedef union cvmx_mio_rst_int_en cvmx_mio_rst_int_en_t;
/**
* cvmx_mio_tws#_int
*
* MIO_TWSX_INT = TWSX Interrupt Register
*
* This register contains the TWSI interrupt enable mask and the interrupt source bits. Note: the
* interrupt source bit for the TWSI core interrupt (CORE_INT) is read-only, the appropriate sequence
* must be written to the TWSI core to clear this interrupt. The other interrupt source bits are write-
* one-to-clear. TS_INT is set on the update of the MIO_TWS_TWSI_SW register (i.e. when it is written
* by a TWSI device). ST_INT is set whenever the valid bit of the MIO_TWS_SW_TWSI is cleared (see above
* for reasons).
*
* Note: When using the high-level controller, CORE_EN should be clear and CORE_INT should be ignored.
* Conversely, when the high-level controller is disabled, ST_EN / TS_EN should be clear and ST_INT /
* TS_INT should be ignored.
*
* This register also contains a read-only copy of the TWSI bus (SCL and SDA) as well as control bits to
* override the current state of the TWSI bus (SCL_OVR and SDA_OVR). Setting an override bit high will
* result in the open drain driver being activated, thus driving the corresponding signal low.
*/
union cvmx_mio_twsx_int {
uint64_t u64;
struct cvmx_mio_twsx_int_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_12_63 : 52;
uint64_t scl : 1; /**< SCL */
uint64_t sda : 1; /**< SDA */
uint64_t scl_ovr : 1; /**< SCL override */
uint64_t sda_ovr : 1; /**< SDA override */
uint64_t reserved_7_7 : 1;
uint64_t core_en : 1; /**< TWSI core interrupt enable */
uint64_t ts_en : 1; /**< MIO_TWS_TWSI_SW register update interrupt enable */
uint64_t st_en : 1; /**< MIO_TWS_SW_TWSI register update interrupt enable */
uint64_t reserved_3_3 : 1;
uint64_t core_int : 1; /**< TWSI core interrupt */
uint64_t ts_int : 1; /**< MIO_TWS_TWSI_SW register update interrupt */
uint64_t st_int : 1; /**< MIO_TWS_SW_TWSI register update interrupt */
#else
uint64_t st_int : 1;
uint64_t ts_int : 1;
uint64_t core_int : 1;
uint64_t reserved_3_3 : 1;
uint64_t st_en : 1;
uint64_t ts_en : 1;
uint64_t core_en : 1;
uint64_t reserved_7_7 : 1;
uint64_t sda_ovr : 1;
uint64_t scl_ovr : 1;
uint64_t sda : 1;
uint64_t scl : 1;
uint64_t reserved_12_63 : 52;
#endif
} s;
struct cvmx_mio_twsx_int_s cn30xx;
struct cvmx_mio_twsx_int_s cn31xx;
struct cvmx_mio_twsx_int_s cn38xx;
struct cvmx_mio_twsx_int_cn38xxp2 {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_7_63 : 57;
uint64_t core_en : 1; /**< TWSI core interrupt enable */
uint64_t ts_en : 1; /**< MIO_TWS_TWSI_SW register update interrupt enable */
uint64_t st_en : 1; /**< MIO_TWS_SW_TWSI register update interrupt enable */
uint64_t reserved_3_3 : 1;
uint64_t core_int : 1; /**< TWSI core interrupt */
uint64_t ts_int : 1; /**< MIO_TWS_TWSI_SW register update interrupt */
uint64_t st_int : 1; /**< MIO_TWS_SW_TWSI register update interrupt */
#else
uint64_t st_int : 1;
uint64_t ts_int : 1;
uint64_t core_int : 1;
uint64_t reserved_3_3 : 1;
uint64_t st_en : 1;
uint64_t ts_en : 1;
uint64_t core_en : 1;
uint64_t reserved_7_63 : 57;
#endif
} cn38xxp2;
struct cvmx_mio_twsx_int_s cn50xx;
struct cvmx_mio_twsx_int_s cn52xx;
struct cvmx_mio_twsx_int_s cn52xxp1;
struct cvmx_mio_twsx_int_s cn56xx;
struct cvmx_mio_twsx_int_s cn56xxp1;
struct cvmx_mio_twsx_int_s cn58xx;
struct cvmx_mio_twsx_int_s cn58xxp1;
struct cvmx_mio_twsx_int_s cn61xx;
struct cvmx_mio_twsx_int_s cn63xx;
struct cvmx_mio_twsx_int_s cn63xxp1;
struct cvmx_mio_twsx_int_s cn66xx;
struct cvmx_mio_twsx_int_s cn68xx;
struct cvmx_mio_twsx_int_s cn68xxp1;
struct cvmx_mio_twsx_int_s cnf71xx;
};
typedef union cvmx_mio_twsx_int cvmx_mio_twsx_int_t;
/**
* cvmx_mio_tws#_sw_twsi
*
* MIO_TWSX_SW_TWSI = TWSX Software to TWSI Register
*
* This register allows software to
* - initiate TWSI interface master-mode operations with a write and read the result with a read
* - load four bytes for later retrieval (slave mode) with a write and check validity with a read
* - launch a TWSI controller configuration read/write with a write and read the result with a read
*
* This register should be read or written by software, and read by the TWSI device. The TWSI device can
* use either two-byte or five-byte reads to reference this register.
*
* The TWSI device considers this register valid when V==1 and SLONLY==1.
*/
union cvmx_mio_twsx_sw_twsi {
uint64_t u64;
struct cvmx_mio_twsx_sw_twsi_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t v : 1; /**< Valid bit
- Set on a write (should always be written with
a 1)
- Cleared when a TWSI master mode op completes
- Cleared when a TWSI configuration register
access completes
- Cleared when the TWSI device reads the
register if SLONLY==1 */
uint64_t slonly : 1; /**< Slave Only Mode
- No operation is initiated with a write when
this bit is set - only D field is updated in
this case
- When clear, a write initiates either a TWSI
master-mode operation or a TWSI configuration
register access */
uint64_t eia : 1; /**< Extended Internal Address - send additional
internal address byte (MSB of IA is from IA field
of MIO_TWS_SW_TWSI_EXT) */
uint64_t op : 4; /**< Opcode field - When the register is written with
SLONLY==0, initiate a read or write:
0000 => 7-bit Byte Master Mode TWSI Op
0001 => 7-bit Byte Combined Read Master Mode Op
7-bit Byte Write w/ IA Master Mode Op
0010 => 10-bit Byte Master Mode TWSI Op
0011 => 10-bit Byte Combined Read Master Mode Op
10-bit Byte Write w/ IA Master Mode Op
0100 => TWSI Master Clock Register
0110 => See EOP field
1000 => 7-bit 4-byte Master Mode TWSI Op
1001 => 7-bit 4-byte Comb. Read Master Mode Op
7-bit 4-byte Write w/ IA Master Mode Op
1010 => 10-bit 4-byte Master Mode TWSI Op
1011 => 10-bit 4-byte Comb. Read Master Mode Op
10-bit 4-byte Write w/ IA Master Mode Op */
uint64_t r : 1; /**< Read bit or result
- If set on a write when SLONLY==0, the
operation is a read
- On a read, this bit returns the result
indication for the most recent master mode
operation (1 = success, 0 = fail) */
uint64_t sovr : 1; /**< Size Override - if set, use the SIZE field to
determine Master Mode Op size rather than what
the Opcode field specifies. For operations
greater than 4 bytes, the additional data will be
contained in the D field of MIO_TWS_SW_TWSI_EXT */
uint64_t size : 3; /**< Size in bytes of Master Mode Op if the Size
Override bit is set. Specified in -1 notation
(i.e. 0 = 1 byte, 1 = 2 bytes ... 7 = 8 bytes) */
uint64_t scr : 2; /**< Scratch - unused, but retain state */
uint64_t a : 10; /**< Address field
- the address of the remote device for a master
mode operation
- A<9:7> are only used for 10-bit addressing
Note that when mastering a 7-bit OP, A<6:0> should
not take any of the values 0x78, 0x79, 0x7A nor
0x7B (these 7-bit addresses are reserved to
extend to 10-bit addressing). */
uint64_t ia : 5; /**< Internal Address - Used when launching a master
mode combined read / write with internal address
(lower 3 bits are contained in the EOP_IA field) */
uint64_t eop_ia : 3; /**< Extra opcode (when OP<3:0> == 0110 and SLONLY==0):
000 => TWSI Slave Address Register
001 => TWSI Data Register
010 => TWSI Control Register
011 => TWSI Clock Control Register (when R == 0)
011 => TWSI Status Register (when R == 1)
100 => TWSI Extended Slave Register
111 => TWSI Soft Reset Register
Also the lower 3 bits of Internal Address when
launching a master mode combined read / write
with internal address */
uint64_t d : 32; /**< Data Field
Used on a write when
- initiating a master-mode write (SLONLY==0)
- writing a TWSI config register (SLONLY==0)
- a slave mode write (SLONLY==1)
The read value is updated by
- a write to this register
- master mode completion (contains result or
error code)
- TWSI config register read (contains result) */
#else
uint64_t d : 32;
uint64_t eop_ia : 3;
uint64_t ia : 5;
uint64_t a : 10;
uint64_t scr : 2;
uint64_t size : 3;
uint64_t sovr : 1;
uint64_t r : 1;
uint64_t op : 4;
uint64_t eia : 1;
uint64_t slonly : 1;
uint64_t v : 1;
#endif
} s;
struct cvmx_mio_twsx_sw_twsi_s cn30xx;
struct cvmx_mio_twsx_sw_twsi_s cn31xx;
struct cvmx_mio_twsx_sw_twsi_s cn38xx;
struct cvmx_mio_twsx_sw_twsi_s cn38xxp2;
struct cvmx_mio_twsx_sw_twsi_s cn50xx;
struct cvmx_mio_twsx_sw_twsi_s cn52xx;
struct cvmx_mio_twsx_sw_twsi_s cn52xxp1;
struct cvmx_mio_twsx_sw_twsi_s cn56xx;
struct cvmx_mio_twsx_sw_twsi_s cn56xxp1;
struct cvmx_mio_twsx_sw_twsi_s cn58xx;
struct cvmx_mio_twsx_sw_twsi_s cn58xxp1;
struct cvmx_mio_twsx_sw_twsi_s cn61xx;
struct cvmx_mio_twsx_sw_twsi_s cn63xx;
struct cvmx_mio_twsx_sw_twsi_s cn63xxp1;
struct cvmx_mio_twsx_sw_twsi_s cn66xx;
struct cvmx_mio_twsx_sw_twsi_s cn68xx;
struct cvmx_mio_twsx_sw_twsi_s cn68xxp1;
struct cvmx_mio_twsx_sw_twsi_s cnf71xx;
};
typedef union cvmx_mio_twsx_sw_twsi cvmx_mio_twsx_sw_twsi_t;
/**
* cvmx_mio_tws#_sw_twsi_ext
*
* MIO_TWSX_SW_TWSI_EXT = TWSX Software to TWSI Extension Register
*
* This register contains an additional byte of internal address and 4 additional bytes of data to be
* used with TWSI master mode operations. IA will be sent as the first byte of internal address when
* performing master mode combined read / write with internal address operations and the EIA bit of
* MIO_TWS_SW_TWSI is set. D extends the data field of MIO_TWS_SW_TWSI for a total of 8 bytes (SOVR
* must be set to perform operations greater than 4 bytes).
*/
union cvmx_mio_twsx_sw_twsi_ext {
uint64_t u64;
struct cvmx_mio_twsx_sw_twsi_ext_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_40_63 : 24;
uint64_t ia : 8; /**< Extended Internal Address */
uint64_t d : 32; /**< Extended Data Field */
#else
uint64_t d : 32;
uint64_t ia : 8;
uint64_t reserved_40_63 : 24;
#endif
} s;
struct cvmx_mio_twsx_sw_twsi_ext_s cn30xx;
struct cvmx_mio_twsx_sw_twsi_ext_s cn31xx;
struct cvmx_mio_twsx_sw_twsi_ext_s cn38xx;
struct cvmx_mio_twsx_sw_twsi_ext_s cn38xxp2;
struct cvmx_mio_twsx_sw_twsi_ext_s cn50xx;
struct cvmx_mio_twsx_sw_twsi_ext_s cn52xx;
struct cvmx_mio_twsx_sw_twsi_ext_s cn52xxp1;
struct cvmx_mio_twsx_sw_twsi_ext_s cn56xx;
struct cvmx_mio_twsx_sw_twsi_ext_s cn56xxp1;
struct cvmx_mio_twsx_sw_twsi_ext_s cn58xx;
struct cvmx_mio_twsx_sw_twsi_ext_s cn58xxp1;
struct cvmx_mio_twsx_sw_twsi_ext_s cn61xx;
struct cvmx_mio_twsx_sw_twsi_ext_s cn63xx;
struct cvmx_mio_twsx_sw_twsi_ext_s cn63xxp1;
struct cvmx_mio_twsx_sw_twsi_ext_s cn66xx;
struct cvmx_mio_twsx_sw_twsi_ext_s cn68xx;
struct cvmx_mio_twsx_sw_twsi_ext_s cn68xxp1;
struct cvmx_mio_twsx_sw_twsi_ext_s cnf71xx;
};
typedef union cvmx_mio_twsx_sw_twsi_ext cvmx_mio_twsx_sw_twsi_ext_t;
/**
* cvmx_mio_tws#_twsi_sw
*
* MIO_TWSX_TWSI_SW = TWSX TWSI to Software Register
*
* This register allows the TWSI device to transfer data to software and later check that software has
* received the information.
*
* This register should be read or written by the TWSI device, and read by software. The TWSI device can
* use one-byte or four-byte payload writes, and two-byte payload reads.
*
* The TWSI device considers this register valid when V==1.
*/
union cvmx_mio_twsx_twsi_sw {
uint64_t u64;
struct cvmx_mio_twsx_twsi_sw_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t v : 2; /**< Valid Bits
- Not directly writable
- Set to 1 on any write by the TWSI device
- Cleared on any read by software */
uint64_t reserved_32_61 : 30;
uint64_t d : 32; /**< Data Field - updated on a write by the TWSI device */
#else
uint64_t d : 32;
uint64_t reserved_32_61 : 30;
uint64_t v : 2;
#endif
} s;
struct cvmx_mio_twsx_twsi_sw_s cn30xx;
struct cvmx_mio_twsx_twsi_sw_s cn31xx;
struct cvmx_mio_twsx_twsi_sw_s cn38xx;
struct cvmx_mio_twsx_twsi_sw_s cn38xxp2;
struct cvmx_mio_twsx_twsi_sw_s cn50xx;
struct cvmx_mio_twsx_twsi_sw_s cn52xx;
struct cvmx_mio_twsx_twsi_sw_s cn52xxp1;
struct cvmx_mio_twsx_twsi_sw_s cn56xx;
struct cvmx_mio_twsx_twsi_sw_s cn56xxp1;
struct cvmx_mio_twsx_twsi_sw_s cn58xx;
struct cvmx_mio_twsx_twsi_sw_s cn58xxp1;
struct cvmx_mio_twsx_twsi_sw_s cn61xx;
struct cvmx_mio_twsx_twsi_sw_s cn63xx;
struct cvmx_mio_twsx_twsi_sw_s cn63xxp1;
struct cvmx_mio_twsx_twsi_sw_s cn66xx;
struct cvmx_mio_twsx_twsi_sw_s cn68xx;
struct cvmx_mio_twsx_twsi_sw_s cn68xxp1;
struct cvmx_mio_twsx_twsi_sw_s cnf71xx;
};
typedef union cvmx_mio_twsx_twsi_sw cvmx_mio_twsx_twsi_sw_t;
/**
* cvmx_mio_uart#_dlh
*
* MIO_UARTX_DLH = MIO UARTX Divisor Latch High Register
*
* The DLH (Divisor Latch High) register in conjunction with DLL (Divisor Latch Low) register form a
* 16-bit, read/write, Divisor Latch register that contains the baud rate divisor for the UART. It is
* accessed by first setting the DLAB bit (bit 7) in the Line Control Register (LCR). The output baud
* rate is equal to eclk frequency divided by sixteen times the value of the baud rate divisor, as
* follows: baud rate = eclk / (16 * divisor).
*
* Note that the BUSY bit (bit 0) of the UART Status Register (USR) must be clear before writing this
* register. BUSY bit is always clear in PASS3.
*
* Note that with the Divisor Latch Registers (DLL and DLH) set to zero, the baud clock is disabled
* and no serial communications will occur. Also, once the DLL or DLH is set, at least 8 clock cycles
* of eclk should be allowed to pass before transmitting or receiving data.
*
* Note: The address below is an alias to simplify these CSR descriptions. It should be known that the
* IER and DLH registers are the same.
*/
union cvmx_mio_uartx_dlh {
uint64_t u64;
struct cvmx_mio_uartx_dlh_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t dlh : 8; /**< Divisor Latch High Register */
#else
uint64_t dlh : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uartx_dlh_s cn30xx;
struct cvmx_mio_uartx_dlh_s cn31xx;
struct cvmx_mio_uartx_dlh_s cn38xx;
struct cvmx_mio_uartx_dlh_s cn38xxp2;
struct cvmx_mio_uartx_dlh_s cn50xx;
struct cvmx_mio_uartx_dlh_s cn52xx;
struct cvmx_mio_uartx_dlh_s cn52xxp1;
struct cvmx_mio_uartx_dlh_s cn56xx;
struct cvmx_mio_uartx_dlh_s cn56xxp1;
struct cvmx_mio_uartx_dlh_s cn58xx;
struct cvmx_mio_uartx_dlh_s cn58xxp1;
struct cvmx_mio_uartx_dlh_s cn61xx;
struct cvmx_mio_uartx_dlh_s cn63xx;
struct cvmx_mio_uartx_dlh_s cn63xxp1;
struct cvmx_mio_uartx_dlh_s cn66xx;
struct cvmx_mio_uartx_dlh_s cn68xx;
struct cvmx_mio_uartx_dlh_s cn68xxp1;
struct cvmx_mio_uartx_dlh_s cnf71xx;
};
typedef union cvmx_mio_uartx_dlh cvmx_mio_uartx_dlh_t;
typedef cvmx_mio_uartx_dlh_t cvmx_uart_dlh_t;
/**
* cvmx_mio_uart#_dll
*
* MIO_UARTX_DLL = MIO UARTX Divisor Latch Low Register
*
* The DLH (Divisor Latch High) register in conjunction with DLL (Divisor Latch Low) register form a
* 16-bit, read/write, Divisor Latch register that contains the baud rate divisor for the UART. It is
* accessed by first setting the DLAB bit (bit 7) in the Line Control Register (LCR). The output baud
* rate is equal to eclk frequency divided by sixteen times the value of the baud rate divisor, as
* follows: baud rate = eclk / (16 * divisor).
*
* Note that the BUSY bit (bit 0) of the UART Status Register (USR) must be clear before writing this
* register. BUSY bit is always clear in PASS3.
*
* Note that with the Divisor Latch Registers (DLL and DLH) set to zero, the baud clock is disabled
* and no serial communications will occur. Also, once the DLL or DLH is set, at least 8 clock cycles
* of eclk should be allowed to pass before transmitting or receiving data.
*
* Note: The address below is an alias to simplify these CSR descriptions. It should be known that the
* RBR, THR, and DLL registers are the same.
*/
union cvmx_mio_uartx_dll {
uint64_t u64;
struct cvmx_mio_uartx_dll_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t dll : 8; /**< Divisor Latch Low Register */
#else
uint64_t dll : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uartx_dll_s cn30xx;
struct cvmx_mio_uartx_dll_s cn31xx;
struct cvmx_mio_uartx_dll_s cn38xx;
struct cvmx_mio_uartx_dll_s cn38xxp2;
struct cvmx_mio_uartx_dll_s cn50xx;
struct cvmx_mio_uartx_dll_s cn52xx;
struct cvmx_mio_uartx_dll_s cn52xxp1;
struct cvmx_mio_uartx_dll_s cn56xx;
struct cvmx_mio_uartx_dll_s cn56xxp1;
struct cvmx_mio_uartx_dll_s cn58xx;
struct cvmx_mio_uartx_dll_s cn58xxp1;
struct cvmx_mio_uartx_dll_s cn61xx;
struct cvmx_mio_uartx_dll_s cn63xx;
struct cvmx_mio_uartx_dll_s cn63xxp1;
struct cvmx_mio_uartx_dll_s cn66xx;
struct cvmx_mio_uartx_dll_s cn68xx;
struct cvmx_mio_uartx_dll_s cn68xxp1;
struct cvmx_mio_uartx_dll_s cnf71xx;
};
typedef union cvmx_mio_uartx_dll cvmx_mio_uartx_dll_t;
typedef cvmx_mio_uartx_dll_t cvmx_uart_dll_t;
/**
* cvmx_mio_uart#_far
*
* MIO_UARTX_FAR = MIO UARTX FIFO Access Register
*
* The FIFO Access Register (FAR) is used to enable a FIFO access mode for testing, so that the receive
* FIFO can be written by software and the transmit FIFO can be read by software when the FIFOs are
* enabled. When FIFOs are not enabled it allows the RBR to be written by software and the THR to be read
* by software. Note, that when the FIFO access mode is enabled/disabled, the control portion of the
* receive FIFO and transmit FIFO is reset and the FIFOs are treated as empty.
*/
union cvmx_mio_uartx_far {
uint64_t u64;
struct cvmx_mio_uartx_far_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_1_63 : 63;
uint64_t far : 1; /**< FIFO Access Register */
#else
uint64_t far : 1;
uint64_t reserved_1_63 : 63;
#endif
} s;
struct cvmx_mio_uartx_far_s cn30xx;
struct cvmx_mio_uartx_far_s cn31xx;
struct cvmx_mio_uartx_far_s cn38xx;
struct cvmx_mio_uartx_far_s cn38xxp2;
struct cvmx_mio_uartx_far_s cn50xx;
struct cvmx_mio_uartx_far_s cn52xx;
struct cvmx_mio_uartx_far_s cn52xxp1;
struct cvmx_mio_uartx_far_s cn56xx;
struct cvmx_mio_uartx_far_s cn56xxp1;
struct cvmx_mio_uartx_far_s cn58xx;
struct cvmx_mio_uartx_far_s cn58xxp1;
struct cvmx_mio_uartx_far_s cn61xx;
struct cvmx_mio_uartx_far_s cn63xx;
struct cvmx_mio_uartx_far_s cn63xxp1;
struct cvmx_mio_uartx_far_s cn66xx;
struct cvmx_mio_uartx_far_s cn68xx;
struct cvmx_mio_uartx_far_s cn68xxp1;
struct cvmx_mio_uartx_far_s cnf71xx;
};
typedef union cvmx_mio_uartx_far cvmx_mio_uartx_far_t;
typedef cvmx_mio_uartx_far_t cvmx_uart_far_t;
/**
* cvmx_mio_uart#_fcr
*
* MIO_UARTX_FCR = MIO UARTX FIFO Control Register
*
* The FIFO Control Register (FCR) is a write-only register that controls the read and write data FIFO
* operation. When FIFOs and Programmable THRE Interrupt mode are enabled, this register also controls
* the THRE Interrupt empty threshold level.
*
* Setting bit 0 of the FCR enables the transmit and receive FIFOs. Whenever the value of this bit is
* changed both the TX and RX FIFOs will be reset.
*
* Writing a '1' to bit 1 of the FCR resets and flushes data in the receive FIFO. Note that this bit is
* self-clearing and it is not necessary to clear this bit.
*
* Writing a '1' to bit 2 of the FCR resets and flushes data in the transmit FIFO. Note that this bit is
* self-clearing and it is not necessary to clear this bit.
*
* If the FIFOs and Programmable THRE Interrupt mode are enabled, bits 4 and 5 control the empty
* threshold level at which THRE Interrupts are generated when the mode is active. See the following
* table for encodings:
*
* TX Trigger
* ----------
* 00 = empty FIFO
* 01 = 2 chars in FIFO
* 10 = FIFO 1/4 full
* 11 = FIFO 1/2 full
*
* If the FIFO mode is enabled (bit 0 of the FCR is set to '1') bits 6 and 7 are active. Bit 6 and bit 7
* set the trigger level in the receiver FIFO for the Enable Received Data Available Interrupt (ERBFI).
* In auto flow control mode the trigger is used to determine when the rts_n signal will be deasserted.
* See the following table for encodings:
*
* RX Trigger
* ----------
* 00 = 1 char in FIFO
* 01 = FIFO 1/4 full
* 10 = FIFO 1/2 full
* 11 = FIFO 2 chars less than full
*
* Note: The address below is an alias to simplify these CSR descriptions. It should be known that the
* IIR and FCR registers are the same.
*/
union cvmx_mio_uartx_fcr {
uint64_t u64;
struct cvmx_mio_uartx_fcr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t rxtrig : 2; /**< RX Trigger */
uint64_t txtrig : 2; /**< TX Trigger */
uint64_t reserved_3_3 : 1;
uint64_t txfr : 1; /**< TX FIFO reset */
uint64_t rxfr : 1; /**< RX FIFO reset */
uint64_t en : 1; /**< FIFO enable */
#else
uint64_t en : 1;
uint64_t rxfr : 1;
uint64_t txfr : 1;
uint64_t reserved_3_3 : 1;
uint64_t txtrig : 2;
uint64_t rxtrig : 2;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uartx_fcr_s cn30xx;
struct cvmx_mio_uartx_fcr_s cn31xx;
struct cvmx_mio_uartx_fcr_s cn38xx;
struct cvmx_mio_uartx_fcr_s cn38xxp2;
struct cvmx_mio_uartx_fcr_s cn50xx;
struct cvmx_mio_uartx_fcr_s cn52xx;
struct cvmx_mio_uartx_fcr_s cn52xxp1;
struct cvmx_mio_uartx_fcr_s cn56xx;
struct cvmx_mio_uartx_fcr_s cn56xxp1;
struct cvmx_mio_uartx_fcr_s cn58xx;
struct cvmx_mio_uartx_fcr_s cn58xxp1;
struct cvmx_mio_uartx_fcr_s cn61xx;
struct cvmx_mio_uartx_fcr_s cn63xx;
struct cvmx_mio_uartx_fcr_s cn63xxp1;
struct cvmx_mio_uartx_fcr_s cn66xx;
struct cvmx_mio_uartx_fcr_s cn68xx;
struct cvmx_mio_uartx_fcr_s cn68xxp1;
struct cvmx_mio_uartx_fcr_s cnf71xx;
};
typedef union cvmx_mio_uartx_fcr cvmx_mio_uartx_fcr_t;
typedef cvmx_mio_uartx_fcr_t cvmx_uart_fcr_t;
/**
* cvmx_mio_uart#_htx
*
* MIO_UARTX_HTX = MIO UARTX Halt TX Register
*
* The Halt TX Register (HTX) is used to halt transmissions for testing, so that the transmit FIFO can be
* filled by software when FIFOs are enabled. If FIFOs are not enabled, setting the HTX register will
* have no effect.
*/
union cvmx_mio_uartx_htx {
uint64_t u64;
struct cvmx_mio_uartx_htx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_1_63 : 63;
uint64_t htx : 1; /**< Halt TX */
#else
uint64_t htx : 1;
uint64_t reserved_1_63 : 63;
#endif
} s;
struct cvmx_mio_uartx_htx_s cn30xx;
struct cvmx_mio_uartx_htx_s cn31xx;
struct cvmx_mio_uartx_htx_s cn38xx;
struct cvmx_mio_uartx_htx_s cn38xxp2;
struct cvmx_mio_uartx_htx_s cn50xx;
struct cvmx_mio_uartx_htx_s cn52xx;
struct cvmx_mio_uartx_htx_s cn52xxp1;
struct cvmx_mio_uartx_htx_s cn56xx;
struct cvmx_mio_uartx_htx_s cn56xxp1;
struct cvmx_mio_uartx_htx_s cn58xx;
struct cvmx_mio_uartx_htx_s cn58xxp1;
struct cvmx_mio_uartx_htx_s cn61xx;
struct cvmx_mio_uartx_htx_s cn63xx;
struct cvmx_mio_uartx_htx_s cn63xxp1;
struct cvmx_mio_uartx_htx_s cn66xx;
struct cvmx_mio_uartx_htx_s cn68xx;
struct cvmx_mio_uartx_htx_s cn68xxp1;
struct cvmx_mio_uartx_htx_s cnf71xx;
};
typedef union cvmx_mio_uartx_htx cvmx_mio_uartx_htx_t;
typedef cvmx_mio_uartx_htx_t cvmx_uart_htx_t;
/**
* cvmx_mio_uart#_ier
*
* MIO_UARTX_IER = MIO UARTX Interrupt Enable Register
*
* Interrupt Enable Register (IER) is a read/write register that contains four bits that enable
* the generation of interrupts. These four bits are the Enable Received Data Available Interrupt
* (ERBFI), the Enable Transmitter Holding Register Empty Interrupt (ETBEI), the Enable Receiver Line
* Status Interrupt (ELSI), and the Enable Modem Status Interrupt (EDSSI).
*
* The IER also contains an enable bit (PTIME) for the Programmable THRE Interrupt mode.
*
* Note: The Divisor Latch Address Bit (DLAB) of the Line Control Register (LCR) must be clear to access
* this register.
*
* Note: The address below is an alias to simplify these CSR descriptions. It should be known that the
* IER and DLH registers are the same.
*/
union cvmx_mio_uartx_ier {
uint64_t u64;
struct cvmx_mio_uartx_ier_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t ptime : 1; /**< Programmable THRE Interrupt mode enable */
uint64_t reserved_4_6 : 3;
uint64_t edssi : 1; /**< Enable Modem Status Interrupt */
uint64_t elsi : 1; /**< Enable Receiver Line Status Interrupt */
uint64_t etbei : 1; /**< Enable Transmitter Holding Register Empty Interrupt */
uint64_t erbfi : 1; /**< Enable Received Data Available Interrupt */
#else
uint64_t erbfi : 1;
uint64_t etbei : 1;
uint64_t elsi : 1;
uint64_t edssi : 1;
uint64_t reserved_4_6 : 3;
uint64_t ptime : 1;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uartx_ier_s cn30xx;
struct cvmx_mio_uartx_ier_s cn31xx;
struct cvmx_mio_uartx_ier_s cn38xx;
struct cvmx_mio_uartx_ier_s cn38xxp2;
struct cvmx_mio_uartx_ier_s cn50xx;
struct cvmx_mio_uartx_ier_s cn52xx;
struct cvmx_mio_uartx_ier_s cn52xxp1;
struct cvmx_mio_uartx_ier_s cn56xx;
struct cvmx_mio_uartx_ier_s cn56xxp1;
struct cvmx_mio_uartx_ier_s cn58xx;
struct cvmx_mio_uartx_ier_s cn58xxp1;
struct cvmx_mio_uartx_ier_s cn61xx;
struct cvmx_mio_uartx_ier_s cn63xx;
struct cvmx_mio_uartx_ier_s cn63xxp1;
struct cvmx_mio_uartx_ier_s cn66xx;
struct cvmx_mio_uartx_ier_s cn68xx;
struct cvmx_mio_uartx_ier_s cn68xxp1;
struct cvmx_mio_uartx_ier_s cnf71xx;
};
typedef union cvmx_mio_uartx_ier cvmx_mio_uartx_ier_t;
typedef cvmx_mio_uartx_ier_t cvmx_uart_ier_t;
/**
* cvmx_mio_uart#_iir
*
* MIO_UARTX_IIR = MIO UARTX Interrupt Identity Register
*
* The Interrupt Identity Register (IIR) is a read-only register that identifies the source of an
* interrupt. The upper two bits of the register are FIFO-enabled bits. These bits are '00' if the FIFOs
* are disabled, and '11' if they are enabled. The lower four bits identify the highest priority pending
* interrupt. The following table defines interrupt source decoding, interrupt priority, and interrupt
* reset control:
*
* Interrupt Priority Interrupt Interrupt Interrupt
* ID Level Type Source Reset By
* ---------------------------------------------------------------------------------------------------------------------------------
* 0001 - None None -
*
* 0110 Highest Receiver Line Overrun, parity, or framing errors or break Reading the Line Status Register
* Status interrupt
*
* 0100 Second Received Data Receiver data available (FIFOs disabled) or Reading the Receiver Buffer Register
* Available RX FIFO trigger level reached (FIFOs (FIFOs disabled) or the FIFO drops below
* enabled) the trigger level (FIFOs enabled)
*
* 1100 Second Character No characters in or out of the RX FIFO Reading the Receiver Buffer Register
* Timeout during the last 4 character times and there
* Indication is at least 1 character in it during this
* time
*
* 0010 Third Transmitter Transmitter Holding Register Empty Reading the Interrupt Identity Register
* Holding (Programmable THRE Mode disabled) or TX (if source of interrupt) or writing into
* Register FIFO at or below threshold (Programmable THR (FIFOs or THRE Mode disabled) or TX
* Empty THRE Mode enabled) FIFO above threshold (FIFOs and THRE
* Mode enabled)
*
* 0000 Fourth Modem Status Clear To Send (CTS) or Data Set Ready (DSR) Reading the Modem Status Register
* Changed or Ring Indicator (RI) or Data Carrier
* Detect (DCD) changed (note: if auto flow
* control mode is enabled, a change in CTS
* will not cause an interrupt)
*
* 0111 Fifth Busy Detect Software has tried to write to the Line Reading the UART Status Register
* Indication Control Register while the BUSY bit of the
* UART Status Register was set
*
* Note: The Busy Detect Indication interrupt has been removed from PASS3 and will never assert.
*
* Note: The address below is an alias to simplify these CSR descriptions. It should be known that the
* IIR and FCR registers are the same.
*/
union cvmx_mio_uartx_iir {
uint64_t u64;
struct cvmx_mio_uartx_iir_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t fen : 2; /**< FIFO-enabled bits */
uint64_t reserved_4_5 : 2;
cvmx_uart_iid_t iid : 4; /**< Interrupt ID */
#else
cvmx_uart_iid_t iid : 4;
uint64_t reserved_4_5 : 2;
uint64_t fen : 2;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uartx_iir_s cn30xx;
struct cvmx_mio_uartx_iir_s cn31xx;
struct cvmx_mio_uartx_iir_s cn38xx;
struct cvmx_mio_uartx_iir_s cn38xxp2;
struct cvmx_mio_uartx_iir_s cn50xx;
struct cvmx_mio_uartx_iir_s cn52xx;
struct cvmx_mio_uartx_iir_s cn52xxp1;
struct cvmx_mio_uartx_iir_s cn56xx;
struct cvmx_mio_uartx_iir_s cn56xxp1;
struct cvmx_mio_uartx_iir_s cn58xx;
struct cvmx_mio_uartx_iir_s cn58xxp1;
struct cvmx_mio_uartx_iir_s cn61xx;
struct cvmx_mio_uartx_iir_s cn63xx;
struct cvmx_mio_uartx_iir_s cn63xxp1;
struct cvmx_mio_uartx_iir_s cn66xx;
struct cvmx_mio_uartx_iir_s cn68xx;
struct cvmx_mio_uartx_iir_s cn68xxp1;
struct cvmx_mio_uartx_iir_s cnf71xx;
};
typedef union cvmx_mio_uartx_iir cvmx_mio_uartx_iir_t;
typedef cvmx_mio_uartx_iir_t cvmx_uart_iir_t;
/**
* cvmx_mio_uart#_lcr
*
* MIO_UARTX_LCR = MIO UARTX Line Control Register
*
* The Line Control Register (LCR) controls the format of the data that is transmitted and received by
* the UART.
*
* LCR bits 0 and 1 are the Character Length Select field. This field is used to select the number of
* data bits per character that are transmitted and received. See the following table for encodings:
*
* CLS
* ---
* 00 = 5 bits (bits 0-4 sent)
* 01 = 6 bits (bits 0-5 sent)
* 10 = 7 bits (bits 0-6 sent)
* 11 = 8 bits (all bits sent)
*
* LCR bit 2 controls the number of stop bits transmitted. If bit 2 is a '0', one stop bit is transmitted
* in the serial data. If bit 2 is a '1' and the data bits are set to '00', one and a half stop bits are
* generated. Otherwise, two stop bits are generated and transmitted in the serial data out. Note that
* regardless of the number of stop bits selected the receiver will only check the first stop bit.
*
* LCR bit 3 is the Parity Enable bit. This bit is used to enable and disable parity generation and
* detection in transmitted and received serial character respectively.
*
* LCR bit 4 is the Even Parity Select bit. If parity is enabled, bit 4 selects between even and odd
* parity. If bit 4 is a '1', an even number of ones is transmitted or checked. If bit 4 is a '0', an odd
* number of ones is transmitted or checked.
*
* LCR bit 6 is the Break Control bit. Setting the Break bit sends a break signal by holding the sout
* line low (when not in Loopback mode, as determined by Modem Control Register bit 4). When in Loopback
* mode, the break condition is internally looped back to the receiver.
*
* LCR bit 7 is the Divisor Latch Address bit. Setting this bit enables reading and writing of the
* Divisor Latch register (DLL and DLH) to set the baud rate of the UART. This bit must be cleared after
* initial baud rate setup in order to access other registers.
*
* Note: The LCR is writeable only when the UART is not busy (when the BUSY bit (bit 0) of the UART
* Status Register (USR) is clear). The LCR is always readable. In PASS3, the LCR is always writable
* because the BUSY bit is always clear.
*/
union cvmx_mio_uartx_lcr {
uint64_t u64;
struct cvmx_mio_uartx_lcr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t dlab : 1; /**< Divisor Latch Address bit */
uint64_t brk : 1; /**< Break Control bit */
uint64_t reserved_5_5 : 1;
uint64_t eps : 1; /**< Even Parity Select bit */
uint64_t pen : 1; /**< Parity Enable bit */
uint64_t stop : 1; /**< Stop Control bit */
cvmx_uart_bits_t cls : 2; /**< Character Length Select */
#else
cvmx_uart_bits_t cls : 2;
uint64_t stop : 1;
uint64_t pen : 1;
uint64_t eps : 1;
uint64_t reserved_5_5 : 1;
uint64_t brk : 1;
uint64_t dlab : 1;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uartx_lcr_s cn30xx;
struct cvmx_mio_uartx_lcr_s cn31xx;
struct cvmx_mio_uartx_lcr_s cn38xx;
struct cvmx_mio_uartx_lcr_s cn38xxp2;
struct cvmx_mio_uartx_lcr_s cn50xx;
struct cvmx_mio_uartx_lcr_s cn52xx;
struct cvmx_mio_uartx_lcr_s cn52xxp1;
struct cvmx_mio_uartx_lcr_s cn56xx;
struct cvmx_mio_uartx_lcr_s cn56xxp1;
struct cvmx_mio_uartx_lcr_s cn58xx;
struct cvmx_mio_uartx_lcr_s cn58xxp1;
struct cvmx_mio_uartx_lcr_s cn61xx;
struct cvmx_mio_uartx_lcr_s cn63xx;
struct cvmx_mio_uartx_lcr_s cn63xxp1;
struct cvmx_mio_uartx_lcr_s cn66xx;
struct cvmx_mio_uartx_lcr_s cn68xx;
struct cvmx_mio_uartx_lcr_s cn68xxp1;
struct cvmx_mio_uartx_lcr_s cnf71xx;
};
typedef union cvmx_mio_uartx_lcr cvmx_mio_uartx_lcr_t;
typedef cvmx_mio_uartx_lcr_t cvmx_uart_lcr_t;
/**
* cvmx_mio_uart#_lsr
*
* MIO_UARTX_LSR = MIO UARTX Line Status Register
*
* The Line Status Register (LSR) contains status of the receiver and transmitter data transfers. This
* status can be read by the user at anytime.
*
* LSR bit 0 is the Data Ready (DR) bit. When set, this bit indicates the receiver contains at least one
* character in the RBR or the receiver FIFO. This bit is cleared when the RBR is read in the non-FIFO
* mode, or when the receiver FIFO is empty, in FIFO mode.
*
* LSR bit 1 is the Overrun Error (OE) bit. When set, this bit indicates an overrun error has occurred
* because a new data character was received before the previous data was read. In the non-FIFO mode, the
* OE bit is set when a new character arrives in the receiver before the previous character was read from
* the RBR. When this happens, the data in the RBR is overwritten. In the FIFO mode, an overrun error
* occurs when the FIFO is full and a new character arrives at the receiver. The data in the FIFO is
* retained and the data in the receive shift register is lost.
*
* LSR bit 2 is the Parity Error (PE) bit. This bit is set whenever there is a parity error in the
* receiver if the Parity Enable (PEN) bit in the LCR is set. In the FIFO mode, since the parity error is
* associated with a character received, it is revealed when the character with the parity error arrives
* at the top of the FIFO. It should be noted that the Parity Error (PE) bit will be set if a break
* interrupt has occurred, as indicated by the Break Interrupt (BI) bit.
*
* LSR bit 3 is the Framing Error (FE) bit. This bit is set whenever there is a framing error in the
* receiver. A framing error occurs when the receiver does not detect a valid STOP bit in the received
* data. In the FIFO mode, since the framing error is associated with a character received, it is
* revealed when the character with the framing error is at the top of the FIFO. When a framing error
* occurs the UART will try resynchronize. It does this by assuming that the error was due to the start
* bit of the next character and then continues receiving the other bits (i.e. data and/or parity and
* stop). It should be noted that the Framing Error (FE) bit will be set if a break interrupt has
* occurred, as indicated by the Break Interrupt (BI) bit.
*
* Note: The OE, PE, and FE bits are reset when a read of the LSR is performed.
*
* LSR bit 4 is the Break Interrupt (BI) bit. This bit is set whenever the serial input (sin) is held in
* a 0 state for longer than the sum of start time + data bits + parity + stop bits. A break condition on
* sin causes one and only one character, consisting of all zeros, to be received by the UART. In the
* FIFO mode, the character associated with the break condition is carried through the FIFO and is
* revealed when the character is at the top of the FIFO. Reading the LSR clears the BI bit. In the non-
* FIFO mode, the BI indication occurs immediately and persists until the LSR is read.
*
* LSR bit 5 is the Transmitter Holding Register Empty (THRE) bit. When Programmable THRE Interrupt mode
* is disabled, this bit indicates that the UART can accept a new character for transmission. This bit is
* set whenever data is transferred from the THR (or TX FIFO) to the transmitter shift register and no
* new data has been written to the THR (or TX FIFO). This also causes a THRE Interrupt to occur, if the
* THRE Interrupt is enabled. When FIFOs and Programmable THRE Interrupt mode are enabled, LSR bit 5
* functionality is switched to indicate the transmitter FIFO is full, and no longer controls THRE
* Interrupts, which are then controlled by the FCR[5:4] threshold setting.
*
* LSR bit 6 is the Transmitter Empty (TEMT) bit. In the FIFO mode, this bit is set whenever the
* Transmitter Shift Register and the FIFO are both empty. In the non-FIFO mode, this bit is set whenever
* the Transmitter Holding Register and the Transmitter Shift Register are both empty. This bit is
* typically used to make sure it is safe to change control registers. Changing control registers while
* the transmitter is busy can result in corrupt data being transmitted.
*
* LSR bit 7 is the Error in Receiver FIFO (FERR) bit. This bit is active only when FIFOs are enabled. It
* is set when there is at least one parity error, framing error, or break indication in the FIFO. This
* bit is cleared when the LSR is read and the character with the error is at the top of the receiver
* FIFO and there are no subsequent errors in the FIFO.
*/
union cvmx_mio_uartx_lsr {
uint64_t u64;
struct cvmx_mio_uartx_lsr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t ferr : 1; /**< Error in Receiver FIFO bit */
uint64_t temt : 1; /**< Transmitter Empty bit */
uint64_t thre : 1; /**< Transmitter Holding Register Empty bit */
uint64_t bi : 1; /**< Break Interrupt bit */
uint64_t fe : 1; /**< Framing Error bit */
uint64_t pe : 1; /**< Parity Error bit */
uint64_t oe : 1; /**< Overrun Error bit */
uint64_t dr : 1; /**< Data Ready bit */
#else
uint64_t dr : 1;
uint64_t oe : 1;
uint64_t pe : 1;
uint64_t fe : 1;
uint64_t bi : 1;
uint64_t thre : 1;
uint64_t temt : 1;
uint64_t ferr : 1;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uartx_lsr_s cn30xx;
struct cvmx_mio_uartx_lsr_s cn31xx;
struct cvmx_mio_uartx_lsr_s cn38xx;
struct cvmx_mio_uartx_lsr_s cn38xxp2;
struct cvmx_mio_uartx_lsr_s cn50xx;
struct cvmx_mio_uartx_lsr_s cn52xx;
struct cvmx_mio_uartx_lsr_s cn52xxp1;
struct cvmx_mio_uartx_lsr_s cn56xx;
struct cvmx_mio_uartx_lsr_s cn56xxp1;
struct cvmx_mio_uartx_lsr_s cn58xx;
struct cvmx_mio_uartx_lsr_s cn58xxp1;
struct cvmx_mio_uartx_lsr_s cn61xx;
struct cvmx_mio_uartx_lsr_s cn63xx;
struct cvmx_mio_uartx_lsr_s cn63xxp1;
struct cvmx_mio_uartx_lsr_s cn66xx;
struct cvmx_mio_uartx_lsr_s cn68xx;
struct cvmx_mio_uartx_lsr_s cn68xxp1;
struct cvmx_mio_uartx_lsr_s cnf71xx;
};
typedef union cvmx_mio_uartx_lsr cvmx_mio_uartx_lsr_t;
typedef cvmx_mio_uartx_lsr_t cvmx_uart_lsr_t;
/**
* cvmx_mio_uart#_mcr
*
* MIO_UARTX_MCR = MIO UARTX Modem Control Register
*
* The lower four bits of the Modem Control Register (MCR) directly manipulate the outputs of the UART.
* The DTR (bit 0), RTS (bit 1), OUT1 (bit 2), and OUT2 (bit 3) bits are inverted and then drive the
* corresponding UART outputs, dtr_n, rts_n, out1_n, and out2_n. In loopback mode, these outputs are
* driven inactive high while the values in these locations are internally looped back to the inputs.
*
* Note: When Auto RTS is enabled, the rts_n output is controlled in the same way, but is also gated
* with the receiver FIFO threshold trigger (rts_n is inactive high when above the threshold). The
* rts_n output will be de-asserted whenever RTS (bit 1) is set low.
*
* Note: The UART0 out1_n and out2_n outputs are not present on the pins of the chip, but the UART0 OUT1
* and OUT2 bits still function in Loopback mode. The UART1 dtr_n, out1_n, and out2_n outputs are not
* present on the pins of the chip, but the UART1 DTR, OUT1, and OUT2 bits still function in Loopback
* mode.
*
* MCR bit 4 is the Loopback bit. When set, data on the sout line is held high, while serial data output
* is looped back to the sin line, internally. In this mode all the interrupts are fully functional. This
* feature is used for diagnostic purposes. Also, in loopback mode, the modem control inputs (dsr_n,
* cts_n, ri_n, dcd_n) are disconnected and the four modem control outputs (dtr_n, rts_n, out1_n, out1_n)
* are looped back to the inputs, internally.
*
* MCR bit 5 is the Auto Flow Control Enable (AFCE) bit. When FIFOs are enabled and this bit is set,
* 16750-compatible Auto RTS and Auto CTS serial data flow control features are enabled.
*
* Auto RTS becomes active when the following occurs:
* 1. MCR bit 1 is set
* 2. FIFOs are enabled by setting FIFO Control Register (FCR) bit 0
* 3. MCR bit 5 is set (must be set after FCR bit 0)
*
* When active, the rts_n output is forced inactive-high when the receiver FIFO level reaches the
* threshold set by FCR[7:6]. When rts_n is connected to the cts_n input of another UART device, the
* other UART stops sending serial data until the receiver FIFO has available space.
*
* The selectable receiver FIFO threshold values are: 1, 1/4, 1/2, and 2 less than full. Since one
* additional character may be transmitted to the UART after rts_n has become inactive (due to data
* already having entered the transmitter block in the other UART), setting the threshold to 2 less
* than full allows maximum use of the FIFO with a safety zone of one character.
*
* Once the receiver FIFO becomes completely empty by reading the Receiver Buffer Register (RBR), rts_n
* again becomes active-low, signalling the other UART to continue sending data. It is important to note
* that, even if everything else is set to Enabled and the correct MCR bits are set, if the FIFOs are
* disabled through FCR[0], Auto Flow Control is also disabled. When Auto RTS is disabled or inactive,
* rts_n is controlled solely by MCR[1].
*
* Auto CTS becomes active when the following occurs:
* 1. FIFOs are enabled by setting FIFO Control Register (FCR) bit 0
* 2. MCR bit 5 is set (must be set after FCR bit 0)
*
* When active, the UART transmitter is disabled whenever the cts_n input becomes inactive-high. This
* prevents overflowing the FIFO of the receiving UART.
*
* Note that, if the cts_n input is not inactivated before the middle of the last stop bit, another
* character is transmitted before the transmitter is disabled. While the transmitter is disabled, the
* transmitter FIFO can still be written to, and even overflowed. Therefore, when using this mode, either
* the true FIFO depth (64 characters) must be known to software, or the Programmable THRE Interrupt mode
* must be enabled to access the FIFO full status through the Line Status Register. When using the FIFO
* full status, software can poll this before each write to the Transmitter FIFO.
*
* Note: FIFO full status is also available in the UART Status Register (USR) or the actual level of the
* FIFO may be read through the Transmit FIFO Level (TFL) register.
*
* When the cts_n input becomes active-low again, transmission resumes. It is important to note that,
* even if everything else is set to Enabled, Auto Flow Control is also disabled if the FIFOs are
* disabled through FCR[0]. When Auto CTS is disabled or inactive, the transmitter is unaffected by
* cts_n.
*/
union cvmx_mio_uartx_mcr {
uint64_t u64;
struct cvmx_mio_uartx_mcr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_6_63 : 58;
uint64_t afce : 1; /**< Auto Flow Control Enable bit */
uint64_t loop : 1; /**< Loopback bit */
uint64_t out2 : 1; /**< OUT2 output bit */
uint64_t out1 : 1; /**< OUT1 output bit */
uint64_t rts : 1; /**< Request To Send output bit */
uint64_t dtr : 1; /**< Data Terminal Ready output bit */
#else
uint64_t dtr : 1;
uint64_t rts : 1;
uint64_t out1 : 1;
uint64_t out2 : 1;
uint64_t loop : 1;
uint64_t afce : 1;
uint64_t reserved_6_63 : 58;
#endif
} s;
struct cvmx_mio_uartx_mcr_s cn30xx;
struct cvmx_mio_uartx_mcr_s cn31xx;
struct cvmx_mio_uartx_mcr_s cn38xx;
struct cvmx_mio_uartx_mcr_s cn38xxp2;
struct cvmx_mio_uartx_mcr_s cn50xx;
struct cvmx_mio_uartx_mcr_s cn52xx;
struct cvmx_mio_uartx_mcr_s cn52xxp1;
struct cvmx_mio_uartx_mcr_s cn56xx;
struct cvmx_mio_uartx_mcr_s cn56xxp1;
struct cvmx_mio_uartx_mcr_s cn58xx;
struct cvmx_mio_uartx_mcr_s cn58xxp1;
struct cvmx_mio_uartx_mcr_s cn61xx;
struct cvmx_mio_uartx_mcr_s cn63xx;
struct cvmx_mio_uartx_mcr_s cn63xxp1;
struct cvmx_mio_uartx_mcr_s cn66xx;
struct cvmx_mio_uartx_mcr_s cn68xx;
struct cvmx_mio_uartx_mcr_s cn68xxp1;
struct cvmx_mio_uartx_mcr_s cnf71xx;
};
typedef union cvmx_mio_uartx_mcr cvmx_mio_uartx_mcr_t;
typedef cvmx_mio_uartx_mcr_t cvmx_uart_mcr_t;
/**
* cvmx_mio_uart#_msr
*
* MIO_UARTX_MSR = MIO UARTX Modem Status Register
*
* The Modem Status Register (MSR) contains the current status of the modem control input lines and if
* they changed.
*
* DCTS (bit 0), DDSR (bit 1), and DDCD (bit 3) bits record whether the modem control lines (cts_n,
* dsr_n, and dcd_n) have changed since the last time the user read the MSR. TERI (bit 2) indicates ri_n
* has changed from an active-low, to an inactive-high state since the last time the MSR was read. In
* Loopback mode, DCTS reflects changes on MCR bit 1 (RTS), DDSR reflects changes on MCR bit 0 (DTR), and
* DDCD reflects changes on MCR bit 3 (Out2), while TERI reflects when MCR bit 2 (Out1) has changed state
* from a high to a low.
*
* Note: if the DCTS bit is not set and the cts_n signal is asserted (low) and a reset occurs (software
* or otherwise), then the DCTS bit will get set when the reset is removed if the cts_n signal remains
* asserted.
*
* The CTS, DSR, RI, and DCD Modem Status bits contain information on the current state of the modem
* control lines. CTS (bit 4) is the compliment of cts_n, DSR (bit 5) is the compliment of dsr_n, RI
* (bit 6) is the compliment of ri_n, and DCD (bit 7) is the compliment of dcd_n. In Loopback mode, CTS
* is the same as MCR bit 1 (RTS), DSR is the same as MCR bit 0 (DTR), RI is the same as MCR bit 2
* (Out1), and DCD is the same as MCR bit 3 (Out2).
*
* Note: The UART0 dsr_n and ri_n inputs are internally tied to power and not present on the pins of chip.
* Thus the UART0 DSR and RI bits will be '0' when not in Loopback mode. The UART1 dsr_n, ri_n, and dcd_n
* inputs are internally tied to power and not present on the pins of chip. Thus the UART1 DSR, RI, and
* DCD bits will be '0' when not in Loopback mode.
*/
union cvmx_mio_uartx_msr {
uint64_t u64;
struct cvmx_mio_uartx_msr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t dcd : 1; /**< Data Carrier Detect input bit */
uint64_t ri : 1; /**< Ring Indicator input bit */
uint64_t dsr : 1; /**< Data Set Ready input bit */
uint64_t cts : 1; /**< Clear To Send input bit */
uint64_t ddcd : 1; /**< Delta Data Carrier Detect bit */
uint64_t teri : 1; /**< Trailing Edge of Ring Indicator bit */
uint64_t ddsr : 1; /**< Delta Data Set Ready bit */
uint64_t dcts : 1; /**< Delta Clear To Send bit */
#else
uint64_t dcts : 1;
uint64_t ddsr : 1;
uint64_t teri : 1;
uint64_t ddcd : 1;
uint64_t cts : 1;
uint64_t dsr : 1;
uint64_t ri : 1;
uint64_t dcd : 1;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uartx_msr_s cn30xx;
struct cvmx_mio_uartx_msr_s cn31xx;
struct cvmx_mio_uartx_msr_s cn38xx;
struct cvmx_mio_uartx_msr_s cn38xxp2;
struct cvmx_mio_uartx_msr_s cn50xx;
struct cvmx_mio_uartx_msr_s cn52xx;
struct cvmx_mio_uartx_msr_s cn52xxp1;
struct cvmx_mio_uartx_msr_s cn56xx;
struct cvmx_mio_uartx_msr_s cn56xxp1;
struct cvmx_mio_uartx_msr_s cn58xx;
struct cvmx_mio_uartx_msr_s cn58xxp1;
struct cvmx_mio_uartx_msr_s cn61xx;
struct cvmx_mio_uartx_msr_s cn63xx;
struct cvmx_mio_uartx_msr_s cn63xxp1;
struct cvmx_mio_uartx_msr_s cn66xx;
struct cvmx_mio_uartx_msr_s cn68xx;
struct cvmx_mio_uartx_msr_s cn68xxp1;
struct cvmx_mio_uartx_msr_s cnf71xx;
};
typedef union cvmx_mio_uartx_msr cvmx_mio_uartx_msr_t;
typedef cvmx_mio_uartx_msr_t cvmx_uart_msr_t;
/**
* cvmx_mio_uart#_rbr
*
* MIO_UARTX_RBR = MIO UARTX Receive Buffer Register
*
* The Receive Buffer Register (RBR) is a read-only register that contains the data byte received on the
* serial input port (sin). The data in this register is valid only if the Data Ready (DR) bit in the
* Line status Register (LSR) is set. When the FIFOs are programmed OFF, the data in the RBR must be
* read before the next data arrives, otherwise it is overwritten, resulting in an overrun error. When
* the FIFOs are programmed ON, this register accesses the head of the receive FIFO. If the receive FIFO
* is full (64 characters) and this register is not read before the next data character arrives, then the
* data already in the FIFO is preserved, but any incoming data is lost. An overrun error also occurs.
*
* Note: The Divisor Latch Address Bit (DLAB) of the Line Control Register (LCR) must be clear to access
* this register.
*
* Note: The address below is an alias to simplify these CSR descriptions. It should be known that the
* RBR, THR, and DLL registers are the same.
*/
union cvmx_mio_uartx_rbr {
uint64_t u64;
struct cvmx_mio_uartx_rbr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t rbr : 8; /**< Receive Buffer Register */
#else
uint64_t rbr : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uartx_rbr_s cn30xx;
struct cvmx_mio_uartx_rbr_s cn31xx;
struct cvmx_mio_uartx_rbr_s cn38xx;
struct cvmx_mio_uartx_rbr_s cn38xxp2;
struct cvmx_mio_uartx_rbr_s cn50xx;
struct cvmx_mio_uartx_rbr_s cn52xx;
struct cvmx_mio_uartx_rbr_s cn52xxp1;
struct cvmx_mio_uartx_rbr_s cn56xx;
struct cvmx_mio_uartx_rbr_s cn56xxp1;
struct cvmx_mio_uartx_rbr_s cn58xx;
struct cvmx_mio_uartx_rbr_s cn58xxp1;
struct cvmx_mio_uartx_rbr_s cn61xx;
struct cvmx_mio_uartx_rbr_s cn63xx;
struct cvmx_mio_uartx_rbr_s cn63xxp1;
struct cvmx_mio_uartx_rbr_s cn66xx;
struct cvmx_mio_uartx_rbr_s cn68xx;
struct cvmx_mio_uartx_rbr_s cn68xxp1;
struct cvmx_mio_uartx_rbr_s cnf71xx;
};
typedef union cvmx_mio_uartx_rbr cvmx_mio_uartx_rbr_t;
typedef cvmx_mio_uartx_rbr_t cvmx_uart_rbr_t;
/**
* cvmx_mio_uart#_rfl
*
* MIO_UARTX_RFL = MIO UARTX Receive FIFO Level Register
*
* The Receive FIFO Level Register (RFL) indicates the number of data entries in the receive FIFO.
*/
union cvmx_mio_uartx_rfl {
uint64_t u64;
struct cvmx_mio_uartx_rfl_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_7_63 : 57;
uint64_t rfl : 7; /**< Receive FIFO Level Register */
#else
uint64_t rfl : 7;
uint64_t reserved_7_63 : 57;
#endif
} s;
struct cvmx_mio_uartx_rfl_s cn30xx;
struct cvmx_mio_uartx_rfl_s cn31xx;
struct cvmx_mio_uartx_rfl_s cn38xx;
struct cvmx_mio_uartx_rfl_s cn38xxp2;
struct cvmx_mio_uartx_rfl_s cn50xx;
struct cvmx_mio_uartx_rfl_s cn52xx;
struct cvmx_mio_uartx_rfl_s cn52xxp1;
struct cvmx_mio_uartx_rfl_s cn56xx;
struct cvmx_mio_uartx_rfl_s cn56xxp1;
struct cvmx_mio_uartx_rfl_s cn58xx;
struct cvmx_mio_uartx_rfl_s cn58xxp1;
struct cvmx_mio_uartx_rfl_s cn61xx;
struct cvmx_mio_uartx_rfl_s cn63xx;
struct cvmx_mio_uartx_rfl_s cn63xxp1;
struct cvmx_mio_uartx_rfl_s cn66xx;
struct cvmx_mio_uartx_rfl_s cn68xx;
struct cvmx_mio_uartx_rfl_s cn68xxp1;
struct cvmx_mio_uartx_rfl_s cnf71xx;
};
typedef union cvmx_mio_uartx_rfl cvmx_mio_uartx_rfl_t;
typedef cvmx_mio_uartx_rfl_t cvmx_uart_rfl_t;
/**
* cvmx_mio_uart#_rfw
*
* MIO_UARTX_RFW = MIO UARTX Receive FIFO Write Register
*
* The Receive FIFO Write Register (RFW) is only valid when FIFO access mode is enabled (FAR bit 0 is
* set). When FIFOs are enabled, this register is used to write data to the receive FIFO. Each
* consecutive write pushes the new data to the next write location in the receive FIFO. When FIFOs are
* not enabled, this register is used to write data to the RBR.
*/
union cvmx_mio_uartx_rfw {
uint64_t u64;
struct cvmx_mio_uartx_rfw_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_10_63 : 54;
uint64_t rffe : 1; /**< Receive FIFO Framing Error */
uint64_t rfpe : 1; /**< Receive FIFO Parity Error */
uint64_t rfwd : 8; /**< Receive FIFO Write Data */
#else
uint64_t rfwd : 8;
uint64_t rfpe : 1;
uint64_t rffe : 1;
uint64_t reserved_10_63 : 54;
#endif
} s;
struct cvmx_mio_uartx_rfw_s cn30xx;
struct cvmx_mio_uartx_rfw_s cn31xx;
struct cvmx_mio_uartx_rfw_s cn38xx;
struct cvmx_mio_uartx_rfw_s cn38xxp2;
struct cvmx_mio_uartx_rfw_s cn50xx;
struct cvmx_mio_uartx_rfw_s cn52xx;
struct cvmx_mio_uartx_rfw_s cn52xxp1;
struct cvmx_mio_uartx_rfw_s cn56xx;
struct cvmx_mio_uartx_rfw_s cn56xxp1;
struct cvmx_mio_uartx_rfw_s cn58xx;
struct cvmx_mio_uartx_rfw_s cn58xxp1;
struct cvmx_mio_uartx_rfw_s cn61xx;
struct cvmx_mio_uartx_rfw_s cn63xx;
struct cvmx_mio_uartx_rfw_s cn63xxp1;
struct cvmx_mio_uartx_rfw_s cn66xx;
struct cvmx_mio_uartx_rfw_s cn68xx;
struct cvmx_mio_uartx_rfw_s cn68xxp1;
struct cvmx_mio_uartx_rfw_s cnf71xx;
};
typedef union cvmx_mio_uartx_rfw cvmx_mio_uartx_rfw_t;
typedef cvmx_mio_uartx_rfw_t cvmx_uart_rfw_t;
/**
* cvmx_mio_uart#_sbcr
*
* MIO_UARTX_SBCR = MIO UARTX Shadow Break Control Register
*
* The Shadow Break Control Register (SBCR) is a shadow register for the BREAK bit (LCR bit 6) that can
* be used to remove the burden of having to perform a read-modify-write on the LCR.
*/
union cvmx_mio_uartx_sbcr {
uint64_t u64;
struct cvmx_mio_uartx_sbcr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_1_63 : 63;
uint64_t sbcr : 1; /**< Shadow Break Control */
#else
uint64_t sbcr : 1;
uint64_t reserved_1_63 : 63;
#endif
} s;
struct cvmx_mio_uartx_sbcr_s cn30xx;
struct cvmx_mio_uartx_sbcr_s cn31xx;
struct cvmx_mio_uartx_sbcr_s cn38xx;
struct cvmx_mio_uartx_sbcr_s cn38xxp2;
struct cvmx_mio_uartx_sbcr_s cn50xx;
struct cvmx_mio_uartx_sbcr_s cn52xx;
struct cvmx_mio_uartx_sbcr_s cn52xxp1;
struct cvmx_mio_uartx_sbcr_s cn56xx;
struct cvmx_mio_uartx_sbcr_s cn56xxp1;
struct cvmx_mio_uartx_sbcr_s cn58xx;
struct cvmx_mio_uartx_sbcr_s cn58xxp1;
struct cvmx_mio_uartx_sbcr_s cn61xx;
struct cvmx_mio_uartx_sbcr_s cn63xx;
struct cvmx_mio_uartx_sbcr_s cn63xxp1;
struct cvmx_mio_uartx_sbcr_s cn66xx;
struct cvmx_mio_uartx_sbcr_s cn68xx;
struct cvmx_mio_uartx_sbcr_s cn68xxp1;
struct cvmx_mio_uartx_sbcr_s cnf71xx;
};
typedef union cvmx_mio_uartx_sbcr cvmx_mio_uartx_sbcr_t;
typedef cvmx_mio_uartx_sbcr_t cvmx_uart_sbcr_t;
/**
* cvmx_mio_uart#_scr
*
* MIO_UARTX_SCR = MIO UARTX Scratchpad Register
*
* The Scratchpad Register (SCR) is an 8-bit read/write register for programmers to use as a temporary
* storage space.
*/
union cvmx_mio_uartx_scr {
uint64_t u64;
struct cvmx_mio_uartx_scr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t scr : 8; /**< Scratchpad Register */
#else
uint64_t scr : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uartx_scr_s cn30xx;
struct cvmx_mio_uartx_scr_s cn31xx;
struct cvmx_mio_uartx_scr_s cn38xx;
struct cvmx_mio_uartx_scr_s cn38xxp2;
struct cvmx_mio_uartx_scr_s cn50xx;
struct cvmx_mio_uartx_scr_s cn52xx;
struct cvmx_mio_uartx_scr_s cn52xxp1;
struct cvmx_mio_uartx_scr_s cn56xx;
struct cvmx_mio_uartx_scr_s cn56xxp1;
struct cvmx_mio_uartx_scr_s cn58xx;
struct cvmx_mio_uartx_scr_s cn58xxp1;
struct cvmx_mio_uartx_scr_s cn61xx;
struct cvmx_mio_uartx_scr_s cn63xx;
struct cvmx_mio_uartx_scr_s cn63xxp1;
struct cvmx_mio_uartx_scr_s cn66xx;
struct cvmx_mio_uartx_scr_s cn68xx;
struct cvmx_mio_uartx_scr_s cn68xxp1;
struct cvmx_mio_uartx_scr_s cnf71xx;
};
typedef union cvmx_mio_uartx_scr cvmx_mio_uartx_scr_t;
typedef cvmx_mio_uartx_scr_t cvmx_uart_scr_t;
/**
* cvmx_mio_uart#_sfe
*
* MIO_UARTX_SFE = MIO UARTX Shadow FIFO Enable Register
*
* The Shadow FIFO Enable Register (SFE) is a shadow register for the FIFO enable bit (FCR bit 0) that
* can be used to remove the burden of having to store the previously written value to the FCR in memory
* and having to mask this value so that only the FIFO enable bit gets updated.
*/
union cvmx_mio_uartx_sfe {
uint64_t u64;
struct cvmx_mio_uartx_sfe_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_1_63 : 63;
uint64_t sfe : 1; /**< Shadow FIFO Enable */
#else
uint64_t sfe : 1;
uint64_t reserved_1_63 : 63;
#endif
} s;
struct cvmx_mio_uartx_sfe_s cn30xx;
struct cvmx_mio_uartx_sfe_s cn31xx;
struct cvmx_mio_uartx_sfe_s cn38xx;
struct cvmx_mio_uartx_sfe_s cn38xxp2;
struct cvmx_mio_uartx_sfe_s cn50xx;
struct cvmx_mio_uartx_sfe_s cn52xx;
struct cvmx_mio_uartx_sfe_s cn52xxp1;
struct cvmx_mio_uartx_sfe_s cn56xx;
struct cvmx_mio_uartx_sfe_s cn56xxp1;
struct cvmx_mio_uartx_sfe_s cn58xx;
struct cvmx_mio_uartx_sfe_s cn58xxp1;
struct cvmx_mio_uartx_sfe_s cn61xx;
struct cvmx_mio_uartx_sfe_s cn63xx;
struct cvmx_mio_uartx_sfe_s cn63xxp1;
struct cvmx_mio_uartx_sfe_s cn66xx;
struct cvmx_mio_uartx_sfe_s cn68xx;
struct cvmx_mio_uartx_sfe_s cn68xxp1;
struct cvmx_mio_uartx_sfe_s cnf71xx;
};
typedef union cvmx_mio_uartx_sfe cvmx_mio_uartx_sfe_t;
typedef cvmx_mio_uartx_sfe_t cvmx_uart_sfe_t;
/**
* cvmx_mio_uart#_srr
*
* MIO_UARTX_SRR = MIO UARTX Software Reset Register
*
* The Software Reset Register (SRR) is a write-only register that resets the UART and/or the receive
* FIFO and/or the transmit FIFO.
*
* Bit 0 of the SRR is the UART Soft Reset (USR) bit. Setting this bit resets the UART.
*
* Bit 1 of the SRR is a shadow copy of the RX FIFO Reset bit (FCR bit 1). This can be used to remove
* the burden on software having to store previously written FCR values (which are pretty static) just
* to reset the receive FIFO.
*
* Bit 2 of the SRR is a shadow copy of the TX FIFO Reset bit (FCR bit 2). This can be used to remove
* the burden on software having to store previously written FCR values (which are pretty static) just
* to reset the transmit FIFO.
*/
union cvmx_mio_uartx_srr {
uint64_t u64;
struct cvmx_mio_uartx_srr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_3_63 : 61;
uint64_t stfr : 1; /**< Shadow TX FIFO Reset */
uint64_t srfr : 1; /**< Shadow RX FIFO Reset */
uint64_t usr : 1; /**< UART Soft Reset */
#else
uint64_t usr : 1;
uint64_t srfr : 1;
uint64_t stfr : 1;
uint64_t reserved_3_63 : 61;
#endif
} s;
struct cvmx_mio_uartx_srr_s cn30xx;
struct cvmx_mio_uartx_srr_s cn31xx;
struct cvmx_mio_uartx_srr_s cn38xx;
struct cvmx_mio_uartx_srr_s cn38xxp2;
struct cvmx_mio_uartx_srr_s cn50xx;
struct cvmx_mio_uartx_srr_s cn52xx;
struct cvmx_mio_uartx_srr_s cn52xxp1;
struct cvmx_mio_uartx_srr_s cn56xx;
struct cvmx_mio_uartx_srr_s cn56xxp1;
struct cvmx_mio_uartx_srr_s cn58xx;
struct cvmx_mio_uartx_srr_s cn58xxp1;
struct cvmx_mio_uartx_srr_s cn61xx;
struct cvmx_mio_uartx_srr_s cn63xx;
struct cvmx_mio_uartx_srr_s cn63xxp1;
struct cvmx_mio_uartx_srr_s cn66xx;
struct cvmx_mio_uartx_srr_s cn68xx;
struct cvmx_mio_uartx_srr_s cn68xxp1;
struct cvmx_mio_uartx_srr_s cnf71xx;
};
typedef union cvmx_mio_uartx_srr cvmx_mio_uartx_srr_t;
typedef cvmx_mio_uartx_srr_t cvmx_uart_srr_t;
/**
* cvmx_mio_uart#_srt
*
* MIO_UARTX_SRT = MIO UARTX Shadow RX Trigger Register
*
* The Shadow RX Trigger Register (SRT) is a shadow register for the RX Trigger bits (FCR bits 7:6) that
* can be used to remove the burden of having to store the previously written value to the FCR in memory
* and having to mask this value so that only the RX Trigger bits get updated.
*/
union cvmx_mio_uartx_srt {
uint64_t u64;
struct cvmx_mio_uartx_srt_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_2_63 : 62;
uint64_t srt : 2; /**< Shadow RX Trigger */
#else
uint64_t srt : 2;
uint64_t reserved_2_63 : 62;
#endif
} s;
struct cvmx_mio_uartx_srt_s cn30xx;
struct cvmx_mio_uartx_srt_s cn31xx;
struct cvmx_mio_uartx_srt_s cn38xx;
struct cvmx_mio_uartx_srt_s cn38xxp2;
struct cvmx_mio_uartx_srt_s cn50xx;
struct cvmx_mio_uartx_srt_s cn52xx;
struct cvmx_mio_uartx_srt_s cn52xxp1;
struct cvmx_mio_uartx_srt_s cn56xx;
struct cvmx_mio_uartx_srt_s cn56xxp1;
struct cvmx_mio_uartx_srt_s cn58xx;
struct cvmx_mio_uartx_srt_s cn58xxp1;
struct cvmx_mio_uartx_srt_s cn61xx;
struct cvmx_mio_uartx_srt_s cn63xx;
struct cvmx_mio_uartx_srt_s cn63xxp1;
struct cvmx_mio_uartx_srt_s cn66xx;
struct cvmx_mio_uartx_srt_s cn68xx;
struct cvmx_mio_uartx_srt_s cn68xxp1;
struct cvmx_mio_uartx_srt_s cnf71xx;
};
typedef union cvmx_mio_uartx_srt cvmx_mio_uartx_srt_t;
typedef cvmx_mio_uartx_srt_t cvmx_uart_srt_t;
/**
* cvmx_mio_uart#_srts
*
* MIO_UARTX_SRTS = MIO UARTX Shadow Request To Send Register
*
* The Shadow Request To Send Register (SRTS) is a shadow register for the RTS bit (MCR bit 1) that can
* be used to remove the burden of having to perform a read-modify-write on the MCR.
*/
union cvmx_mio_uartx_srts {
uint64_t u64;
struct cvmx_mio_uartx_srts_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_1_63 : 63;
uint64_t srts : 1; /**< Shadow Request To Send */
#else
uint64_t srts : 1;
uint64_t reserved_1_63 : 63;
#endif
} s;
struct cvmx_mio_uartx_srts_s cn30xx;
struct cvmx_mio_uartx_srts_s cn31xx;
struct cvmx_mio_uartx_srts_s cn38xx;
struct cvmx_mio_uartx_srts_s cn38xxp2;
struct cvmx_mio_uartx_srts_s cn50xx;
struct cvmx_mio_uartx_srts_s cn52xx;
struct cvmx_mio_uartx_srts_s cn52xxp1;
struct cvmx_mio_uartx_srts_s cn56xx;
struct cvmx_mio_uartx_srts_s cn56xxp1;
struct cvmx_mio_uartx_srts_s cn58xx;
struct cvmx_mio_uartx_srts_s cn58xxp1;
struct cvmx_mio_uartx_srts_s cn61xx;
struct cvmx_mio_uartx_srts_s cn63xx;
struct cvmx_mio_uartx_srts_s cn63xxp1;
struct cvmx_mio_uartx_srts_s cn66xx;
struct cvmx_mio_uartx_srts_s cn68xx;
struct cvmx_mio_uartx_srts_s cn68xxp1;
struct cvmx_mio_uartx_srts_s cnf71xx;
};
typedef union cvmx_mio_uartx_srts cvmx_mio_uartx_srts_t;
typedef cvmx_mio_uartx_srts_t cvmx_uart_srts_t;
/**
* cvmx_mio_uart#_stt
*
* MIO_UARTX_STT = MIO UARTX Shadow TX Trigger Register
*
* The Shadow TX Trigger Register (STT) is a shadow register for the TX Trigger bits (FCR bits 5:4) that
* can be used to remove the burden of having to store the previously written value to the FCR in memory
* and having to mask this value so that only the TX Trigger bits get updated.
*/
union cvmx_mio_uartx_stt {
uint64_t u64;
struct cvmx_mio_uartx_stt_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_2_63 : 62;
uint64_t stt : 2; /**< Shadow TX Trigger */
#else
uint64_t stt : 2;
uint64_t reserved_2_63 : 62;
#endif
} s;
struct cvmx_mio_uartx_stt_s cn30xx;
struct cvmx_mio_uartx_stt_s cn31xx;
struct cvmx_mio_uartx_stt_s cn38xx;
struct cvmx_mio_uartx_stt_s cn38xxp2;
struct cvmx_mio_uartx_stt_s cn50xx;
struct cvmx_mio_uartx_stt_s cn52xx;
struct cvmx_mio_uartx_stt_s cn52xxp1;
struct cvmx_mio_uartx_stt_s cn56xx;
struct cvmx_mio_uartx_stt_s cn56xxp1;
struct cvmx_mio_uartx_stt_s cn58xx;
struct cvmx_mio_uartx_stt_s cn58xxp1;
struct cvmx_mio_uartx_stt_s cn61xx;
struct cvmx_mio_uartx_stt_s cn63xx;
struct cvmx_mio_uartx_stt_s cn63xxp1;
struct cvmx_mio_uartx_stt_s cn66xx;
struct cvmx_mio_uartx_stt_s cn68xx;
struct cvmx_mio_uartx_stt_s cn68xxp1;
struct cvmx_mio_uartx_stt_s cnf71xx;
};
typedef union cvmx_mio_uartx_stt cvmx_mio_uartx_stt_t;
typedef cvmx_mio_uartx_stt_t cvmx_uart_stt_t;
/**
* cvmx_mio_uart#_tfl
*
* MIO_UARTX_TFL = MIO UARTX Transmit FIFO Level Register
*
* The Transmit FIFO Level Register (TFL) indicates the number of data entries in the transmit FIFO.
*/
union cvmx_mio_uartx_tfl {
uint64_t u64;
struct cvmx_mio_uartx_tfl_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_7_63 : 57;
uint64_t tfl : 7; /**< Transmit FIFO Level Register */
#else
uint64_t tfl : 7;
uint64_t reserved_7_63 : 57;
#endif
} s;
struct cvmx_mio_uartx_tfl_s cn30xx;
struct cvmx_mio_uartx_tfl_s cn31xx;
struct cvmx_mio_uartx_tfl_s cn38xx;
struct cvmx_mio_uartx_tfl_s cn38xxp2;
struct cvmx_mio_uartx_tfl_s cn50xx;
struct cvmx_mio_uartx_tfl_s cn52xx;
struct cvmx_mio_uartx_tfl_s cn52xxp1;
struct cvmx_mio_uartx_tfl_s cn56xx;
struct cvmx_mio_uartx_tfl_s cn56xxp1;
struct cvmx_mio_uartx_tfl_s cn58xx;
struct cvmx_mio_uartx_tfl_s cn58xxp1;
struct cvmx_mio_uartx_tfl_s cn61xx;
struct cvmx_mio_uartx_tfl_s cn63xx;
struct cvmx_mio_uartx_tfl_s cn63xxp1;
struct cvmx_mio_uartx_tfl_s cn66xx;
struct cvmx_mio_uartx_tfl_s cn68xx;
struct cvmx_mio_uartx_tfl_s cn68xxp1;
struct cvmx_mio_uartx_tfl_s cnf71xx;
};
typedef union cvmx_mio_uartx_tfl cvmx_mio_uartx_tfl_t;
typedef cvmx_mio_uartx_tfl_t cvmx_uart_tfl_t;
/**
* cvmx_mio_uart#_tfr
*
* MIO_UARTX_TFR = MIO UARTX Transmit FIFO Read Register
*
* The Transmit FIFO Read Register (TFR) is only valid when FIFO access mode is enabled (FAR bit 0 is
* set). When FIFOs are enabled, reading this register gives the data at the top of the transmit FIFO.
* Each consecutive read pops the transmit FIFO and gives the next data value that is currently at the
* top of the FIFO. When FIFOs are not enabled, reading this register gives the data in the THR.
*/
union cvmx_mio_uartx_tfr {
uint64_t u64;
struct cvmx_mio_uartx_tfr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t tfr : 8; /**< Transmit FIFO Read Register */
#else
uint64_t tfr : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uartx_tfr_s cn30xx;
struct cvmx_mio_uartx_tfr_s cn31xx;
struct cvmx_mio_uartx_tfr_s cn38xx;
struct cvmx_mio_uartx_tfr_s cn38xxp2;
struct cvmx_mio_uartx_tfr_s cn50xx;
struct cvmx_mio_uartx_tfr_s cn52xx;
struct cvmx_mio_uartx_tfr_s cn52xxp1;
struct cvmx_mio_uartx_tfr_s cn56xx;
struct cvmx_mio_uartx_tfr_s cn56xxp1;
struct cvmx_mio_uartx_tfr_s cn58xx;
struct cvmx_mio_uartx_tfr_s cn58xxp1;
struct cvmx_mio_uartx_tfr_s cn61xx;
struct cvmx_mio_uartx_tfr_s cn63xx;
struct cvmx_mio_uartx_tfr_s cn63xxp1;
struct cvmx_mio_uartx_tfr_s cn66xx;
struct cvmx_mio_uartx_tfr_s cn68xx;
struct cvmx_mio_uartx_tfr_s cn68xxp1;
struct cvmx_mio_uartx_tfr_s cnf71xx;
};
typedef union cvmx_mio_uartx_tfr cvmx_mio_uartx_tfr_t;
typedef cvmx_mio_uartx_tfr_t cvmx_uart_tfr_t;
/**
* cvmx_mio_uart#_thr
*
* MIO_UARTX_THR = MIO UARTX Transmit Holding Register
*
* Transmit Holding Register (THR) is a write-only register that contains data to be transmitted on the
* serial output port (sout). Data can be written to the THR any time that the THR Empty (THRE) bit of
* the Line Status Register (LSR) is set.
*
* If FIFOs are not enabled and THRE is set, writing a single character to the THR clears the THRE. Any
* additional writes to the THR before the THRE is set again causes the THR data to be overwritten.
*
* If FIFOs are enabled and THRE is set (and Programmable THRE mode disabled), 64 characters of data may
* be written to the THR before the FIFO is full. Any attempt to write data when the FIFO is full results
* in the write data being lost.
*
* Note: The Divisor Latch Address Bit (DLAB) of the Line Control Register (LCR) must be clear to access
* this register.
*
* Note: The address below is an alias to simplify these CSR descriptions. It should be known that the
* RBR, THR, and DLL registers are the same.
*/
union cvmx_mio_uartx_thr {
uint64_t u64;
struct cvmx_mio_uartx_thr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t thr : 8; /**< Transmit Holding Register */
#else
uint64_t thr : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uartx_thr_s cn30xx;
struct cvmx_mio_uartx_thr_s cn31xx;
struct cvmx_mio_uartx_thr_s cn38xx;
struct cvmx_mio_uartx_thr_s cn38xxp2;
struct cvmx_mio_uartx_thr_s cn50xx;
struct cvmx_mio_uartx_thr_s cn52xx;
struct cvmx_mio_uartx_thr_s cn52xxp1;
struct cvmx_mio_uartx_thr_s cn56xx;
struct cvmx_mio_uartx_thr_s cn56xxp1;
struct cvmx_mio_uartx_thr_s cn58xx;
struct cvmx_mio_uartx_thr_s cn58xxp1;
struct cvmx_mio_uartx_thr_s cn61xx;
struct cvmx_mio_uartx_thr_s cn63xx;
struct cvmx_mio_uartx_thr_s cn63xxp1;
struct cvmx_mio_uartx_thr_s cn66xx;
struct cvmx_mio_uartx_thr_s cn68xx;
struct cvmx_mio_uartx_thr_s cn68xxp1;
struct cvmx_mio_uartx_thr_s cnf71xx;
};
typedef union cvmx_mio_uartx_thr cvmx_mio_uartx_thr_t;
typedef cvmx_mio_uartx_thr_t cvmx_uart_thr_t;
/**
* cvmx_mio_uart#_usr
*
* MIO_UARTX_USR = MIO UARTX UART Status Register
*
* The UART Status Register (USR) contains UART status information.
*
* USR bit 0 is the BUSY bit. When set this bit indicates that a serial transfer is in progress, when
* clear it indicates that the UART is idle or inactive.
*
* Note: In PASS3, the BUSY bit will always be clear.
*
* USR bits 1-4 indicate the following FIFO status: TX FIFO Not Full (TFNF), TX FIFO Empty (TFE), RX
* FIFO Not Empty (RFNE), and RX FIFO Full (RFF).
*/
union cvmx_mio_uartx_usr {
uint64_t u64;
struct cvmx_mio_uartx_usr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_5_63 : 59;
uint64_t rff : 1; /**< RX FIFO Full */
uint64_t rfne : 1; /**< RX FIFO Not Empty */
uint64_t tfe : 1; /**< TX FIFO Empty */
uint64_t tfnf : 1; /**< TX FIFO Not Full */
uint64_t busy : 1; /**< Busy bit (always 0 in PASS3) */
#else
uint64_t busy : 1;
uint64_t tfnf : 1;
uint64_t tfe : 1;
uint64_t rfne : 1;
uint64_t rff : 1;
uint64_t reserved_5_63 : 59;
#endif
} s;
struct cvmx_mio_uartx_usr_s cn30xx;
struct cvmx_mio_uartx_usr_s cn31xx;
struct cvmx_mio_uartx_usr_s cn38xx;
struct cvmx_mio_uartx_usr_s cn38xxp2;
struct cvmx_mio_uartx_usr_s cn50xx;
struct cvmx_mio_uartx_usr_s cn52xx;
struct cvmx_mio_uartx_usr_s cn52xxp1;
struct cvmx_mio_uartx_usr_s cn56xx;
struct cvmx_mio_uartx_usr_s cn56xxp1;
struct cvmx_mio_uartx_usr_s cn58xx;
struct cvmx_mio_uartx_usr_s cn58xxp1;
struct cvmx_mio_uartx_usr_s cn61xx;
struct cvmx_mio_uartx_usr_s cn63xx;
struct cvmx_mio_uartx_usr_s cn63xxp1;
struct cvmx_mio_uartx_usr_s cn66xx;
struct cvmx_mio_uartx_usr_s cn68xx;
struct cvmx_mio_uartx_usr_s cn68xxp1;
struct cvmx_mio_uartx_usr_s cnf71xx;
};
typedef union cvmx_mio_uartx_usr cvmx_mio_uartx_usr_t;
typedef cvmx_mio_uartx_usr_t cvmx_uart_usr_t;
/**
* cvmx_mio_uart2_dlh
*/
union cvmx_mio_uart2_dlh {
uint64_t u64;
struct cvmx_mio_uart2_dlh_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t dlh : 8; /**< Divisor Latch High Register */
#else
uint64_t dlh : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uart2_dlh_s cn52xx;
struct cvmx_mio_uart2_dlh_s cn52xxp1;
};
typedef union cvmx_mio_uart2_dlh cvmx_mio_uart2_dlh_t;
/**
* cvmx_mio_uart2_dll
*/
union cvmx_mio_uart2_dll {
uint64_t u64;
struct cvmx_mio_uart2_dll_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t dll : 8; /**< Divisor Latch Low Register */
#else
uint64_t dll : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uart2_dll_s cn52xx;
struct cvmx_mio_uart2_dll_s cn52xxp1;
};
typedef union cvmx_mio_uart2_dll cvmx_mio_uart2_dll_t;
/**
* cvmx_mio_uart2_far
*/
union cvmx_mio_uart2_far {
uint64_t u64;
struct cvmx_mio_uart2_far_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_1_63 : 63;
uint64_t far : 1; /**< FIFO Access Register */
#else
uint64_t far : 1;
uint64_t reserved_1_63 : 63;
#endif
} s;
struct cvmx_mio_uart2_far_s cn52xx;
struct cvmx_mio_uart2_far_s cn52xxp1;
};
typedef union cvmx_mio_uart2_far cvmx_mio_uart2_far_t;
/**
* cvmx_mio_uart2_fcr
*/
union cvmx_mio_uart2_fcr {
uint64_t u64;
struct cvmx_mio_uart2_fcr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t rxtrig : 2; /**< RX Trigger */
uint64_t txtrig : 2; /**< TX Trigger */
uint64_t reserved_3_3 : 1;
uint64_t txfr : 1; /**< TX FIFO reset */
uint64_t rxfr : 1; /**< RX FIFO reset */
uint64_t en : 1; /**< FIFO enable */
#else
uint64_t en : 1;
uint64_t rxfr : 1;
uint64_t txfr : 1;
uint64_t reserved_3_3 : 1;
uint64_t txtrig : 2;
uint64_t rxtrig : 2;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uart2_fcr_s cn52xx;
struct cvmx_mio_uart2_fcr_s cn52xxp1;
};
typedef union cvmx_mio_uart2_fcr cvmx_mio_uart2_fcr_t;
/**
* cvmx_mio_uart2_htx
*/
union cvmx_mio_uart2_htx {
uint64_t u64;
struct cvmx_mio_uart2_htx_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_1_63 : 63;
uint64_t htx : 1; /**< Halt TX */
#else
uint64_t htx : 1;
uint64_t reserved_1_63 : 63;
#endif
} s;
struct cvmx_mio_uart2_htx_s cn52xx;
struct cvmx_mio_uart2_htx_s cn52xxp1;
};
typedef union cvmx_mio_uart2_htx cvmx_mio_uart2_htx_t;
/**
* cvmx_mio_uart2_ier
*/
union cvmx_mio_uart2_ier {
uint64_t u64;
struct cvmx_mio_uart2_ier_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t ptime : 1; /**< Programmable THRE Interrupt mode enable */
uint64_t reserved_4_6 : 3;
uint64_t edssi : 1; /**< Enable Modem Status Interrupt */
uint64_t elsi : 1; /**< Enable Receiver Line Status Interrupt */
uint64_t etbei : 1; /**< Enable Transmitter Holding Register Empty Interrupt */
uint64_t erbfi : 1; /**< Enable Received Data Available Interrupt */
#else
uint64_t erbfi : 1;
uint64_t etbei : 1;
uint64_t elsi : 1;
uint64_t edssi : 1;
uint64_t reserved_4_6 : 3;
uint64_t ptime : 1;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uart2_ier_s cn52xx;
struct cvmx_mio_uart2_ier_s cn52xxp1;
};
typedef union cvmx_mio_uart2_ier cvmx_mio_uart2_ier_t;
/**
* cvmx_mio_uart2_iir
*/
union cvmx_mio_uart2_iir {
uint64_t u64;
struct cvmx_mio_uart2_iir_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t fen : 2; /**< FIFO-enabled bits */
uint64_t reserved_4_5 : 2;
uint64_t iid : 4; /**< Interrupt ID */
#else
uint64_t iid : 4;
uint64_t reserved_4_5 : 2;
uint64_t fen : 2;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uart2_iir_s cn52xx;
struct cvmx_mio_uart2_iir_s cn52xxp1;
};
typedef union cvmx_mio_uart2_iir cvmx_mio_uart2_iir_t;
/**
* cvmx_mio_uart2_lcr
*/
union cvmx_mio_uart2_lcr {
uint64_t u64;
struct cvmx_mio_uart2_lcr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t dlab : 1; /**< Divisor Latch Address bit */
uint64_t brk : 1; /**< Break Control bit */
uint64_t reserved_5_5 : 1;
uint64_t eps : 1; /**< Even Parity Select bit */
uint64_t pen : 1; /**< Parity Enable bit */
uint64_t stop : 1; /**< Stop Control bit */
uint64_t cls : 2; /**< Character Length Select */
#else
uint64_t cls : 2;
uint64_t stop : 1;
uint64_t pen : 1;
uint64_t eps : 1;
uint64_t reserved_5_5 : 1;
uint64_t brk : 1;
uint64_t dlab : 1;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uart2_lcr_s cn52xx;
struct cvmx_mio_uart2_lcr_s cn52xxp1;
};
typedef union cvmx_mio_uart2_lcr cvmx_mio_uart2_lcr_t;
/**
* cvmx_mio_uart2_lsr
*/
union cvmx_mio_uart2_lsr {
uint64_t u64;
struct cvmx_mio_uart2_lsr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t ferr : 1; /**< Error in Receiver FIFO bit */
uint64_t temt : 1; /**< Transmitter Empty bit */
uint64_t thre : 1; /**< Transmitter Holding Register Empty bit */
uint64_t bi : 1; /**< Break Interrupt bit */
uint64_t fe : 1; /**< Framing Error bit */
uint64_t pe : 1; /**< Parity Error bit */
uint64_t oe : 1; /**< Overrun Error bit */
uint64_t dr : 1; /**< Data Ready bit */
#else
uint64_t dr : 1;
uint64_t oe : 1;
uint64_t pe : 1;
uint64_t fe : 1;
uint64_t bi : 1;
uint64_t thre : 1;
uint64_t temt : 1;
uint64_t ferr : 1;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uart2_lsr_s cn52xx;
struct cvmx_mio_uart2_lsr_s cn52xxp1;
};
typedef union cvmx_mio_uart2_lsr cvmx_mio_uart2_lsr_t;
/**
* cvmx_mio_uart2_mcr
*/
union cvmx_mio_uart2_mcr {
uint64_t u64;
struct cvmx_mio_uart2_mcr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_6_63 : 58;
uint64_t afce : 1; /**< Auto Flow Control Enable bit */
uint64_t loop : 1; /**< Loopback bit */
uint64_t out2 : 1; /**< OUT2 output bit */
uint64_t out1 : 1; /**< OUT1 output bit */
uint64_t rts : 1; /**< Request To Send output bit */
uint64_t dtr : 1; /**< Data Terminal Ready output bit */
#else
uint64_t dtr : 1;
uint64_t rts : 1;
uint64_t out1 : 1;
uint64_t out2 : 1;
uint64_t loop : 1;
uint64_t afce : 1;
uint64_t reserved_6_63 : 58;
#endif
} s;
struct cvmx_mio_uart2_mcr_s cn52xx;
struct cvmx_mio_uart2_mcr_s cn52xxp1;
};
typedef union cvmx_mio_uart2_mcr cvmx_mio_uart2_mcr_t;
/**
* cvmx_mio_uart2_msr
*/
union cvmx_mio_uart2_msr {
uint64_t u64;
struct cvmx_mio_uart2_msr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t dcd : 1; /**< Data Carrier Detect input bit */
uint64_t ri : 1; /**< Ring Indicator input bit */
uint64_t dsr : 1; /**< Data Set Ready input bit */
uint64_t cts : 1; /**< Clear To Send input bit */
uint64_t ddcd : 1; /**< Delta Data Carrier Detect bit */
uint64_t teri : 1; /**< Trailing Edge of Ring Indicator bit */
uint64_t ddsr : 1; /**< Delta Data Set Ready bit */
uint64_t dcts : 1; /**< Delta Clear To Send bit */
#else
uint64_t dcts : 1;
uint64_t ddsr : 1;
uint64_t teri : 1;
uint64_t ddcd : 1;
uint64_t cts : 1;
uint64_t dsr : 1;
uint64_t ri : 1;
uint64_t dcd : 1;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uart2_msr_s cn52xx;
struct cvmx_mio_uart2_msr_s cn52xxp1;
};
typedef union cvmx_mio_uart2_msr cvmx_mio_uart2_msr_t;
/**
* cvmx_mio_uart2_rbr
*/
union cvmx_mio_uart2_rbr {
uint64_t u64;
struct cvmx_mio_uart2_rbr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t rbr : 8; /**< Receive Buffer Register */
#else
uint64_t rbr : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uart2_rbr_s cn52xx;
struct cvmx_mio_uart2_rbr_s cn52xxp1;
};
typedef union cvmx_mio_uart2_rbr cvmx_mio_uart2_rbr_t;
/**
* cvmx_mio_uart2_rfl
*/
union cvmx_mio_uart2_rfl {
uint64_t u64;
struct cvmx_mio_uart2_rfl_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_7_63 : 57;
uint64_t rfl : 7; /**< Receive FIFO Level Register */
#else
uint64_t rfl : 7;
uint64_t reserved_7_63 : 57;
#endif
} s;
struct cvmx_mio_uart2_rfl_s cn52xx;
struct cvmx_mio_uart2_rfl_s cn52xxp1;
};
typedef union cvmx_mio_uart2_rfl cvmx_mio_uart2_rfl_t;
/**
* cvmx_mio_uart2_rfw
*/
union cvmx_mio_uart2_rfw {
uint64_t u64;
struct cvmx_mio_uart2_rfw_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_10_63 : 54;
uint64_t rffe : 1; /**< Receive FIFO Framing Error */
uint64_t rfpe : 1; /**< Receive FIFO Parity Error */
uint64_t rfwd : 8; /**< Receive FIFO Write Data */
#else
uint64_t rfwd : 8;
uint64_t rfpe : 1;
uint64_t rffe : 1;
uint64_t reserved_10_63 : 54;
#endif
} s;
struct cvmx_mio_uart2_rfw_s cn52xx;
struct cvmx_mio_uart2_rfw_s cn52xxp1;
};
typedef union cvmx_mio_uart2_rfw cvmx_mio_uart2_rfw_t;
/**
* cvmx_mio_uart2_sbcr
*/
union cvmx_mio_uart2_sbcr {
uint64_t u64;
struct cvmx_mio_uart2_sbcr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_1_63 : 63;
uint64_t sbcr : 1; /**< Shadow Break Control */
#else
uint64_t sbcr : 1;
uint64_t reserved_1_63 : 63;
#endif
} s;
struct cvmx_mio_uart2_sbcr_s cn52xx;
struct cvmx_mio_uart2_sbcr_s cn52xxp1;
};
typedef union cvmx_mio_uart2_sbcr cvmx_mio_uart2_sbcr_t;
/**
* cvmx_mio_uart2_scr
*/
union cvmx_mio_uart2_scr {
uint64_t u64;
struct cvmx_mio_uart2_scr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t scr : 8; /**< Scratchpad Register */
#else
uint64_t scr : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uart2_scr_s cn52xx;
struct cvmx_mio_uart2_scr_s cn52xxp1;
};
typedef union cvmx_mio_uart2_scr cvmx_mio_uart2_scr_t;
/**
* cvmx_mio_uart2_sfe
*/
union cvmx_mio_uart2_sfe {
uint64_t u64;
struct cvmx_mio_uart2_sfe_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_1_63 : 63;
uint64_t sfe : 1; /**< Shadow FIFO Enable */
#else
uint64_t sfe : 1;
uint64_t reserved_1_63 : 63;
#endif
} s;
struct cvmx_mio_uart2_sfe_s cn52xx;
struct cvmx_mio_uart2_sfe_s cn52xxp1;
};
typedef union cvmx_mio_uart2_sfe cvmx_mio_uart2_sfe_t;
/**
* cvmx_mio_uart2_srr
*/
union cvmx_mio_uart2_srr {
uint64_t u64;
struct cvmx_mio_uart2_srr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_3_63 : 61;
uint64_t stfr : 1; /**< Shadow TX FIFO Reset */
uint64_t srfr : 1; /**< Shadow RX FIFO Reset */
uint64_t usr : 1; /**< UART Soft Reset */
#else
uint64_t usr : 1;
uint64_t srfr : 1;
uint64_t stfr : 1;
uint64_t reserved_3_63 : 61;
#endif
} s;
struct cvmx_mio_uart2_srr_s cn52xx;
struct cvmx_mio_uart2_srr_s cn52xxp1;
};
typedef union cvmx_mio_uart2_srr cvmx_mio_uart2_srr_t;
/**
* cvmx_mio_uart2_srt
*/
union cvmx_mio_uart2_srt {
uint64_t u64;
struct cvmx_mio_uart2_srt_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_2_63 : 62;
uint64_t srt : 2; /**< Shadow RX Trigger */
#else
uint64_t srt : 2;
uint64_t reserved_2_63 : 62;
#endif
} s;
struct cvmx_mio_uart2_srt_s cn52xx;
struct cvmx_mio_uart2_srt_s cn52xxp1;
};
typedef union cvmx_mio_uart2_srt cvmx_mio_uart2_srt_t;
/**
* cvmx_mio_uart2_srts
*/
union cvmx_mio_uart2_srts {
uint64_t u64;
struct cvmx_mio_uart2_srts_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_1_63 : 63;
uint64_t srts : 1; /**< Shadow Request To Send */
#else
uint64_t srts : 1;
uint64_t reserved_1_63 : 63;
#endif
} s;
struct cvmx_mio_uart2_srts_s cn52xx;
struct cvmx_mio_uart2_srts_s cn52xxp1;
};
typedef union cvmx_mio_uart2_srts cvmx_mio_uart2_srts_t;
/**
* cvmx_mio_uart2_stt
*/
union cvmx_mio_uart2_stt {
uint64_t u64;
struct cvmx_mio_uart2_stt_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_2_63 : 62;
uint64_t stt : 2; /**< Shadow TX Trigger */
#else
uint64_t stt : 2;
uint64_t reserved_2_63 : 62;
#endif
} s;
struct cvmx_mio_uart2_stt_s cn52xx;
struct cvmx_mio_uart2_stt_s cn52xxp1;
};
typedef union cvmx_mio_uart2_stt cvmx_mio_uart2_stt_t;
/**
* cvmx_mio_uart2_tfl
*/
union cvmx_mio_uart2_tfl {
uint64_t u64;
struct cvmx_mio_uart2_tfl_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_7_63 : 57;
uint64_t tfl : 7; /**< Transmit FIFO Level Register */
#else
uint64_t tfl : 7;
uint64_t reserved_7_63 : 57;
#endif
} s;
struct cvmx_mio_uart2_tfl_s cn52xx;
struct cvmx_mio_uart2_tfl_s cn52xxp1;
};
typedef union cvmx_mio_uart2_tfl cvmx_mio_uart2_tfl_t;
/**
* cvmx_mio_uart2_tfr
*/
union cvmx_mio_uart2_tfr {
uint64_t u64;
struct cvmx_mio_uart2_tfr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t tfr : 8; /**< Transmit FIFO Read Register */
#else
uint64_t tfr : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uart2_tfr_s cn52xx;
struct cvmx_mio_uart2_tfr_s cn52xxp1;
};
typedef union cvmx_mio_uart2_tfr cvmx_mio_uart2_tfr_t;
/**
* cvmx_mio_uart2_thr
*/
union cvmx_mio_uart2_thr {
uint64_t u64;
struct cvmx_mio_uart2_thr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_8_63 : 56;
uint64_t thr : 8; /**< Transmit Holding Register */
#else
uint64_t thr : 8;
uint64_t reserved_8_63 : 56;
#endif
} s;
struct cvmx_mio_uart2_thr_s cn52xx;
struct cvmx_mio_uart2_thr_s cn52xxp1;
};
typedef union cvmx_mio_uart2_thr cvmx_mio_uart2_thr_t;
/**
* cvmx_mio_uart2_usr
*/
union cvmx_mio_uart2_usr {
uint64_t u64;
struct cvmx_mio_uart2_usr_s {
#ifdef __BIG_ENDIAN_BITFIELD
uint64_t reserved_5_63 : 59;
uint64_t rff : 1; /**< RX FIFO Full */
uint64_t rfne : 1; /**< RX FIFO Not Empty */
uint64_t tfe : 1; /**< TX FIFO Empty */
uint64_t tfnf : 1; /**< TX FIFO Not Full */
uint64_t busy : 1; /**< Busy bit (always 0 in PASS3) */
#else
uint64_t busy : 1;
uint64_t tfnf : 1;
uint64_t tfe : 1;
uint64_t rfne : 1;
uint64_t rff : 1;
uint64_t reserved_5_63 : 59;
#endif
} s;
struct cvmx_mio_uart2_usr_s cn52xx;
struct cvmx_mio_uart2_usr_s cn52xxp1;
};
typedef union cvmx_mio_uart2_usr cvmx_mio_uart2_usr_t;
#endif
|